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Shandong, China, 2Department of Gastroenterology, Shandong Provincial Hospital Affiliated to
Shandong First Medical University, Jinan, Shandong, China
Background: The diagnosis of gastric atrophy is highly subjective, and we aimed

to establish a model of gastric atrophy based on pathological features to improve

diagnostic consistency.

Methods: We retrospectively collected the HE-stained pathological slides of

gastric biopsies and used CellProfiler software for image segmentation and

feature extraction of ten representative images for each sample. Subsequently,

we employed the Least absolute shrinkage and selection operator (LASSO) to

select features and different machine learning (ML) algorithms to construct the

diagnostic models for gastric atrophy.

Results: We selected 289 gastric biopsy specimens for training, testing, and

external validation. We extracted 464 pathological features and screened ten

features by LASSO to establish the diagnostic model for moderate-to-severe

atrophy. The range of area under the curve (AUC) for various machine learning

algorithms was 0.835-1.000 in the training set, 0.786-0.949 in the testing set,

and 0.689-0.818 in the external validation set. LR model had the highest AUC

value, with 0.900 (95% CI: 0.852-0.947) in the training set, 0.901 (95% CI: 0.807-

0.996) in the testing set, and 0.818 (95% CI: 0.714-0.923) in the external

validation set. The atrophy pathological score based on the LR model was

associated with endoscopic atrophy grading (Z=-2.478, P=0.013) and gastric

cancer (GC) (OR=5.70, 95% CI: 2.63-12.33, P<0.001).

Conclusion: The ML model based on pathological features could improve the

diagnostic consistency of gastric atrophy, which is also associated with

endoscopic atrophy grading and GC.
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1 Introduction

According to the latest global cancer statistics, gastric cancer

(GC) is one of the most common cancers and a significant

contributor to cancer-related mortality due to late diagnosis (1).

Intestinal gastric adenocarcinoma (GA) is the predominant type of

GC, following a process known as the Correa cascade, progressing

from chronic inflammation to atrophy and intestinal metaplasia,

then to dysplasia, and finally to GC (2). Consequently, the early

identification of atrophy and intestinal metaplasia plays a crucial

role in the timely diagnosis and treatment of GC.

Biopsy remains the gold standard for diagnosis and staging of

gastric atrophy. Pathologically, atrophy means a decrease in gastric

intrinsic glands. According to the visual analog scale (VAS), it

includes four grades: none, mild, moderate, and severe (3). Some

researchers have developed the Operative Link on Gastritis

Assessment (OLGA) (4) and Operative Link for Intestinal

Metaplasia (OLGIM) (5) staging systems, which link pathological

staging with cancer risk, indicating a significant increase in GC risk

of stages III-IV. However, the pathological grading of atrophy is

highly subjective, with low inter- and intra-observer agreement.

Moreover, the diagnosis of atrophy has strict requirements for

biopsy specimens. If endoscopists did not acquire the samples

from muscularis mucosa, the pathologists could not identify the

grade of atrophy.

Due to advances in slide scanning technology and the reduction

of digital storage costs, the complete digitization of tissue slides has

become possible. In recent years, the term pathomics has attracted
Frontiers in Oncology 02
increasing attention. Pathomics refers to capturing various data

from digital pathology images to generate quantitative features,

which are subsequently analyzed using different algorithms to

determine diagnosis or predict survival outcomes (6, 7). This

study aimed to extract digital pathological features from H&E

stained pathological slides and use machine learning (ML)

algorithms to construct diagnostic models for atrophic gastritis,

which could improve diagnostic consistency and provide accurate

real-time clinical decision support (CDS).
2 Methods

2.1 Study population

The Ethics Committee of Shandong Provincial Hospital

(SWYX: NO.2023-031) approved the study. The study was

retrospective, for which the Ethics Committee waived informed

consent from patients.

