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Introduction: Manual review of organ at risk (OAR) contours is crucial for

creating safe radiotherapy plans but can be time-consuming and error prone.

Statistical and deep learning models show the potential to automatically detect

improper contours by identifying outliers using large sets of acceptable data

(knowledge-based outlier detection) and may be able to assist human

reviewers during review of OAR contours.

Methods: This study developed an automated knowledge-based outlier

detection method and assessed its ability to detect erroneous contours for all

common head and neck (HN) OAR types used clinically at our institution. We

utilized 490 accurate CT-based HN structure sets from unique patients, each

with forty-two HN OAR contours when anatomically present. The structure sets

were distributed as 80% for training, 10% for validation, and 10% for testing. In

addition, 190 and 37 simulated contours containing errors were added to the

validation and test sets, respectively. Single-contour features, including location,

shape, orientation, volume, and CT number, were used to train three single-

contour feature models (z-score, Mahalanobis distance [MD], and autoencoder

[AE]). Additionally, a novel contour-to-contour relationship (CCR) model was

trained using the minimum distance and volumetric overlap between pairs of

OAR contours to quantify overlap and separation. Inferences from single-

contour feature models were combined with the CCR model inferences and

inferences evaluating the number of disconnected parts in a single contour and

then compared.

Results: In the test dataset, before combination with the CCR model, the area

under the curve values were 0.922/0.939/0.939 for the z-score, MD, and AE

models respectively for all contours. After combination with CCR model

inferences, the z-score, MD, and AE had sensitivities of 0.838/0.892/0.865,

specificities of 0.922/0.907/0.887, and balanced accuracies (BA) of 0.880/

0.900/0.876 respectively. In the validation dataset, with similar overall

performance and no signs of overfitting, model performance for individual
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OAR types was assessed. The combined AE model demonstrated minimum,

median, and maximum BAs of 0.729, 0.908, and 0.980 across OAR types.

Discussion: Our novel knowledge-based method combines models utilizing

single-contour and CCR features to effectively detect erroneous OAR contours

across a comprehensive set of 42 clinically used OAR types for HN radiotherapy.
KEYWORDS

contour review, quality assurance, automation, radiotherapy, outlier detection
1 Introduction

Standardized and precise organ at risk (OAR) contours are

essential for head and neck (HN) radiation therapy, enabling safe

treatments and more consistent dose reporting (1). While manual

contouring is time-consuming and prone to user variation, Deep

learning (DL) autocontouring methods have demonstrated time

savings (2, 3) and reduced variation (4, 5) compared to manual

contouring methods. Autocontouring tools generally perform well,

however, a variety of clinically relevant failures, ranging fromminor

to severe, do occur with no warning given from the model-hosting

tool (Supplementary Figure S1). Consequently, both contours

created manually and with autocontouring tools require thorough

quality assurance (QA) review by trained personnel to ensure safe

and effective radiotherapy treatments.

The ability of DL autocontouring tools to quickly create many

contours enables more contours to be used for a given treatment site

and expedites both offline and online adaptive treatment planning.

However, it also increases the amount of time spent reviewing

contours. Automated approaches to contour review may be able to

both decrease review time and improve consistency (6, 7), making

them a desirable potential tool for clinical use. Such approaches

could be deployed on their own, or in combination with human

reviewers to assist them in identifying contours of poor quality.

Several automated algorithmic methods have been proposed for

automated OAR contour QA (8–11). One of the most popular

approaches utilizes a set of features calculated from high-quality

contours to classify contours of unknown quality as similar

(acceptable) or different (erroneous). This is referred to as

knowledge-based outlier detection using one-class training.

Features for this approach include contour volume, shape,

orientation, position, and image characteristics. Models for

knowledge-based contour classification include statistical

approaches looking at several features independent of one

another (univariate statistical models) (12, 13), as well as

multivariate statistical models, and DL models (14, 15). Most

knowledge-based outlier detection methods for OAR contour QA

have relied on a few hand-selected features for evaluation which are

largely informed by domain experts in radiation oncology. This

expertise may allow for comparable performance between simpler
02
statistical models and DL models. Despite several publications, it

remains unclear how the performance of univariate models,

multivariate statistical models, and DL models compares for

knowledge-based OAR contour QA.

