
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Jan Baptist Vermorken,
University of Antwerp, Belgium

REVIEWED BY

Marcus Beck,
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Nasopharyngeal carcinoma (NPC) is a malignant epithelial tumor that develops in

the nasopharynx. It has a distinct ethnic and geographical distribution, and

emerging evidence suggests that it is an ecological disease. Most patients

respond well to radiation combined with chemotherapy as the primary

treatment for NPC. However, some patients will eventually develop radio

resistance and chemoresistance, resulting in recurrence and metastasis, which

is a primary cause of poor prognosis. The processes underlying radio resistance

and chemoresistance in NPC are complex and unknown. MicroRNAs (miRNAs)

are endogenic non-coding RNA molecules. They play a role in a variety of cell

functions as well as development of disease such as cancer. There has been

considerable data demonstrating the existence of numerous aberrant miRNAs in

cancer tissues, cells, and biofluids, which indicates the importance of studying

the influence of miRNAs on NPC. Therefore, this review comprehensively

analyzes the elaborate mechanisms of miRNAs affecting the radio resistance

and chemoresistance of NPC. Multiple tumor-specific miRNAs can be employed

as therapeutic and prognostic biological indicators.
KEYWORDS

nasopharyngeal carcinoma, radio resistance, chemoresistance, microRNA, role
1 Introduction

Nasopharyngeal carcinoma (NPC) is a type of epithelial cancer that originates from the

mucous lining of the nasopharynx. Featuring prominent differences in regional

distribution, NPC is most commonly observed in East and South Asia, North America,

and Northern Europe (1–3). According to the different pathological features, NPC can be

categorized into three types:. nonkeratinizing and keratinizing squamous cell carcinoma,

and basaloid squamous cell carcinoma. The nonkeratinizing type of NPC can be further

subdivided into differentiated carcinoma and undifferentiated carcinoma. It has been

reported that 95% of NPC cases occur in endemic regions and are strongly associated with

Epstein-Barr virus (EBV) infection (4–6). In the past, NPC is defined as an inherited
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2024.1299249/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1299249/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1299249/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1299249/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1299249&domain=pdf&date_stamp=2024-02-28
mailto:wangdehuient@sina.com
https://doi.org/10.3389/fonc.2024.1299249
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1299249
https://www.frontiersin.org/journals/oncology


Xu et al. 10.3389/fonc.2024.1299249
disease with varying degrees of intertumor and intratumor

heterogeneity (7). Recently, some academics are arguing that the

nature of NPC is an ecological disease: a multidimensional

spatiotemporal “unity of ecology and evolution” pathological

ecosystem, which provides a novel theoretical framework and

paradigm for understanding complex tumor causal processes, as

well as probable preventive and therapeutic regimens for patients

(8). Currently, tremendous progress has been made in the

development of NPC therapies. As intensity-modulated

radiotherapy (IMRT) is being utilized more extensively and

chemotherapy regimens such as concurrent therapy, induction

therapy, and adjuvant therapy are being continuously optimized,

the survival rate of patients with NPC has increased, and drug

toxicity has decreased. Although treatment protocols have

improved, do novo metastases occur in approximately 5-11% of

NPC patients. Studies have reported that 15-30% of NPC patients

with locally advanced disease experience dissemination or local

relapse after receiving local treatment (9, 10). The resistance of

cancer cells to chemotherapy or radiotherapy, either as an inherent

or developed feature, greatly contributes to the metastatic lesion and

recurrence of NPC.

MicroRNAs (miRNAs) are a type of endogenous noncoding

RNA that generally contain 22–25 nucleotides (11, 12). miRNAs

most commonly exer t the i r funct ion by serv ing as

posttranscriptional repressors. When miRNAs bind to Argonaute

(AGO) proteins, an RNA-induced silencing complex (RISC or

miRISC) targets particular mRNA transcripts. To date,

convincing data have shown that each of the recognized

hallmarks of cancer, including NPC, is subject to miRNA-

mediated regulat ion (13–15) . Ionizing radiat ion and

chemotherapy can modulate sensitivity or resistance by inhibiting

or inducing the expression of miRNAs.

