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Impact of bias field correction
on 0.35 T pelvic MR images:
evaluation on generative
adversarial network-based OARs’
auto-segmentation and visual
grading assessment
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Angela Romano1, Luca Boldrini1, Maria Kawula3,
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3Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany,
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Purpose: Magnetic resonance imaging (MRI)-guided radiotherapy enables

adaptive treatment plans based on daily anatomical changes and accurate

organ visualization. However, the bias field artifact can compromise image

quality, affecting diagnostic accuracy and quantitative analyses. This study aims

to assess the impact of bias field correction on 0.35 T pelvis MRIs by evaluating

clinical anatomy visualization and generative adversarial network (GAN) auto-

segmentation performance.

Materials and methods: 3D simulation MRIs from 60 prostate cancer patients

treated on MR-Linac (0.35 T) were collected and preprocessed with the N4ITK

algorithm for bias field correction. A 3D GAN architecture was trained, validated,

and tested on 40, 10, and 10 patients, respectively, to auto-segment the organs at

risk (OARs) rectum and bladder. The GAN was trained and evaluated either with

the original or the bias-corrected MRIs. The Dice similarity coefficient (DSC) and

95th percentile Hausdorff distance (HD95th) were computed for the segmented

volumes of each patient. The Wilcoxon signed-rank test assessed the statistical

difference of themetrics within OARs, both with and without bias field correction.

Five radiation oncologists blindly scored 22 randomly chosen patients in terms of

overall image quality and visibility of boundaries (prostate, rectum, bladder,

seminal vesicles) of the original and bias-corrected MRIs. Bennett’s S score and

Fleiss’ kappa were used to assess the pairwise interrater agreement and the

interrater agreement among all the observers, respectively.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2024.1294252/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1294252/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1294252/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1294252/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1294252/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1294252/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1294252&domain=pdf&date_stamp=2024-03-28
mailto:francesco.catucci@materolbia.com
https://doi.org/10.3389/fonc.2024.1294252
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1294252
https://www.frontiersin.org/journals/oncology


Vagni et al. 10.3389/fonc.2024.1294252

Frontiers in Oncology
Results: In the test set, the GAN trained and evaluated on original and bias-

corrected MRIs showed DSC/HD95th of 0.92/5.63 mm and 0.92/5.91 mm for the

bladder and 0.84/10.61 mm and 0.83/9.71 mm for the rectum. No statistical

differences in the distribution of the evaluationmetrics were found neither for the

bladder (DSC: p = 0.07; HD95th: p = 0.35) nor for the rectum (DSC: p = 0.32;

HD95th: p = 0.63). From the clinical visual grading assessment, the bias-

corrected MRI resulted mostly in either no change or an improvement of the

image quality and visualization of the organs’ boundaries compared with the

original MRI.

Conclusion: The bias field correction did not improve the anatomy visualization

from a clinical point of view and the OARs’ auto-segmentation outputs generated

by the GAN.
KEYWORDS

N4ITK algorithm, bias field artifact, visual grading assessment, generative adversarial
networks, 0.35 T MRIgRT, prostate cancer
1 Introduction

Magnetic resonance imaging-guided radiotherapy (MRIgRT)

systems, specifically the combination of a linear accelerator (Linac)

with an on-board MR scanner (MRI-Linac), provide the possibility

to manage and effectively compensate anatomical changes that can

occur between and within treatment sessions (1). This allows for the

adaptation of the radiotherapy treatment plan on a daily basis,

considering any changes in the patient’s anatomy. Additionally, on-

board MRI, offering high soft tissue contrast (2), enables good

visualization of anatomical structures, facilitating accurate

delineation of organs at risk (OARs) and target volumes (3, 4),

without additional dose for imaging purposes.

However, smooth, low-frequency variations in signal intensity

across the image known as bias field artifact can occur, resulting in

signal losses that may affect MR image quality (5, 6).