In previous studies, knowledge-based contour outlier detection

models have used features describing the relationships between

different OAR types (henceforth referred to as contour-to-contour

relationships or CCRs) to minimize patient-to-patient variation and

detect erroneous contours (14–16). Ensuring that contours are

appropriately separate, touching, or overlapping is crucial for HN

radiation treatment planning due to the precise relationships

between many OARs. Neglecting to do so can lead to inaccurately

contoured anatomy and unreported dose to OARs because of

contour gaps between anatomically touching OARs during IMRT

optimization. While CCR relationships are both quantifiable and

important, we are not aware of any studies that have directly

evaluated the effectiveness of features that quantify contour

separation and overlap for the detection of erroneous contours.

To ensure the usefulness of an automated OAR contour quality

assurance tool for a specific treatment site, it ideally should have

acceptable performance that generalizes to many OAR types (brain,

left lung, larynx, etc.) and should encompass various disease types,

and patient anatomies. For HN treatment sites, as many as 42 OAR

types have been reported to be relevant for HN treatment planning

(3). However, existing knowledge-based contour QA studies that

have evaluated individual OAR types, assess no more than 17 in any

given study (9, 10, 12, 14, 16). This limitation may be attributed to

the lack of standardized and curated contours available for model

training. Analysis of additional OAR types for HN is needed to

demonstrate whether knowledge-based contour outlier detection

models can be used for any clinically relevant HN OAR types.

This study investigates the performance and generalizability of

knowledge-based, outlier detection methods to identify erroneous

contours for 42 HN OAR types used clinically for radiotherapy.

This is the largest number of OAR types evaluated for HN in a

single study to date. Model training was performed using manually

contoured, highly curated, contour sets derived from patients with

HN cancer being treated with radiotherapy. Three single-contour

feature model types that have not been compared for contour

outlier detection in previous work, a univariate statistical model
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(z-score) (12), a multivariate statistical Mahalanobis distance (MD)

(17, 18) model, and a DL autoencoder (AE) model (19), are

compared to identify the model type with the best performance

and generalizability to each HN OAR type. As a secondary aim, the

study investigates the potential of a novel CCR model, that assesses

contour separation and overlap, in combination with the three

compared models to enhance performance.
2 Materials and methods

2.1 Data curation and allocation

The study utilized retrospectively collected data from patients

with HN cancers who underwent radiotherapy at Mayo Clinic

Rochester and Mayo Clinic Arizona between 2016 and 2020. The

dataset encompassed a diverse range of HN disease sites and

progressions, including patients with prior resection, representing

the current treatment landscape at the institutions. CT images were

acquired at simulation before the start of radiotherapy treatment

using multiple Somatom Definition AS (Siemens, Munich

Germany) CT scanners with voxel dimensions of 1.27 mm x 1.27

mm x 2 mm. The CT images were acquired at 120 kVp and most

were reconstructed using iterative metal artifact reconstruction

techniques to minimize artifacts caused by dental fillings or other

metallic objects commonly present during HN radiotherapy. All CT

scanners underwent monthly testing using a CatPhan® phantom

(Phantom Laboratory, Salem New York) to ensure Hounsfield Unit

accuracy (Supplementary Methods and Supplementary Table S1).

Head and neck planning CT images and contours used for patient

treatment were retrospectively selected and curated to ensure they

adhered to institutional guidelines for standardization. This

included physician, dosimetrist and physics review and editing

during retrospective curation. A thorough description of the

dataset and curation efforts has been published (20). The dataset,

comprising 490 patient structure sets with corresponding CT

images, was considered the gold-standard acceptable patient

dataset. These sets were divided into training (80%), validation

(10%), and test (10%) subsets. The use of retrospective HN patient

data for model training was deemed exempt by our

institutional IRB.

Before assessing the performance and generalizability of

knowledge-based outlier detection methods to detect erroneous

contours, it is essential that the erroneous contours evaluated

reflect errors that commonly result from clinical failures. Such

errors can occur from both manually created contours, or

contours generated using autosegmentation tools. We identified

four main categories of such failures that occur: boundary errors,

volume errors, non-adjacent slice errors, and positional errors.

Boundary errors encompass instances of accidental border

expansion or subtraction, poor delineation of anatomical

boundaries, incorrect identification of boundaries based on HU-

intensity thresholding, or incorrect propagation of contours from

one image set to another due to small deformable or rigid image

registration errors.
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Volume errors encompass the addition or removal of volumes

from an OARs correct volumes. Unlike boundary errors, which

pertain to inaccuracies in contour borders, volume errors result

from the addition or subtraction of convex shapes from the correct

contour. These errors can occur due to incorrect definitions of

anatomical boundaries, incomplete contouring, disconnected

volumes, or the improper identification of the slices where a

contour should start and end.