Several scholars have identified and demonstrated the impact of

miRNAs in adjusting the differential expression of functional genes

on cell proliferation, invasion, apoptosis, migration, and even novel

phenotypes in NPC against the background of radiation resistance

and chemotherapy resistance (16–19). Therefore, further

exploration and validation of new miRNAs may lead to the
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identification of vital biomarkers or predictors for identifying

radioresistant or chemo resistant patients in the clinic. In this

study, we updated and classified abundant miRNAs associated

with radiotherapy or chemotherapy response in NPC via a

systematic review. Additionally, we investigated detailed

mechanisms of miRNAs affecting the radio resistance and

chemoresistance of NPC.
2 Methods

In this study, we searched for all related English language

articles in the NPC field from the PubMed database published

between 2017 and 2023. The key words utilized for the research

included “nasopharyngeal carcinoma,” “miRNA,” “radiation”,

“radio resistance”, “chemotherapy” and “chemoresistance”. Our

study comprehensively analyzed the findings of identified

publications. Studies of miRNAs from different sources, namely

cells, tissues, serum, and exosomes, were all included. The details of

the screening process and the number of included studies with

reasons of exclusion are shown in the flow chart (Figure 1). As

illustrated in the flow chart, 62 studies met the inclusion criteria for

the final systematic review.
3 Results

3.1 Overview of miRNA biogenesis
and functions

Although the specific mechanism of miRNA biogenesis is still

unclear, two widely accepted approaches to miRNA biogenesis are

known as the classical pathway and the nonclassical pathway, as

shown in Figure 2. In the classical pathway, biogenesis originates

from the nucleus, which synthesizes pri-miRNAs containing one or

more hairpins. The nuclear microprocessor complex subsequently

processes pri-miRNAs to form pre-miRNAs. After pre-miRNA is

conveyed to the cytoplasm and processed by Dicer, mature miRNAs
FIGURE 1

A PRISMA flow diagram presenting the screening process, and the number of included studies with reasons of exclusion.
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are generated (20). Next, the mature miRNAs bind to the AGO

protein to produce the RISC. This process encompasses several

critical steps, such as the transcription of miRNAs, the regulation of

miRNAs through Dicer and Drosha, and the loading of RISC. In the

case of the nonclassical pathway, miRNAs do not need to be

processed through Dicer or Drosha. miRNAs, independent of the

microprocessor, contain mirtrons and tailed mirtrons. All the

mirtrons are produced through splicing and subsequent lariat

debranching. As representative microprocessor-independent

miRNAs, mirtrons are processed by the nuclear spliceosome first,

folded to form short hairpins, and finally access the miRNA

pathway to the pre-miRNA phase. The above process explains

why the mirtrons escape from cleavage by the microprocessor

(21). In addition, other types of endogenous noncoding RNAs,

including tRNAs (22), small nucleolar RNAs (23), and small hairpin

RNAs (24), can also serve as substrates for nonclassical miRNA

biogenesis. Furthermore, research has shown complex factors such

as RNA-binding proteins (RBPs), enzymes, and hypoxia can adjust

the process of miRNA biogenesis. Overall, the biogenesis of

miRNAs and the underlying regulatory mechanisms have not

been fully elucidated. More research contributes to understanding

the biogenesis of miRNAs in depth.

The most basic function of miRNAs is to serve as the

posttranscriptional repressors of gene expression. The

combination of miRNAs and AGO proteins can generate a RISC

or miRISC, which can target particular mRNA transcripts. There
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has been additional evidence proving the occurrence of diverse new