We selected the pathological slides of patients in Shandong

Provincial Hospital from January 2021 to June 2022 for model

training and testing and October 2018 to December 2020 for

external validation. Our study included patients who underwent

gastric antrum biopsy for atrophy grading during gastroscopy with

complete clinical information. We excluded patients whose

pathological slides were difficult to obtain, were poorly stained, or

lacked muscularis mucosa. Figure 1 presents the overall flow of

the study.
FIGURE 1

The workflow of the entire research design. Pathological features were extracted by Cellprofiler software and selected by LASSO. The diagnostic
models were built by multiple machine learning algorithms and evaluated by AUC, histogram, and DCA. LASSO, Least absolute shrinkage and
selection operator; LR, logistic regression; SVM, Support Vector Machine; KNN, K Nearest Neighbor; AUC, area under the curve; DCA, decision
curve analysis.
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2.2 Acquisition of images

We scanned the Hematoxylin-eosin-stained (H&E-stained)

slides prepared by formalin-fixed paraffin-embedded samples at

40x and saved them in svs format. Two gastrointestinal pathologists

with more than ten years of experience independently assessed the

degree of atrophy for each slide. The slides with disagreements

performed a joint assessment conducted by two experts. Since there

were several identical biopsies on an entire WSI, we used the

Qupath software to annotate the most representative areas

with the best staining in the WSI. The representative area referred

to the mucosal glands without the white background. Regions

demonstrating optimal staining exhibited superior transparency

and a clear distinction between nuclear and cytoplasmic

staining, devoid of artifacts (Supplementary Figure S1).

Subsequently, we cropped the annotated areas in the WSI into

patches with dimensions of 512x512 pixels and saved them as

JPG files. Lastly, ten representative images, which exhibited the

highest number of glands, were selected from the cropped images

of each slide.
2.3 Extraction of pathological features

We constructed a pipeline (Document S1) for image segmentation

and feature extraction using multiple modules in CellProfiler (8). We

split the H&E stained image into hematoxylin and eosin stained

images using the UnmixColors module (9) and converted to grayscale

images using the ColorToGray module. Afterward, we employed the

IdentifyPrimaryObjects module to segment the image and identify cell

nuclei. Further, we utilized modules such as MeasureImageQuality,

MeasureImageIntensity, MeasureColocalization, MeasureGranularity,

MeasureTexture, MeasureObjectSizeShape, MeasureObjectIntensity,

and MeasureObjectIntensityDistribution to extract quantitative

pathological features. Finally, the extracted pathological features

were exported and saved as an Excel file.
2.4 Feature selection and
model construction

After normalizing the data, we calculated Pearson correlation

coefficients between features. We would retain only one if the

correlation coefficients between features were more than 0.9. We

subsequently divided the data into training and validation sets with

a ratio of 8:2. Further, we used the Least absolute shrinkage and

selection operator (LASSO) regression to select non-zero coefficient

features for subsequent analysis. LASSO achieves the effect of

feature selection by reducing or even shrinking some regression

coefficients to zero through the penalty term. After LASSO analysis,

only features with a strong influence on the target variable will

remain, while the coefficients of other features will become zero. As

the penalty increases, the complexity of the model decreases, and

the MSE (mean square error) increases. We aimed to find a suitable
Frontiers in Oncology 03
level of penalty to obtain fewer variables but still maintain a small

MSE. In our study, only ten non-zero coefficient features remained

after the LASSO. Finally, we constructed ML models using logistic

regression (LR), Support Vector Machine (SVM), K Nearest

Neighbor (KNN), Random Forests, ExtraTrees, extreme Gradient

Boosting (XGBoost), Light Gradient Boosting Machine

(LightGBM), GradientBoosting and AdaBoost.
2.5 Statistical analysis

We used the Student t-test to compare normally distributed

continuous variables, the Chi-square test to compare categorical

variables, and the non-parametric test to compare ordered variates

or non-normally distributed continuous variables. Binary logistic

regression (stepwise method) was further employed to estimate

the adjusted odds ratio (OR) and 95% confidence interval (CI).