This artifact arises from various sources, including sensitivity

variations of the imaging system, magnetic field inhomogeneities,

and patient-related factors (6). It manifests as a gradual change in

signal intensity, resulting in a non-uniform intensity distribution

across the image that can obscure important structures, reduce

contrast, and compromise the accuracy of image analysis

techniques (5, 6). The presence of the bias field artifact might

pose challenges in tasks demanding accurate and quantitative

measurements, such as radiomics, segmentation, and registration.

Additionally, the artifact could impact the effective deployment of

artificial intelligence systems, including those utilizing deep

learning neural networks. It can introduce errors and inaccuracies

in the measurements, potentially impacting diagnostic and

treatment decisions (5).

Several methods have been developed to address bias field

artifacts (5); the most effective and used technique relies on the
02
N4 bias field correction (N4ITK) algorithm (7, 8), an extension of

the N3 algorithm (6) specifically designed to tackle bias field

correction in MRI. By employing a multiresolution non-

parametric approach, the N4ITK algorithm deconvolves the

histogram of the intensities of the original corrupted image by

using a Gaussian function, estimates the “corrected” intensities, and

spatially smooths the resulted bias field estimation using a B-spline

model (7).

High-quality images are also crucial for accurate image

interpretation, as fine details, subtle abnormalities, and specific

characteristics of the disease can be better observed, reducing the

risk of misdiagnosis and leading to more precise treatment

plans (9).

The aim of this study was to assess the impact of the bias field

correction applied to 0.35 T pelvis MRIs in both anatomy

visualization from a clinical point of view and quantitative

application such as the OARs’ auto-segmentation output

generated by a generative adversarial network (GAN). To the best

of our knowledge, no studies have systematically investigated the

impact of the bias field artifact at 0.35 T, as well as in neural network

auto-segmentation tasks.
2 Materials and methods

2.1 Dataset

The cohort of patients retrospectively enrolled was composed of

60 prostate cancer subjects who underwent MRIgRT (MRIdian,

ViewRay, Mountain View, USA) from August 2017 to September

2022 at Fondazione Policlinico Universitario “A. Gemelli” IRCCS

(FPG) in Rome, Italy.
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MR images were acquired with a True Fast Imaging with

Steady-state Precession (TrueFISP) sequence on a 0.35-T MRI

scanner in free breathing condition, resulting in T2*/T1 contrast

images with a spacing of 1.5 × 1.5 × 1.5 mm.

The delineations of the OARs rectum and bladder were

provided and represented our ground truth to train and evaluate

a neural network able to auto-segment them (Section 2.4). To

ensure consistency, a radiation oncologist with over 5 years of

experience in 0.35 T MRI pelvic examination reviewed and adjusted

the delineations.

The dataset was randomly split into training (40 patients),

validation (10 patients), and testing (10 patients) sets for the

neural network application (Section 2.4), while a subset of 22

randomly selected patients was considered in order to assess the

impact of the bias field correction on the visual inspection of the

patients’ anatomy using a visual grading assessment (VGA,

Section 2.3).
2.2 Bias field correction: N4ITK algorithm

As the first preprocessing step, the N4 bias field correction

algorithm (N4ITK) (7) was applied to remove inhomogeneity

artifacts affecting the MRIs. To fit the algorithm on our 0.35 T

MRIs, optimization of the input parameters was performed by

varying the number of fitting levels (number of hierarchical

resolution levels to fit the bias field) into [3, 4, 5] and the number

of control points (number of points defining the B-spline grid for

the first resolution level) into [4, 6, 8]. The chosen parameter set was

configured with three fitting levels and six control points (more

details in the Supplementary Materials, Section 1). The algorithm

requires an image mask to be supplied by the user to indicate the

voxels considered to estimate the bias field: the one identifying the

patient’s body was used. The number of iterations was set equal to

100. For the other required parameters, the default values were kept

(7). The N4ITK algorithm implemented in Python within the

SimpleITK toolkit was used for this study.