Non-adjacent slice errors occur due to inadvertent selections of

single-slice volumes (i.e. ‘misclicks’) or inconsistent and ‘jagged’

delineations of contour boundaries from one slice to another, which

may occur during contouring.

Positional errors represent errors resulting in the central

location of a contour being substantially misplaced. Such errors

arise from mismatched structure labels, errors in manual

identification of OARs, or errors made by CT autocontouring

tools. Such errors made by autocontouring tools have been

observed during the analysis of CT images with abnormal

anatomy, positioning, or CT values for several FDA-approved

autocontouring tools evaluated by the authors.
2.2 Data augmentation

After identifying these common clinical failure modes,

manually generated erroneous contours were introduced ad hoc

by a medical physicist (JB) who edited gold-standard acceptable

contours to mimic clinically observed errors encountered during

both manual contouring and autocontouring processes. Manually

generated erroneous contours were added directly to the validation

and test sets after creation. Each erroneous contour error was

additionally categorized as moderate or major by the contour

editor, providing the ability to assess how the clinical severity of

errors influenced the performance of automated outlier detection.

Errors categorized as moderate may or may not be clinically

relevant depending on clinical context such as the treatment

planning approach and the relationship with the target, while

errors categorized as major would be relevant in nearly all

clinical contexts.

The total number of contours with boundary, volume, non-

adjacent slice, and position errors were 74, 99, 14, and 40

respectively. The total number of contours with major and minor

errors were 111 and 116. Error types were distributed randomly

across OAR types. In the validation set, a minimum of four

erroneous contours were created for each OAR type that had left

or right counterparts (i.e. left and right lung), and a minimum of

five erroneous contours were created for all other OAR types (i.e.

brain, larynx, etc.).
2.3 Overview of knowledge-based
QA framework

In this study, the knowledge-based QA framework was

developed through several steps (Figures 1A, B). First, the

training dataset, which consisted of acceptable contours only, was
frontiersin.org
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separated by OAR type (i.e. brain, left eye, esophagus). Then, the

desired features were calculated for each contour, and model

training was performed. Features dependent on only one contour

were assigned to each of the three single-contour feature model

types (AE, MD, and Z-score), while features involving the

relationship between two contours were assigned to the CCR

model type. A feature counting the number of disconnected parts

in a single contour was included as an additional statistical check

outside of the other models as the connectedness model. Separate

single-contour feature, CCR, and connectedness models were

trained for each OAR type. All models generated a single output

metric that indicated the likelihood of a contour being erroneous.

Output metrics from models of the same model type were

thresholded using a single value to obtain classifications. After

model training, the validation set, which included both acceptable

and erroneous contours, was used to evaluate the model’s

performance, select input features, and determine output metric

thresholds. Classifications obtained from the single-contour feature

models, CCR models, and connectedness models were combined to

form the final classification. Lastly, to ensure no overfitting, the

models were evaluated on the test set.
2.4 Single-contour feature selection

Feature selection for the single-contour feature models was

performed initially by choosing features describing contour shape,

volume, location, orientation, and CT number. Features were

selected to be generalizable to a wide variety of OAR types and

were based on common features used in the literature (12–16). A

total of 44 features were included and the Pearson correlation
Frontiers in Oncology 04
coefficient (21) was used to identify and remove features that

were strongly correlated, either positively or negatively, across all

OARs (Supplementary Figure S2). This was when the correlation

was greater than approximately ±0.7. Feature reduction was

performed using the validation set to reduce feature correlation

while maintaining high classification performance for single-

contour feature models . After single-contour feature

determination, the same feature set was used for all OAR types

and model types (Table 1). This was done to identify a set of features

that would generalize well to a wide variety of OARs.

The centroid features in the lateral, vertical, and longitudinal

directions (defined as positive x, y, and z respectively) were

calculated as the difference between the contour’s centroid and

the brainstem’s centroid. For brainstem contours, it was calculated

as the difference in centroid locations between the brainstem

contour and the pituitary contour. This accounted for variations

in image coordinates between CT images. The brainstem contour

was chosen because of its central location and because it is

anatomically present in every patient. The extent in x, y, and z

was calculated as the difference between the largest and smallest

pixel coordinate values for a given contour. Principal component

analysis was performed to obtain the eigenvectors and eigenvalues

of the principal components (PC) of a contour’s pixel coordinates.