We performed the Kappa test using the vcd package of R

software and calculated 95% confidence intervals. When the

kappa coefficient is less than 0.2, the consistency is poor; 0.21-

0.40 is fair; 0.41-0.60 is moderate; 0.61-0.80 is strong; and 0.81-

1.00 is very strong. We used the area under the curve (AUC)

to assess the discrimination of the ML models, histograms to

demonstrate the calibration of the models, and decision curve

analysis (DCA) to evaluate the clinical applicability of the

models. The AUC represents the area under the receiver

operator characteristic (ROC) curve generated by the classifier

based on different decision thresholds to assess the model

performance. Overall, the model performance improves as

the AUC approaches 1. Prediction histograms can display

and analyze the distribution of prediction results, which helps

us evaluate the model performance. The DCA is used to

evaluate the net benefit of the model under different decision

thresholds. We often draw a reference line, a baseline for making

random decisions without any predictions. If the net benefit

curve of the model is above the baseline, it indicates that the

model has better clinical utility relative to the baseline. We used

Statistical Package for Social Sciences (SPSS) v.24.0, R v.4.2.1, and

Python v.3.1 to perform all analysis. P values <0.05 were

considered significant.
3 Results

3.1 Data sets

We selected 289 pathological slides, including 169 for the model

training, 42 for the testing, and 78 from different years for the

external validation. Two professional pathologists independently

diagnosed 289 slides, and the diagnostic agreement was strong - a

Kappa value of 0.68 (95%CI: 0.60-0.77, P<0.001). The slides with

disagreements performed a joint assessment conducted by two

experts. Finally, the two pathologists reached a consensus on all

the inconsistent slides by discussing them together.
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3.2 Feature extraction and screening

We extracted 464 pathological features from 2890 images using

Cellprofiler software. These features include 324 related to cell

nuclei granularity, texture, size, shape, and pixel intensity

distribution, 124 features related to image quality, intensity, co-

localization, and correlation between intensities. We then calculated

the average value of features extracted from 10 representative

images for each slide. After removing 30 irrelevant or abnormal

features, 434 remained (Supplementary Table S1), and we screened

203 features by Pearson correlation coefficient. Finally, we selected

ten non-zero coefficient features by the Lasso regression (Figure 2).
3.3 ML-based diagnostic model for
moderate to severe atrophy

Most ML algorithms exhibited relatively satisfied diagnostic

performance in the training set (AUC: 0.887-1.000), test set (AUC:

0.744-0.901), and external validation set (AUC: 0.689-0.818). The LR

model achieved the highest AUC value of 0.900 (95%CI: 0.852-0.947)

in the training set, 0.901 (95%CI: 0.807- 0.996) in the test set, and 0.818

(95%CI: 0.714-0.923) in the validation set. Figure 3 and Table 1 show

the detailed performance of various models. We further compared our

model with previously reported models (10–13), which is shown in

Table 2. In addition, histograms and DCA showed good calibration

and clinical benefit of the LR model (Figure 4).
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3.4 LR-based PS with GC and endoscopic
atrophy grading

We selected 0.47 as the cutoff value according to the Youden

index and converted the LR model into a pathology score (PS) for

gastric atrophy, including high and low PS. In the univariate logistic

regression analysis, the sex(OR=2.56, 95%CI: 1.07-6.15; P=0.035),

age(OR=1.04, 95%CI: 1.01-1.08; P=0.025) and PS (OR=5.40, 95%

CI: 2.55-11.43; P<0.001) was associated with GC. Subsequently, we

conducted a multivariate logistic regression analysis, which adjusted

the sex and age. The result showed that PS was an independent risk

factor for GC (OR=5.70, 95%CI: 2.63-12.33; P<0.001) (Table 3).

Compared to the low PS, the high PS would increase the risk of GC

by more than five times. Besides, we also explore the correlation

between the PS and endoscopic atrophy grading (Kimura Takemoto

classification). The result showed that the PS was also associated

with the endoscopic atrophy grading (Z=-2.478, P=0.013)

(Supplementary Figure S2).
4 Discussion

The accurate diagnosis of atrophy is vital in clinical practice for

two main reasons. Firstly, atrophy is considered a precancerous

condition, and its early identification and follow-up are crucial for

early diagnosis and treatment of GC (14, 15). However, mild and focal
A B

C

FIGURE 2

Pathomics feature selection based on the LASSO algorithm for moderate to severe gastric atrophy. (A) LASSO coefficient profiles of the features. The
different color line shows the corresponding coefficient of each feature. As the penalty increases, Lasso regression adjusts the coefficient of some
variables to zero, thus enabling variable selection. (B) Tuning parameter (l) selection in the LASSO model. As the penalty increases, the complexity of
the model decreases, and the MSE increases. We aimed to find a suitable level of penalty to obtain fewer variables but still maintain a small MSE. (C)
Selected features weight coefficients. LASSO, Least absolute shrinkage and selection operator; MSE, mean square error.
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atrophy usually does not progress to GC in the short term, so we

should pay more attention to patients with moderate to severe

atrophy to reduce unnecessary anxiety of patients. Pathologists

diagnose the degree of atrophy mainly based on the reduction

of gastric intrinsic glands using VAS (16). This method has

relatively high requirements for biopsies, with low intra- and

interobserver agreement.