The performance of the algorithm with the chosen parameters

was also visually assessed on an external dataset of 0.35 T pelvic

MRIs provided by the Department of Radiation Oncology of the

University Hospital of the LMU in Munich, Germany

(Supplementary Materials, Section 1).
2.3 Evaluation of artifact impact: visual
grading assessment

Effective methods of assessing image quality and the output of

an image processing technique in the clinical scenario rely on the

VGA, where observers/raters visually grade a certain characteristic

of the image (10). In order to assess the impact of the bias field

correction on the visual inspection of the patients’ anatomy, an

absolute VGA on a subset of 22 randomly chosen patients was

performed. Five radiation oncologists with varying levels of

experience in 0.35 T MRI pelvic examination were identified.

Observers O1 and O2 work at Fondazione Policlinico
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Universitario “A. Gemelli” IRCCS, Rome; observers O3, O4, and

O5 work at Mater Olbia Hospital, Olbia. Observer O5 has the most

experience in conducting prostate cancer examinations.

The raters blindly scored the selected patients in terms of overall

image quality and visibility of the boundaries of clinically relevant

structures (i.e., prostate, bladder, rectum, and seminal vesicles),

using a 4-point and a 5-point visual grading analysis scale,

respectively (details in Table 1). The grading was carried out on

both the original and the bias-corrected MRI volumes. For the

assessment of the seminal vesicles, 20 out of 22 patients were

considered since the structures were not visible due to the clinical

history of the subjects.

The five observers participated independently in the visual

assessment. The MRI volumes were presented randomly to the

graders, and they were allowed to freely adjust the window level of

the image intensities in order to reproduce the clinical scenario.

After collecting the absolute ratings, they were converted into

relative ones by subtracting the score given to the bias-corrected

MRI from the score given to the original MRI. In this way, we could

compare whether the observers perceived or not an improvement

after the artifact correction, independently from the absolute grade

associated with the MR volume.
TABLE 1 Overview of grading scales used for the assessment of overall
image quality and visibility of the structures. The first column represents
the score.

OVERALL IMAGE QUALITY
Criterion: image quality in terms of visualization of the
area of interest for the clinical purpose (contouring for

radiotherapy treatment)

1 POOR
Significant presence of noise/artifacts, which compromise
the interpretation of the image in the area of interest.

2 ACCEPTABLE

Acceptable quality, presence of noise/artifacts which
however do not compromise the visualization of the area
of interest. Suitable for the clinical purpose (contouring
for radiotherapy treatment). Improvements are desired.

3 GOOD
Good quality, absence of noise/artifacts that can
compromise the use of the image for the clinical purpose
(contouring for radiotherapy treatment).

4 EXCELLENT Excellent quality. No noise/artifacts.

STRUCTURE VISIBILITY
Criterion: clear visualization of the structure of interest

and its boundaries, for contouring

1

Criterion
absolutely not
fulfilled
(not visible)

Structure’s boundaries not visible.

2
Criterion
probably not
fulfilled (unclear)

Structure’s boundaries partially visible, but
not completely.

3 Undecided Observer undecided on the score to assign.

4
Criterion quite
fulfilled (clear)

Structure’s boundaries visible, but their definition can
be improved.

5
Criterion fulfilled
(very clear)

Structure’s boundaries clearly visible.
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Subsequently, the S score proposed by Bennett et al. (11) was

used to assess the pairwise interobserver agreement, while Fleiss’

kappa (12) was used to assess the interrater agreement among all

the observers. Both metrics come from the general kappa agreement

score (13), given by:

k =
Po − Pe
1 − Pe

where Po is the observed proportion of agreement and Pe is the

proportion of agreement that could be expected on the basis of

chance. Therefore, the scores’ values range from −1 to 1, where 1

indicates perfect agreement, 0 is exactly what would be expected by

chance, and negative values indicate agreement less than the chance

(potential systematic disagreement between the observers) (14).