The x, y, and z components of the first and second PC eigenvectors

were used as orientation features, while the ratio of the second and

third PC eigenvalues (l) to the first were used as shape features.

The orientation of a PC eigenvector can be arbitrarily positive

or negative (for example v
*
= +0.58 x̂ +0.58 ŷ+0.58 ẑor v

*
= -0.58

^  x -0.58 ŷ -0.58 ẑ ). To standardize the orientation of PC1 or PC2

vectors for a given OAR, we identified a representative eigenvector

r
*

OAR
from the training set using Equation 1.
A B

FIGURE 1

(A) Diagram showing the distribution of data used to create and evaluate the knowledge-based QA framework. (B) Workflow diagram for the
knowledge-based QA framework. AE, Autoencoder; MD, Mahalanobis Distance; CCR, contour-to-contour relationship; MSRE, mean squared
reconstruction error.
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r
*
 OAR = argmax

vi
*
∈VOAR

on
j≠i v

*
 i · v
*
 j

���
���

� �
(1)

Where VOAR is the set of all PC1 or PC2 eigenvectors for a given

OAR type in the training set with number n and v
*
  is a single PC

eigenvector. After identification of r
*
 OAR, the orientation of all

eigenvectors in the training, validation, and test set (V     ∗
OAR ) were

oriented either positive or negative to maximize the dot product

between r
*
 OAR and each eigenvector v

*
  ∈ V     ∗

OAR .

Since outlier detection approaches that use one-class training

are sensitive to outliers in the training dataset, an outlier removal

technique was applied to the training dataset after feature selection.

To do this, the training dataset consisting of only acceptable

contours was grouped based on its OAR type, and the median

absolute deviation (MAD) from the median was calculated for

single-contour features. A contour was excluded from the training

set if any of its single-contour features deviated from the median by

more than twelve MAD. This resulted in the removal of 0% to 3.6%

of contours from the training set for each OAR type. The threshold

of twelve MAD was determined by evaluating the number of

contours removed for each OAR type and the impact of contour

removal on model performance for the validation dataset.
2.5 Single-contour feature models

After single-contour feature calculation using acceptable

contours in the training dataset, an individual model was trained

for each OAR type for three single-contour feature model types (z-

score, MD, and AE models). The z-score model calculated

individual feature z-scores using Equation 2.

z =
x − m
s

���
��� (2)

Where m and s are the mean and standard deviation of feature

values in the training set. After calculation, the maximum z-score

value across all the features is selected as the output metric. The MD
Frontiers in Oncology 05
model used the Mahalanobis distance of a contour’s features with

respect to the training dataset features as the output metric (17, 18)

and is calculated using Equation 3.

D( x
*
) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( x
*
−m̂ )TS−1( x

*
−m̂ )

q
(3)

Where m̂ is a vector containing the mean feature values and S−1

is the inverse of the covariance matrix calculated from the training

data set. The output metric for the AE network was the mean

squared difference between reconstructed features and input

features for a given contour (19). The AE network was trained in

MATLAB® using the ‘trainAutoencoder’ function and consisted of

a single hidden layer with 18 neurons and a cost function with a

single L2 regularization term. To standardize the feature set, feature

z-scores were calculated for input into the AE model. The number

of epochs was limited to a maximum of 7000, and the L2 weight

regularization coefficient was set to 0.005. The number of hidden

layers and L2 regularization coefficient were optimized by

evaluating model performance on the validation set across a

range of values. The results of each single-contour feature model

type were assessed individually and in combination with CCR and

connectedness models for the validation and test set.
2.6 CCR model

For the CCR model, our objective was to come up with a set of

features that could quantify varying degrees of contour-to-contour

overlap and separation. To do this, the CCR model utilized the

minimum distance between two contours and the fractional volume

of overlap of one contour with another as its features. The

combination of both features yielded all the information needed

to quantify these relationships. A boolean matrix with 42 rows and

43 columns was generated to select the CCRs to include in the CCR

model. Rows were associated with the selected contour, while

columns were associated with the comparison contour. An

additional column was added to allow comparison to the body
TABLE 1 A list of features used for each model.