In recent years, artificial intelligence (AI) has rapidly developed in

biomedicine and plays a vital role in the diagnosis, staging, and

prognosis of many diseases by integrating medical imaging, such as

endoscopic examinations, radiographic images, and pathology (17).

ML has been popular for analyzing pathological images (18). In

general, there are twomain types of feature extraction for pathological

analysis: automatic feature extraction based on deep neural networks

and manual feature extraction (19). Deep learning algorithms can

directly input images for learning without manual feature extraction.

They usually focus on fine-tuning parameters to maximize accuracy

while minimizing processing time (20). In addition, we could apply

the deep neural network-based methods trained on specific disease

subtypes to others. However, deep learning often requires larger

datasets with difficulty to interpret, which limits their clinical

application. Therefore, manual feature extraction methods are more

likely to be used for higher-level decision-making tasks, such as

disease diagnosis and prognosis prediction, while deep neural

network approaches may be more suitable for some low-level tasks,

such as object detection or segmentation (21, 22). Considering the

sample size and application scenario, we chose the manual feature

extraction approach.

There is no consensus on extracting pathological features (6, 19).

CellProfiler is free and open-source software that can automatically

measure phenotypes in biological images easily and repeatably. It is

currently used for digital pathology analysis, allowing clinicians to
Frontiers in Oncology 05
extract quantitative pathological features with satisfactory

performance (8, 23). We used this software to extract quantitative

pathological features and subsequently construct pathological scores

based on the LR model for gastric atrophy.

Traditionally, the pathological diagnostic indicators of chronic

atrophic gastritis mainly include reduced intrinsic glands, intestinal

epithelial metaplasia, pseudopyloric gland metaplasia, lymphoid

follicular formation, and fibrous tissue hyperplasia. However, we

explored some other features that may also related to the diagnosis

of the atrophy in our study. In the initial phase of the study, the

association of features with atrophy was uncertain, and we selected all

features using statistical methods. The result demonstrated that the

nuclei shape, texture, and color distribution might be related to the

diagnosis of atrophy. For example, the Mean_IdentifyPrimaryObjects_

AreaShape_CentralMoment_0_3 and Mean_IdentifyPrimaryObjects_

AreaShape_CentralMoment_1_0 described the shape distribution of

cell nuclei, Mean_IdentifyPrimaryObjects_AreaShape_HuMoment_6

described the cell nucleus symmetry and smoothness of the shape,

Mean_IdentifyPrimaryObjects_AreaShape_Zernike_4_2 and

Mean_IdentifyPrimaryObjects_AreaShape_Zernike_6_4 described the

symmetry of the cell nuclear outline shape and the extent of unfold,

Mean_IdentifyPrimaryObjects_Granularity_4_Hematoxylin,

Mean_IdentifyPrimaryObjects_Granularity_6_Hematoxylin, and

Mean_IdentifyPrimaryObjects_Texture_DifferenceVariance_

Hematoxylin_3_03_256 described the granularity and texture of the

cell nucleus. However, our study was just exploratory research, and it is

necessary to validate it in the future.

There were also some other artificial intelligence models for the

diagnosis of gastritis. For example, Ma B et al (10) constructed a

convolutional neural network (CNN)-based system to identify

normal mucosa, chronic gastritis, and intestinal-type GC in

pathological slides. Ba W et al (13) develop a DeepLab v3
FIGURE 3

The histogram of AUC values for different machine learning models to diagnose moderate to severe gastric atrophy in training, test, and external
validation sets. The AUC represents the area under the ROC curve generated by the classifier based on different decision thresholds to evaluate the
model performance. Overall, a model’s performance improves as the AUC approaches 1. AUC, area under the curve; ROC, receiver operator
characteristic curve; KNN, K Nearest Neighbor; LR, logistic regression; SVM, Support Vector Machine.
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TABLE 1 Efficacy of machine learning in diagnosing moderate to severe gastric atrophy.