Statistical analyses were performed using Python statistical analysis

packages and R (version 4.2.3).
2.4 Evaluation of artifact impact:
generative adversarial network

The neural network implemented in this study was adapted

from the Vox2Vox Generative Adversarial neural network, first

proposed by Cirillo et al. (15). While various network architectures

for medical imaging segmentation have shown promising results,

one of the main advantages of using a GAN architecture is that the

discriminator network also acts as a shape regulator by discarding

output segmentations that do not look realistic (16, 17). In many

cases, GANs produce more refined segmentation results, which

conventional U-Nets can achieve by post-processing techniques,

with an increased computational complexity (17). For example,

Wang et al. (18) reported superior performance of the GAN

architecture over conventional U-Net for automatic prostate

segmentation on MRI.

The proposed 3D GAN was trained separately for each OAR

(rectum, bladder), once by giving as input the original MRI volumes

and once by giving the bias-corrected MRI volumes. Therefore, we

obtained four networks: two trained and evaluated using the

original images and two using the bias-corrected ones, for the

bladder and the rectum, respectively. Hyperparameters’ tuning

was carried out and the best set of parameters for each network

was set based on the performance evaluated over the validation set.

Auto-segmentation of each OAR was then performed, once given as

input the original and once the bias-corrected MRI volumes.

Specifications about the GAN implementation can be found in

the Supplementary Materials, Section 2.

The quantitative evaluation of the OARs’ auto-segmentation

was carried out by computing the Dice similarity coefficient (DSC)

and the 95th percentile Hausdorff distance (HD95th) (19) between

the generated and the ground-truth delineations for the testing set,

for both the configuration with the original and the bias-corrected

MRI volumes. The statistical significance of the difference between

the metrics computed for the two groups was assessed by using the

Wilcoxon signed-rank test (significance level set at 0.05).
Frontiers in Oncology 04
3 Results

3.1 N4ITK application

Figure 1 shows the central slice from the original MRI volume

and the corrected one using the N4ITK algorithm in the axial,

coronal, and sagittal views, along with the estimated bias fields, for a

randomly selected patient.
3.2 Evaluation of artifact impact: visual
grading assessment

The scores resulting from the VGA are presented in Figure 2.

Bar plots show the number of patients scored as being equal, better,

or worse in terms of image quality and visibility of the boundaries of

anatomical structures after applying the N4ITK algorithm to the

original MR volumes.

The Bennet’s score analyzing the agreement for pairwise

observers is reported in Figure 3. The relative Fleiss’ kappa

assessing the interrater agreement among all the observers for the

image quality was equal to −0.02, while for the visibility of the

boundaries of prostate, bladder, rectum, and seminal vesicles, the

metric scored −0.07, 0.08, −0.02, and 0.06, respectively.
3.3 Evaluation of artifact impact:
GAN’s performance

The performance of the 3D GAN for the contours automatically

generated when feeding the neural network with the original or the

bias-corrected MRI was compared in the test set using the

evaluation metrics. Table 2 summarizes the results in terms of

metrics averaged across the patients in the test set, while Figure 4

illustrates the metrics’ distribution across the test set: no statistical

differences were found neither for the bladder (p = 0.07 and p = 0.35

for the DSC and the HD95th, respectively) nor for the rectum (p =

0.32 and p = 0.63 for the DSC and the HD95th, respectively). An

example of the OARs’ contours generated by the neural network

trained and evaluated by using both original and bias-corrected

MRIs is illustrated in Figure 5.
4 Discussion

This study explored whether bias field correction performed

over 0.35 T pelvic MRIs improves the automatic segmentation of

pelvic OARs and enhances anatomy visualization during clinical

practice. Regarding the VGA, the application of the N4ITK

algorithm with respect to the original MR volume resulted mostly

in either no change or an improvement of the image quality

perception and visualization of the boundaries of relevant clinical

structures. Concerning the performance of GAN, the bias field

correction did not improve the computed evaluation metrics.
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The results obtained in terms of evaluation metrics averaged