Single-contour feature models
(Z-score, MD, AE) Connectedness model CCR model

Location
features

Orientation
features
{0<x<1}

Volume
features

Shape
features

CT
number
features

Missing slices or
‘ditzel’ features Relational features

Centroid
X [mm]

PC1x̂ Volume [cc]
lPC2=lPC1
{0<x<1}

CT minimum Number of disconnected parts
Minimum distance [mm]

{0<x<∞}

Centroid
Y [mm]

PC1ŷ
lPC3=lPC1
{0<x<1}

CT maximum
Fractional volume overlap

{0<x<1}

Centroid
Z [mm]

PC1ẑ X extent (mm) CT mean

PC2x̂ Y extent (mm) CT std. dev.

PC2ŷ Z extent (mm)

PC2ẑ
Sphericity
{0<x<1}
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contour (Supplementary Figure S3). The selected CCRs primarily

focused on OARs that were close to each other. This included OAR

types with distinct anatomical boundaries (e.g., cord and brain

stem) and cases where one OAR was a subset of another (e.g., brain

stem and brain). Well-defined contours in these cases should

exhibit consistent anatomical boundaries with each other. In

contrast, contours that are not in close proximity to each other

may have more uncertainty in their relationship, making them

susceptible to false positives.

The minimum distance feature data was fit to a gamma

distribution (22) ranging from zero to infinity, while the fractional

overlap volume feature data was fit to a beta distribution (23) ranging

from zero to one. Distribution types were selected to have the same

upper and lower input domains as their representative features and

followed the probability distribution of the CCR features. Initial

upper and lower outlier cutoffs were determined by taking the

upper and lower 99th percentile boundaries of the fitted

distribution. The percentile boundaries were set manually to

minimize the number of false positives detected by the CCR model

in the validation set. The determined percentile boundary cutoffs

were expanded by 0.02 for fractional volume and 2mm for minimum

distance to minimize identification of errors that were present, but

small enough to not be clinically relevant.
2.7 Connectedness model

For human reviewers, identifying disconnected voxels in a

contour can be time-consuming. To improve clarity for potential

human reviewers using this QA tool, we separated the

connectedness feature from the single-contour feature models and

created a separate model including only the number of connected

parts in a contour. This enables easy reporting of this feature to

reviewers. To establish the maximum number of allowable parts, a

statistical threshold of 99.95% was set using a gamma distribution

fitted to the training data. The threshold was optimized by

evaluating performance on the validation dataset and selected to

minimize false positives. A statistical threshold was used instead of

setting a predetermined cutoff as some contours were allowed to

have multiple parts anatomically (e.g. thyroid) and other contours

could have multiple parts due to CT image-related scan truncation

(e.g. left and right brachial plexus).
2.8 Model combination

To obtain the final combined classifications, if any individual

model identified a contour as erroneous, it was classified as such.

Thresholds for the connectedness model and CCR model output

metrics were set manually and the single-contour features model

thresholds were tuned to maximize balanced accuracy for the

combined classifications (24). Balanced accuracy is defined as the

average of sensitivity and specificity. While accurate detection of

erroneous contours is more clinically relevant, the prevalence of

erroneous contours will typically be low in the clinical workflow.
Frontiers in Oncology 06
We estimate a reasonable prevalence of erroneous contours in the

clinical workflow to be 10% and the relative severity of incorrectly

categorizing erroneous compared to acceptable contours at 9 to 1.