mechanisms involving miRNAs. miRNAs can influence gene

expression by regulating the transcription and epigenetic state of

gene enhancers and promoters located within the nucleus (25) and

by targeting transcripts encoded by mitochondria (26, 27). For

instance, after nuclear miR-181c is transferred to cardiomyocytes

mitochondria, it can contribute to miRNA-dependent silencing of

mt-Co1 (27, 28) Several miRNAs have also been shown directly

impact protein function. This effect is achieved through direct

biophysical activities and eventually regulates important functions

of cardiovascular biology such as the integrity of endothelial cells

(miR-126-5p by suppressing caspase 3) (29) or the potential for

cardiac action (miR-1-3p by binding to Kir2.1) (30). In vitro,

miRNAs can also repress targets or attach to cell receptors (such

as Toll-like receptors) on receptor cells to promote communication

between cells (31).
3.2 MiRNA associated with radio resistance

Numerous differentially expressed miRNAs, including EBV-

encoded miRNAs, in the serum, exosomes, and tissues of

radioresistant NPC patients, and in NPC-resistant cell lines have

been identified by high-throughput sequencing, microarray

analysis, and bioinformatics. Research has shown a trend toward

the expression of approximately fifty new miRNAs, such as miR-
FIGURE 2

Canonical and Non-canonical microRNA biogenesis. Ago2, Argonaute 2; RISC, RNA-induced silencing complex; PARN, Poly (A) -
specific ribonuclease.
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150, miR-483-5p and miR-454-3p, in radiation-resistant NPC (19,

32, 33). Furthermore, more than thirty miRNAs, including miR-31-

5p, miR-613 and miR-340-3p, have been shown to modulate the

radiosensitivity of NPC (34–36).

After radiation treatment, tumor cells undergo DNA strand

breaks, leading to cell apoptosis and cell cycle arrest. Increased

tumor volume, reduced oxygen availability, and dysregulated genes

can result in radiation tolerance in tumor cells. Existing studies have

generally focused on the conventional biological function of

miRNAs, that is, the function of targeting the inhibition of

posttranscriptional oncogenes and tumor suppressors induced by

radiotherapy. The radio resistance of NPC is mediated by decreased

expression of apoptotic genes, excessive expression of proliferative

and antiapoptotic genes, abnormal expression of cell cycle

regulatory genes and cell metabolism associated genes, or

enhanced expression of genes used to mediate DNA injury and

repair (37–39). Taken together, these findings suggest that miRNAs

can influence almost all targeted pathways or genes involved in the

radio resistance of NPC.

3.2.1 Affecting proliferation and apoptosis
When proliferative genes are activated and expressed

excessively, radio resistance occurs. In contrast to these associated

with proliferation, if genes related to apoptosis are abnormally

expressed, fewer tumor cells are killed under ionizing radiation.

Proliferation and apoptosis phenotypes are commonly reported in

current studies on NPC radio resistance. The frequently used

research methods include the cell counting kit-8 (CCK-8) assay,

flow cytometry apoptosis assay, colony formation assay, detection

of proliferation- and apoptosis-related markers, and measurement

of tumor size and weight in vivo.

As reported in previous publications, miR-1253 knockdown can

suppress NPC cell viability, accelerate NPC cell apoptosis and

enhance the radiosensitivity of NPC. Mechanistically, upstream

circFIP1L1 suppressed the inhibitory effect of miR-1253 on

EIF4A3 (16). Moreover, miR-7-5p can reduce the radiosensitivity

of NPC cells by promoting cell proliferation and accelerating cell

death through the upregulation of ENO2 (18). According to clinical

research, there is a positive association between the miR-181a level

and lymphatic metastasis and late TNM stage. When miR-181a is

expressed ectopically, the growth of radioresistant NPC cells is

promoted, which has been verified by multiple assays (40).

Moreover, the overexpression of miR-222 and miR-210 reduces

the cell apoptosis rate by promoting cell viability, colony formation

and tumor growth (41, 42). Conversely, miR-31-5p mimics were

found to remarkably slow cell proliferation and attenuate radiation

resistance by binding to SFN (35). Cytoplasmic miR-452-5p

competitively binds to ZNF621 via LINC01140 to increase cell

proliferation and reduce apoptosis (43). Peng et al. demonstrated

that X-irradiation (IR) can suppress miR-3942-3p expression.

When miR-3942-3p inhibitors were used to downregulate miR-

3942-3p expression, the activity of NPC cells improved, while

apoptosis decreased (44). A previous study showed that miR-124-

3p knockdown could facilitate NPC cell growth and diminish

apoptosis caused by irradiation. Additionally, miR-124-3p targets
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LHX2, which activities the Notch pathway to reduce the radiation

sensitivity of NPC cells (45). Cellular experiments by Guo et al.

revealed that overexpressed miR-29a promoted CNE-2R cells

sensitivity to radiation, which was achieved by inhibiting cell

activity and accelerating cell death after irradiation. They also

found that miR-29a directly targets COL1A1 to improve NPC

cells radio resistance (46). Additionally, miR-125a, miR-138-5p

and miR-519d are reportedly positively correlated with

radiosensitivity (47–49).