over the patients in the test set (Table 2; Figure 4) show that the

GAN model is not improving despite the bias field correction. The

reasons why there is no improvement could be several: firstly, the

patients in the development set are heterogeneous in terms of bias

field presence, so the network may learn to isolate this characteristic

[similar to performing data augmentation (20, 21)]), showing its

robustness in compensating the presence of an artifact in its input

data. In addition, the artifact uniformly affects the region of interest

of the dataset in this study; thus, the segmentation task might not be

affected by the effect of the bias field since the contrast is not much

altered. Adequate contrast between different regions and structures

in an image is important to distinguish objects and boundaries,

making auto-segmentation tasks easier. Other applications, such as
Frontiers in Oncology 05
reconstruction or image enhancement, could be further improved

by preprocessing steps like bias field correction.

From the VGA analysis, overall, no changes or improvements of

the evaluated criteria before and after the bias field correction were

observed (Figure 2). One of the reasons for no improvement in the

visualization could be that, while visually assessing the MR volumes,

the graders had the possibility to change the window width and

window level of the image intensities. In this way, the observers

could “correct” the image visualization and perhaps mitigate the

artifact effect.

The values of the Fleiss’ kappa close to zero show that there was no

agreement among all the readers in grading the MRIs’ image quality

and anatomical structures’ visibility patient-wise. However, from

Figure 2, a certain agreement between observers O1 and O2 and O3
FIGURE 1

Axial (first row), coronal (central row), and sagittal (bottom row) central slice from the original MRI volume (left column), the bias-corrected MRI
volume (central column), and the estimated bias field map with the chosen combination of N4ITK parameters (right columns), for a randomly
selected patient. The darker region in bias field estimation (right column) indicates where the bias field is higher.
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and O4 can be appreciated, particularly for the bladder and rectum

evaluation. This is also true for Bennett’s score results reported in

Figure 3: observers O1 and O2 reached perfect (S = 0.91) and strong (S

= 0.80) agreement in the bladder and rectum evaluation, respectively.

On the other hand, observers O3 and O4 reached moderate agreement

(S = 0.66) for the bladder evaluation, but weak agreement (S = 0.58) for

the rectum. Observer O5 is mainly in disagreement with the others,

except for the seminal vesicles where he reached a strong agreement

with O4 (S = 0.80). Observer O5 is the one who appreciated more the

correction of the artifact.

Considering the overall image quality, Bennett’s S score ranged

from no agreement to weak agreement, showing that the pairwise

agreement between the observers was slightly higher than what

would be expected by chance. This result could arise from the fact

that the MRI quality can also be affected by other artifacts not

considered in this study, interfering with the evaluation of the

observers. A similar situation can be appreciated for the evaluation

of the prostate’s boundaries: the scores show no or minimal

agreement in assessing the organ, indicating weak consistency

between raters’ observations. The prostate is indeed considered

one of the most challenging organs to assess during the visualization

of prostate cancer patients (22).
Frontiers in Oncology 06
Generally speaking, it may happen that the agreement between

different observers is not very high in the patient-wise evaluation of

the criteria: it is well known that the visualization, and therefore the

delineation, of the structures of interest is affected by inter- and

intraoperator variability (23–26).

This study has a limitation due to the absence of an assessment

of intraobserver variability. As a result, we cannot guarantee

consistent scoring by the same observer for identical images.

Consequently, the outcomes may have been influenced by this

potential variability.