In this case, balanced accuracy will be an appropriate optimization

metric (25). The values of prevalence and relative severity can easily

be adjusted, resulting in different optimal thresholds for future

clinical use. The performance of the single-contour feature models

without combination with CCR and connectedness models was also

evaluated using the same threshold tuning. Thresholds for

individual and combined single-contour feature models were not

necessarily the same. The test set was assessed using the same

thresholds obtained from the validation set.
2.9 Statistics

To reduce class imbalance during statistical assessment, we

adopted a solution involving random subsampling. Specifically, we

selected five acceptable contours at random from the input curated

gold-standard contours for each OAR type and merged them with

the erroneous validation contours. This approach allowed us to

present a single statistical test that was more evenly balanced in

terms of its evaluation of performance on both acceptable and

erroneous contours. The subsampling included 210 acceptable and

190 erroneous contours. Statistical testing of model performance

was performed using the two-sided mid-p value McNemar test with

a p-value of less than 0.05 considered to be significantly different

(26, 27).
3 Results

3.1 Single-contour feature method
comparison and model combination

Receiver operating curves were used to evaluate the

performance of individual z-score, MD, and AE models for all

contours. The z-score, MD, and AE models had an area under the

curve (AUC) values of 0.922, 0.939, and 0.939 respectively for the

test set (Figure 2, Table 2). Combining the single-contour feature

models with CCR and connectedness models led to improved

performance for all three single-contour feature models. The high

specificity of the CCR (0.982) and connectedness (0.990) models

made it possible to combine them by identifying a contour as an

outlier if any of the models flagged it as one (logical OR) with

minimal decrease in combined model specificity. Test set results

were similar to the validation set for all models, indicating minimal

overfitting due to the single feature selection, model thresholding,

and hyperparameter tuning using the validation dataset. In the

statistical subset of the validation data, combination of the CCR and

connectedness models with the single-contour feature models

significantly improved the performance of the z-score (P=0.0007),

MD (P=0.0175), and AE (P=0.0201) models (Supplementary Table

S2), demonstrating the added benefit of incorporating CCR features

for outlier detection.
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3.2 Model performance across OAR types,
error types, and error severity

The performance of the knowledge-based QA framework for

each OAR type individually was evaluated using the validation

dataset without distinguishing between left and right-sidedness for

bilateral OARs (Figure 3, Supplementary Figures S4, S5). Analysis of

the validation set allowed for an adequate number of contours of

each OAR type to be available for classification evaluation. Of the

three combined single-contour feature models, the combined AE

model had both the highest median and highest minimum BA

across all OAR types (Minimum median and maximum BA of

0.729, 0.908, and 0.980 respectively). Combining the single-contour

feature models with CCR and connectedness models resulted in an

average increase of 0.077 (z-score), 0.055 (MD), and 0.048 (AE) in

BA values per OAR type. The improvements in BA were not evenly

distributed across all OAR types. The AE model type showed the

largest improvements for the spinal cord and oral cavity, while the

mandible experienced worse performance (Figure 4), attributable to

changes in the optimal single-contour feature thresholds when

combined with CCR and connectedness models.

The sensitivity of the combined AEmodel for boundary, position,

non-adjacent slice, and volume error types was 0.867, 0.971, 0.833,

and 0.8116 in the validation set. Similar classification accuracies
TABLE 2 Classification results.

Model AUC
Balanced
Accuracy

Sensitivity Specificity
True
positive

False
negative

True
negative

False
positive

Validation Set

Connectedness – 0.527 0.063 0.991 12 178 1966 18

CCR – 0.730 0.474 0.987 90 100 1958 26

Z-score 0.852 0.794 0.684 0.904 130 60 1793 191

MD 0.899 0.826 0.811 0.842 154 36 1671 313

AE 0.896 0.838 0.763 0.913 145 45 1812 172

Z-score combined – 0.866 0.816 0.916 155 35 1818 166

MD combined – 0.882 0.842 0.921 160 30 1828 156

AE combined – 0.884 0.863 0.906 164 26 1797 187

Test Set

Connectedness – 0.522 0.054 0.990 2 35 1984 21

CCR – 0.721 0.459 0.982 17 20 1969 36

Z-score 0.922 0.816 0.730 0.903 27 10 1811 194

MD 0.939 0.851 0.865 0.837 32 5 1679 326

AE 0.939 0.866 0.838 0.893 31 6 1791 214

Z-score combined – 0.880 0.838 0.922 31 6 1848 157

MD combined – 0.900 0.892 0.907 33 4 1819 186

AE combined – 0.876 0.865 0.887 32 5 1779 226
FIGURE 2

Receiver operating curve (ROC) results from the test dataset for
three individual single-contour features models, z-score, MD, and
AE models. The false positive rate and sensitivity of single-contour
feature models combined with CCR and connectedness models are
plotted as circles on the ROC plot.
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A B

D

C

FIGURE 3

(A) Box and whisker plot (Box-inner quartile range, whisker-range) of balanced accuracy for each OAR type in the validation dataset. Left and right
matching OARs were combined before plotting. (B) Balanced accuracy, (C) sensitivity, and (D) specificity are plotted for each OAR for the
combined models.
A B

D

C

FIGURE 4

Change in (A) balanced accuracy, (B) sensitivity, and (C) specificity for single contour feature models on the validation dataset when single contour
feature models are combined with CCR and connectedness models. Each datapoint on the plots represent an OAR type. Change for each OAR type
individually is also plotted (D). Positive change indicates improvement in performance after model combination.
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across different error types were observed between combined AE,

MD, and z-score models in both the test and validation sets

(Supplementary Table S3). Higher sensitivity was observed for

position errors compared to the other types of errors across all

three combined model types, likely due to position errors tending to

be more severe than other error types (Figures 5A–D).