Model Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Threshold Group

LR 0.852 0.900 0.852 - 0.947 0.781 0.895 0.820 0.870 0.470 train

0.857 0.901 0.807 - 0.996 0.875 0.846 0.778 0.917 0.428 test

0.821 0.818 0.714 - 0.920 0.724 0.896 0.778 0.843 0.536 val

SVM 0.905 0.945 0.909 - 0.982 0.891 0.914 0.864 0.932 0.409 train

0.881 0.901 0.807 - 0.996 0.750 0.962 0.923 0.862 0.572 test

0.731 0.792 0.681 - 0.902 0.828 0.673 0.600 0.868 0.357 val

KNN 0.811 0.887 0.841 - 0.933 0.875 0.771 0.700 0.910 0.400 train

0.667 0.744 0.584 - 0.904 0.750 0.615 0.545 0.800 0.400 test

0.731 0.689 0.557 - 0.820 0.552 0.837 0.667 0.759 0.600 val

RF 0.994 0.999 0.998 - 1.000 1.000 0.990 0.985 1.000 0.500 train

0.857 0.804 0.641 - 0.967 0.625 1.000 1.000 0.812 0.700 test

0.782 0.793 0.678 - 0.908 0.655 0.857 0.731 0.808 0.600 val

ET 1.000 1.000 1.000 - 1.000 1.000 1.000 1.000 1.000 1.000 train

0.786 0.838 0.707 - 0.968 0.812 0.769 0.684 0.870 0.500 test

0.756 0.709 0.580 - 0.838 0.655 0.833 0.679 0.800 0.500 val

XGB 0.994 1.000 0.999 - 1.000 1.000 0.990 0.985 1.000 0.475 train

0.762 0.810 0.667 - 0.953 0.812 0.731 0.650 0.864 0.364 test

0.744 0.753 0.637 - 0.868 0.724 0.755 0.636 0.822 0.359 val

LGBM 0.882 0.945 0.915 - 0.975 0.875 0.886 0.824 0.921 0.411 train

0.833 0.894 0.791 - 0.997 0.875 0.808 0.737 0.913 0.349 test

0.795 0.803 0.695 - 0.910 0.690 0.875 0.741 0.824 0.434 val

GB 0.929 0.983 0.970 - 0.997 0.984 0.895 0.851 0.989 0.300 train

0.810 0.828 0.699 - 0.958 0.750 0.846 0.750 0.846 0.429 test

0.782 0.782 0.675 - 0.889 0.517 0.939 0.833 0.767 0.507 val

AB 0.882 0.942 0.910 - 0.974 0.766 0.952 0.907 0.870 0.506 train

0.833 0.85 0.712 0.978 0.562 1.000 1.000 0.788 0.563 test

0.795 0.800 0.692 - 0.909 0.724 0.837 0.724 0.837 0.497 val
F
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LR, Logistic Regression; SVM, Support Vector Machine; KNN, K Nearest Neighbor; ET, Extra Trees; XGB, Extreme Gradient Boosting; LGBM, Light Gradient Boosting Machine; GB, Gradient
Boosting; AB, AdaBoost; AUC, Area Under the Curve; CI, Confidence Interval; PPV, Positive Predictive Value; NPV, Negative Predictive Value.
TABLE 2 The comparison of our model with the previous model.

model Number of images train/test/val Algorithm ML/DL discrimination AUC SE SP

our model 169/42/78 LR ML moderate to severe CAG 0.818 0.724 0.896

Ma B, 2020 534/153/76 Inception v3 DL whether CG NR 0.958 NR

Ba W, 2021 1008/100/142 DeepLab v3 DL whether CAG 0.910 0.952 0.992

Barmpoutis P, 2022 85 GAGL-VTNet DL whether CAG NR 0.940 NR

Fang S, 2023 1745/435/545 GasMIL DL grade of CAG 0.877 0.700 0.700
tier
CAG, Chronic Atrophic Gastritis; CG, Chronic Gastritis; LR, Logistic Regression; ML, Machine Learning; DL, Deep Learning; AUC, Area Under the Curve; SE, Sensitivity; SP, Specificity; NR,
Not Report.
sin.org

https://doi.org/10.3389/fonc.2024.1289265
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lan et al. 10.3389/fonc.2024.1289265
A B