In conclusion, GAN was robust to the variations in the signal

caused by the bias field artifact, and therefore, it was able to isolate

the effect and to auto-segment the OARs with the same accuracy for

both the corrected and uncorrected MR volumes. In addition, the

bias field’s presence did not compromise the anatomical

interpretation of the clinicians; however, this outcome might be

attributed to the challenge of visually detecting the gradual shading

across the image caused by the artifact. We believe that while the

impact of bias field correction in training a neural network for auto-

contouring or in improving the image quality from a clinical

perspective was not substantial, it could still serve as a useful tool

for radiation oncologists in challenging contouring cases
FIGURE 2

Bar plots representing the number of patients scored as equal, better, or worse in the comparison between the original MR volume and the bias-
corrected one, for the different observers for the considered anatomical structures and the overall image quality.
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FIGURE 3

Bennett’s S score assessing the pairwise interobserver agreement in rating both the overall image quality and the anatomical structures’ visibility. The
ratings were obtained by subtracting the absolute score between the bias-corrected MR volume and the original MR volume. Colors give a snapshot
of the agreement: (green) perfect agreement (S ≥ 0.90), (blue) strong agreement (0.80 ≤ S< 0.90), (magenta) moderate agreement (0.60 ≤ S< 0.79),
(orange) weak agreement (0.40 ≤ S< 0.59), (yellow) minimal agreement (0.20 ≤ S< 0.39), (red) no agreement (S< 0.20).
TABLE 2 Comparison between the performance of the 3D GAN in delineating the OARs, averaged across all the patients in both the case with and
without the bias field correction. Standard deviations from the mean values (std) are also reported. The column “Time” refers to the average time
required by the network to generate a new segmentation volume for each patient.

Organ With bias field correction Without bias field correction

DSC
(± std)

HD95th

(± std) [mm]
Time

(± std) [s]
DSC
(± std)

HD95th

(± std) [mm]
Time

(± std) [s]

Bladder 0.92 (0.05) 5.91 (4.53) 1.29 (0.13) 0.92 (0.05) 5.63 (4.30) 1.26 (0.14)

Rectum 0.83 (0.03) 9.71 (9.31) 1.15 (0.11) 0.84 (0.03) 10.61 (10.70) 1.17 (0.22)
F
rontiers in Oncolog
y 07
A B

FIGURE 4

Comparison between the performance of the 3D GAN in delineating the OARs in terms of DSC box (A) and HD95th box (B) distributions for the
patients included in the test set, when it is trained and evaluated on a dataset with (W, color-filled boxes) or without (WO, empty boxes) bias field
correction. Boxplots are included in quartile values; the horizontal line indicates the median value, and the “x” is the mean value. The HD95th is
given in millimeters.
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(Supplementary Figure 3), thus representing a valuable option for

future MRI-Linac releases. Further studies will assess the impact of

other preprocessing techniques in auto-segmentation, as well as in

other tasks such as reconstruction or image enhancement.

Moreover, we will assess the impact of the image artifacts during

the course of the treatment.
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Example of ground-truth (green) and generated segmentations of the rectum (red) and bladder (magenta), in the axial (top row) and sagittal (bottom
row) view, for a test set patient. The left column illustrates the results obtained when the GAN is trained and evaluated on a dataset corrected from
bias field; the right column illustrates the results obtained when the GAN is trained and evaluated on the original dataset (without bias
field correction).
frontiersin.org

https://doi.org/10.3389/fonc.2024.1294252
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Vagni et al. 10.3389/fonc.2024.1294252
MG: Writing – review & editing, Supervision. DC: Writing – review

& editing, Methodology, Supervision. LP: Writing – review &

editing, Methodology, Supervision.
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The Department of Radiation Oncology of the University

Hospital of LMU Munich and the Department of Radiation

Oncology of Fondazione Policlinico Universitario “A. Gemelli”

IRCCS in Rome have a research agreement with ViewRay.