The sensitivity of the combined AE model for detecting major

and moderate errors was 0.922 and 0.810. Similar differences in

sensitivity between major and moderate errors were observed for

the combined MD and z-score models (Supplementary Table S4),

suggesting that more sever errors are more likely to be detected by

the knowledge-based QA framework.
3.3 Misclassifications

Some erroneous esophagus, lung, and brachial plexus contours that

were incorrectly classified by all models had missing volumes

(Figure 5E). These OARs are commonly affected by CT scan
Frontiers in Oncology 09
truncation which increases variation in volume and shape features.

Additional undetected errors included improper boundary delineation

(either over-contouring or under-contouring boundary edges) and

volume changes that were small relative to the total volume of the

contour. Some acceptable contours were identified as erroneous by all

combined models. These included contours with clinically insignificant

inaccurately delineated boundaries, contours that were anatomically

accurate but contoured on patients with abnormal positioning or

anatomy, and contours on CT scans with metal artifact-related

image quality issues (Supplementary Figure S6). The CCR model

was able to identify outliers from improper separation or overlap

(Supplementary Figure S7). Out of the 34 erroneous contours from the

validation set that were missed by all individual single-contour feature

models, the CCR model identified 15.

4 Discussion

We have developed a knowledge-based method for detecting

clinically relevant erroneous OAR contours in HN radiotherapy.
A B

D E

C

FIGURE 5

Examples of erroneous contours with volume, boundary, non-adjacent slice, and position errors are shown (A–D). Examples of undetected contour
errors (false positives are shown (E). The corresponding gold-standard acceptable contours that were edited to create erroneous contours are displayed.
Hounsfield unit display ranges were -10 to 70 for images with brainstem contours, -250 to 1500 for images with contours of bone, -1000 to 100 for
images with lung contours and -115 to 115 for all other images.
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Our method uses models based on single-contour features, as well

as CCRs. Combining the single-contour feature model with the

CCR and connectedness models significantly improves

performance for the z-score, MD, and AE models. The combined

AE model achieves a sensitivity of 0.865, specificity of 0.887, and BA

of 0.876 for the test set. Similar BA, sensitivity, and specificity were

observed for the combined z-score, MD, and AE models for both

test and validation datasets, indicating no overfitting in the

validation set. Minimum, median, and maximum balanced

accuracies across individual OAR types for the AE model were

0.729, 0.908, and 0.980, respectively on the validation set. Our

results demonstrate satisfactory model performance for a

comprehensive set of OAR types utilized in HN radiotherapy.

Accurately detecting contour errors across a wide range of OAR

types is a significant challenge. Many studies examining model

performance have been limited to assessing no more than 17 OAR

types (9, 10, 12, 14, 16). One study looking at pelvis, abdomen, and

thorax regions reported results for 40 OAR types, however, their

primary aim was to develop a method for classification of contours

to an OAR type or label rather than to detect erroneous contours

(15). Furthermore, they did not report the model performance for

each OAR type, instead only reporting the overall AUC results. In

our study, we use a knowledge-based outlier detection approach

with a combined AEmodel that achieves a minimum sensitivity and

specificity of 0.600/0.837 (ignoring left-right distinction) per OAR

type for 42 HN OAR types used clinically. The wide variety of

contour volumes, and shapes, as well as a large dataset of patients

with several different HN disease types and sites, demonstrates that

knowledge-based OAR QA for HN radiotherapy is both feasible

and generalizable to a wide variety of OARs.

Abnormalities in CT images, caused by factors like CT artifacts,

patient positioning, or abnormal anatomy, can contribute to higher

false positive rates for knowledge-based outlier detection. However,

these images may still result in suboptimal quality for both human-

generated and DL-generated contours, highlighting the importance

of careful manual review in such situations. Although the

knowledge-based quality assurance system may yield false

positives when encountering abnormal image data with accurate

contours, it provides a rapid and efficient method to aid reviewers in

automatically identifying erroneous contours.