DC

FIGURE 4

The efficacy of the LR model for moderate to severe gastric atrophy. (A, B) The DCA and prediction histogram in the test set. (C, D) The DCA and
prediction histogram in the external validation set. The DCA is used to evaluate the net benefit of the model under different decision thresholds. We
often draw a reference line, a baseline for making random decisions without any predictions. If the net benefit curve of the model is above the
baseline, it indicates that the model has better clinical utility relative to the baseline. Prediction histograms can display and analyze the distribution of
prediction results, which helps us evaluate the model performance. LR, logistic Regression; DCA, decision curve analysis.
TABLE 3 Univariate and multivariate logistic regression analysis of PS and GC.

Non-GC GC
Univariate Multivariate

OR(95%CI) P OR(95%CI) P

Total 165 41

Sex, n 2.56(1.07-6.15) 0.035 2.61(1.04-6.54) 0.041

Female 57 7

Male 108 34

Age, Mean (SD) 59(10) 64(10) 1.04(1.01-1.08) 0.025 1.04(1.00-1.09) 0.039

Smoking, n 1.40(0.70-2.79) 0.341

No 102 22

Yes 63 19

Alcohol, n 1.26(0.63-2.51) 0.507

No 82 18

Yes 83 23

PS, n 5.40(2.55-11.43) <0.001 5.70(2.63-12.33) <0.001

Low 114 12

High 51 29
F
rontiers in Oncology
 07
n, number; GC, Gastric Cancer; OR, Odd Ratio; CI, Conference Interval; SD, Standard Deviation; PS, Pathology Score for Gastric Atrophy.
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algorithm for the pathological classification of chronic gastritis,

including chronic superficial gastritis (CSuG), chronic active

gastritis (CAcG), and chronic atrophic gastritis (CAtG).

Barmpoutis P et al (12) proposed a digital pathology end-to-end

workflow for gastric gland segmentation and classification of gastric

atrophy and gastric intestinal metaplasia. Although they have

achieved excellent performance, they only identified whether it

was atrophic gastritis instead of the grade of gastric atrophy.

Later, Fang S et al (11) established a diagnostic approach for

gastric biopsy specimens using deep learning, which could also

discriminate the grade of the atrophy. However, they all employed

deep learning and cannot be explained clearly, which will limit their

clinical use.

Our model extracted some features of the images and cell

nucleus, which were further used to construct the diagnostic

model by machine learning. The model not only has favorable

diagnostic efficacy which can improve the consistency of atrophy

diagnosis, but it could also explain why the model make the

decision. We think our model could be used in many scenarios in

the future. Firstly, the number of patients with atrophic gastritis is

increasing and the number of professional pathologists is

decreasing, so it is urgent to develop an accurate AI model for the

automatic diagnosis of gastric atrophy to reduce the burden on

pathologists. Our model has favorable performance, which can be

integrated into the computer to diagnose gastric atrophy

automatically. Especially, the features we extracted were all the

local pathological characteristics and it is not required to obtain the

whole WSI. Therefore, when the endoscopists cannot obtain

the muscularis mucosa, we can consider using this model to

judge the degree of atrophy and provide real-time clinical

decision support. In addition, with the development of

endoscopic techniques, cytoendoscopy will be widely used in the

foreseeable future. Our model screened some pathological features

related to the degree of gastric atrophy, which may be also suitable

for the Cytoendoscopic findings. Finally, the pathological score

based on the model is correlated with the endoscopic atrophy

grading and GC, so it could also be used to assess the risk of GC

and guide the follow-up of patients with atrophic gastritis in

the future.

However, our study had several limitations. Firstly, it was a

retrospective study, which introduced a potential for selection bias.

Secondly, we conducted the study in a single center with a limited

sample size, so it is necessary to validate the findings with a more

diverse dataset that includes different scanners and institutions.

Finally, we may have missed some relevant features when extracting

the pathological features. Despite this possibility, it was still

meaningful for achieving favorable model performance.

In conclusion, we constructed a diagnostic model associated

with endoscopic atrophy grading and GC for gastric atrophy based

on pathological characteristics to improve diagnostic consistency.
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