ViewRay had no influence on the study design, the collection or

analysis of data, or on the writing of the manuscript.
Frontiers in Oncology 09
The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2024.1294252/

full#supplementary-material
References
1. Cusumano D, Boldrini L, Dhont J, Fiorino C, Green O, Güngör G, et al. Artificial
Intelligence in magnetic Resonance guided Radiotherapy: Medical and physical
considerations on state of art and future perspectives. Physica Med. (2021) 85:175–
91. doi: 10.1016/j.ejmp.2021.05.010

2. Pollard JM, Wen Z, Sadagopan R, Wang J, Ibbott GS. The future of image-guided
radiotherapy will be MR guided. Br J Radiol. (2017) 90(1073):20160667. doi: 10.1259/
bjr.20160667

3. Tetar SU, Bruynzeel AME, Lagerwaard FJ, Slotman BJ, Bohoudi O, Palacios MA.
Clinical implementation of magnetic resonance imaging guided adaptive radiotherapy
for localized prostate cancer. Phys Imaging Radiat Oncol. (2019) 9:69–76. doi: 10.1016/
j.phro.2019.02.002

4. Khoo VS, Joon DL. New developments in MRI for target volume delineation in
radiotherapy. Br J Radiol. (2006) 79:S2–15. doi: 10.1259/bjr/41321492

5. Song S, Zheng Y, He Y. A review of methods for bias correction in medical images.
Biomed Eng Review. (2017) 3:1–10. doi: 10.18103/bme

6. Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic
correction of intensity nonuniformity in mri data. IEEE Trans Med Imaging. (1998)
17:87–97. doi: 10.1109/42.668698

7. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, et al.
N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. (2010) 29(6):1310–20.
doi: 10.1109/TMI.2010.2046908

8. Vovk U, Pernus ̌ F, Likar B. A review of methods for correction of intensity
inhomogeneity in MRI. IEEE Trans Med Imaging. (2007) 26:405–21. doi: 10.1109/
TMI.2006.891486

9. Krupinski EA. Current perspectives in medical image perception. Atten Percept
Psychophys. (2010) 72(5):1205–17. doi: 10.3758/APP.72.5.1205

10. Mansson LG. Methods for the evaluation of image quality: A review. Radiat Prot
Dosimetry. (2000) 90:89–99. doi: 10.1093/oxfordjournals.rpd.a033149

11. Bennett BEM, Alpert R, Goldstein AC. Communications through limited
-response questioning*. Public Opin Quarter. (1954) 18:303–8. doi: 10.1086/266520

12. Fleiss JL. Measuring nominal scale agreement among many raters. psychol Bullet.
(1971) 76:378–82. doi: 10.1037/h0031619

13. Cohen J. A coefficient of agreement for nominal scales. Educ psychol Measure.
(1960) 20(1):37–46. doi: 10.1177/001316446002000104

14. Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa
statistic. Family Med. (2005) (375):360–3.
15. Cirillo MD, Abramian D, Eklund A. Vox2Vox: 3D-GAN for Brain Tumour
Segmentation. In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics) (2021). p. 274–84. 12658
LNCS.

16. Xun S, Li D, Zhu H, Chen M, Wang J, Li J, et al. Generative Adversarial
Networks in Medical Image segmentation: A review. Comput Biol Med. (2022)
140:105063. doi: 10.1016/j.compbiomed.2021.105063

17. Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: A
review. Med Image Anal. (2019) 58:101552. doi: 10.1016/j.media.2019.101552

18. Wang W, Wang G, Wu X, Ding X, Cao X, Wang L, et al. Automatic
segmentation of prostate magnetic resonance imaging using generative adversarial
networks. Clin Imaging. (2021) 70:1–9. doi: 10.1016/j.clinimag.2020.10.014

19. Taha AA, Hanbury A. Metrics for evaluating 3D medical image segmentation:
Analysis, selection, and tool. BMC Med Imaging. (2015) 15:29. doi: 10.1186/s12880-
015-0068-x

20. Mumuni A, Mumuni F. Data augmentation : A comprehensive survey of modern
approaches. Array. (2022) 16:100258. doi: 10.1016/j.array.2022.100258