The CCR model is a novel tool that can identify incorrect

amounts of overlap or separation between two contours. This is

crucial in clinical settings for two reasons: first, overlap and

separation should be consistent with actual anatomy, and second,

gaps between contours that are anatomically touching may result in

unreported high doses to the OAR. In this study, we chose CCRs

that had consistent anatomical relationships or were close to each

other, but the technique can be extended to any CCRs. The high

specificity of the CCR model allows for easy deployment as a

contour review tool, either on its own or in conjunction with

other models.

One limitation of this study is that CCR calculations for both

erroneous and acceptable contours were performed only in relation

to acceptable contours and never in relation to erroneous contours.

This facilitated the identification and quantification of the CCRs

model performance. In a real-world application, the CCR model
Frontiers in Oncology 10
will only detect incorrect CCRs instead of directly identifying

incorrect contours. Therefore, in clinical practice, the end user

would need to review two contours for each improper CCR to

identify a single unacceptable contour.

The exclusion of data from the training set based on the number

of MAD from the median provides a way to remove contours of

questionable quality in the training dataset. The threshold for data

removal can be tuned with a validation dataset. In this work, increases

in balanced accuracy for the combined models when implementing

outlier removal ranged from 0.00 to 0.06 depending on the model

used. For less curated datasets, this approach may have a larger

impact on model performance and help improve the generalizability

of the QA framework to different datasets.

The knowledge-based QA framework presented in this work

has the potential to improve the detection of erroneous contours

when used in conjunction with human reviewers. This will require

an efficient integration within the clinical contour review workflow,

where the QA framework results can be quickly accessed and

interpreted by a human reviewer. A script-based approach run

directly from the clinical contouring software would be an effective

option. This script could allow human reviewers to automatically

archive human review labels, model inferences, and contours when

run. This data archiving would facilitate model performance

tracking, iterative model improvement, and the assessment of the

dosimetric impact of erroneous contours.

The use of a large, highly curated HN OAR dataset for model

development is a clear foundational strength of our study. However,

our modeling also required erroneous H&N contours. This data was

not available a priori, necessitating fabrication; we recognize that

this could be perceived as a weakness in terms of presented model

performance evaluation. Our immediate goal is to iteratively

develop a clinical solution based on the presented methodology

for integration within our contour review workflow. As we detect

true erroneous contours during preliminary deployment phases,

these erroneous OARs detected “in the wild” can be leveraged for

future refinements (iterations in model training/tuning). Thus, we

emphasize that the presented model framework, model comparison,

and the generalizability of this approach to many OAR types should

be recognized as the main focus of this study.

The best-performing combined AE. model can identify

erroneous contours but does not identify individual features that

are abnormal. To reduce the time spent during human review of

contours marked as erroneous by the QA framework, it may be

beneficial to identify specific abnormal features along with

erroneous contours to guide reviewers more quickly to the errors

in the contours. To obtain predictions on abnormal features after

identifying erroneous contours using the combined AE model, a

separate z-score model could be used post hoc to report outlier

features. However, this approach may result in both models

disagreeing on a contour’s classification. Alternatively, more

sophisticated model-agnostic tests can be employed to determine

the importance of input features in making predictions, which can

be useful in identifying features that strongly influence model

decisions (28, 29). Additional research is needed to determine

whether the identification of erroneous features in this manner

would reduce contour review time.
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Further research is necessary to evaluate the developed QA

framework for other anatomical sites. The QA framework can be

extended to other treatment regions with additional sets of curated

and outlier data given its adaptability to a variety of OARs for HN.

However, it is anticipated that the performance of the CCR model

may decrease in the thorax, abdomen, and pelvis due to fewer

consistent anatomical relationships between OARs. A better

understanding of the amount of curated data needed will become

more apparent after the integration of the HN model into our

clinical workflow.

In the future, model generalizability to other institutions also

needs to be assessed. Several challenges are associated with this,

including variation in contour definitions (7), and variation in the

determination of clinically relevant contour errors between different

institutions. While trained models could be directly deployed in

outside institutions, outside institutions could also train their own

institution specific model using the same QA framework as

illustrated here. This would allow any differences in contour

definitions, and contour error definitions to be accounted for.

More research is needed to assess the generalizability of this

approach to other institutions.
5 Conclusion

In this study, we have created a method for knowledge-based QA

that utilizes single-contour features and contour-to-contour

relationships to identify erroneous contours for forty-two HN OAR

types. The effectiveness of multiple models has been evaluated, both in

general and for each OAR type. The findings of this study demonstrate

the developed framework for knowledge-based QA of HN contours is

both feasible and generalizable to a full set of clinical HN OARs.
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