21. Kawula M, Hadi I, Nierer L, Vagni M, Cusumano D, Boldrini L, et al. Patient-
specific transfer learning for auto-segmentation in adaptive 0 35 T MRgRT of prostate
cancer: a bi-centric evaluation.Med Phys. (2022) 50(3):1573–85. doi: 10.1002/mp.16056

22. Khoo ELH, Schick K, Plank AW, Poulsen M, Wong WWG, Middleton M, et al.
Prostate contouring variation: can it be fixed? Int J Radiat Oncol Biol Phys. (2012) 82
(5):1923–9. doi: 10.1016/j.ijrobp.2011.02.050

23. Roach D, Holloway LC, Jameson MG, Dowling JA, Kennedy A, Greer PB, et al.
Multi-observer contouring of male pelvic anatomy: Highly variable agreement across
conventional and emerging structures of interest. J Med Imaging Radiat Oncol. (2019)
63:264–71. doi: 10.1111/1754-9485.12844

24. Vinod SK, Jameson MG, Min M, Holloway LC. Uncertainties in volume
delineation in radiation oncology : A systematic review and recommendations for
future studies. Radiother Oncol. (2016) 121:169–79. doi: 10.1016/j.radonc.2016.09.009

25. Vinod SK, Min M, Jameson MG, Holloway LC. A review of interventions to
reduce inter-observer variability in volume delineation in radiation oncology. J Med
Imaging Radiat Oncol. (2016) 60:393–406. doi: 10.1111/1754-9485.12462

26. Mitchell DM, Perry LE, Smith S, Elliott T, Wylie JP, Cowan RA, et al. Assessing
the effect of a countouring protocol on postprostatectomy radiotherapy clinical target
volumes and interphysician variation. Int J Radiat Oncol Biol Phys. (2008) 75:990–3.
doi: 10.1016/j.ijrobp.2008.12.042
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2024.1294252/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2024.1294252/full#supplementary-material
https://doi.org/10.1016/j.ejmp.2021.05.010
https://doi.org/10.1259/bjr.20160667
https://doi.org/10.1259/bjr.20160667
https://doi.org/10.1016/j.phro.2019.02.002
https://doi.org/10.1016/j.phro.2019.02.002
https://doi.org/10.1259/bjr/41321492
https://doi.org/10.18103/bme
https://doi.org/10.1109/42.668698
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1109/TMI.2006.891486
https://doi.org/10.1109/TMI.2006.891486
https://doi.org/10.3758/APP.72.5.1205
https://doi.org/10.1093/oxfordjournals.rpd.a033149
https://doi.org/10.1086/266520
https://doi.org/10.1037/h0031619
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1016/j.compbiomed.2021.105063
https://doi.org/10.1016/j.media.2019.101552
https://doi.org/10.1016/j.clinimag.2020.10.014
https://doi.org/10.1186/s12880-015-0068-x
https://doi.org/10.1186/s12880-015-0068-x
https://doi.org/10.1016/j.array.2022.100258
https://doi.org/10.1002/mp.16056
https://doi.org/10.1016/j.ijrobp.2011.02.050
https://doi.org/10.1111/1754-9485.12844
https://doi.org/10.1016/j.radonc.2016.09.009
https://doi.org/10.1111/1754-9485.12462
https://doi.org/10.1016/j.ijrobp.2008.12.042
https://doi.org/10.3389/fonc.2024.1294252
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Impact of bias field correction on 0.35 T pelvic MR images: evaluation on generative adversarial network-based OARs’ auto-segmentation and visual grading assessment
	1 Introduction
	2 Materials and methods
	2.1 Dataset
	2.2 Bias field correction: N4ITK algorithm
	2.3 Evaluation of artifact impact: visual grading assessment
	2.4 Evaluation of artifact impact: generative adversarial network

	3 Results
	3.1 N4ITK application
	3.2 Evaluation of artifact impact: visual grading assessment
	3.3 Evaluation of artifact impact: GAN’s performance

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