3.2.2 Participation in migration, invasion
and metastasis

Research has confirmed other functions of miRNAs in

regulating radio resistance due to their ability to influence

migration, invasion, and metastasis via transwell assays, Boyden

chamber invasion assays, wound scratch assays, and the detection of

epithelial-mesenchymal transition (EMT) markers, etc.

Zhou et al. demonstrated that miR-BART8-3p can target and

repress their PAG1 host genes and consequently facilitate EMT,

invasion, and radio resistance-associated metastases in NPC cells

(50). Similarly, Yi et al. reported that when miR-194-3p was

inhibited, the invasion and migration of NPC cells were

repressed. NPC cells radiosensitivity was enhanced, and cell

killing was accelerated (51). The overexpression of miR-BART6-

5p in patients with NPC has been demonstrated to be significantly

correlated with clinical stage, T stage and pre-DNA. Tang et al.

demonstrated that Dicer1 expression is increased and invasion of

NPC cells is decreased when miR-BART6-5p is downregulated (52).

Luciferase activity assays and bioinformatic software have verified

the ability of miR-BART4 to suppress PTEN expression and

promote aggressiveness while attenuating the radiosensitivity of

NPC (53). However, Wang et al. reported that miR-143-5p can

modulate HOXA6 to inhibit the invasion or migration of radiation-

resistant NPC cells (17). Wei et al. demonstrated that miR-335-5p

can modulate the mTOR and p21 signaling pathways, thereby

negatively regulating PADI4 and inhibiting the invasion,

movement and radiation tolerance of NPC cells (54). The

experiments conducted by He et al. illustrated that when miR-

182-5p was upregulated, the suppressive effects of BNIP3 on the

migration and invasion of 5-8F-resistant cells decreased (55). In

addition, Han et al. reported that when miR-203 was upregulated,

the migration and proliferation of nasopharyngeal cancer cells were

repressed, and tumor growth was also be suppressed by modulating

the ERK/JNK signaling pathway (56). Interestingly, the

overexpression of exosome-derived miR-34c also reduces NPC

cell resistance to radiation, as it targets b-catenin and represses

the EMT in NPC (57). Other data also confirmed that miR-9 (58),

miR-372 (59), miR-495 (60), miR-206 (61), miR-186 (62), and miR-

138-1-3p (63) knockdown significantly induced cell invasion,

metastasis and EMT.

3.2.3 DNA repair and cell cycle
regulation involvement

Radiation can cleave DNA by directly forming free radicals and

water in ionized cells during the radiation process. However, DNA
frontiersin.org
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damage after radiation can be repaired through the DNA damage

response (DDR) (64), which is a crucial factor in radiation

resistance. When histone H2AX is phosphorylated within

chromatin to produce g-H2AX, DNA double-strand breaks

(DSBs) are formed (65). Furthermore, research has revealed a

close correlation between the cell cycle distribution of tumor cells

and radiosensitivity. Cells exhibit different perceptions of radiation

damage in each phase of the cell cycle. Cells at the M stage and the

G2 stage had the highest radiosensitivity, while cells at the G1 stage

and the S stage had weaker radiation sensitivity. As cells are divided

and cell DNA separates actively at the G2 and M stages, radiation is

prone to causing DNA damage and cell death.

Xie et al. showed that miR-195-3p overexpression impeded the

progression of the cell cycle. CDK1 is a target gene of miR-195-3p,

and its overexpression can offset the blockage of the cell cycle and

increase in radiation sensitivity caused by miR-195-3p

overexpression (66). According to another study, miR-17-5p can

accelerate cell division and cell cycle damage induced by different

doses of radiotherapy via the PTEN/AKT signaling pathway (67).

Zhou et al. reported that EBV-miR-BART8-3p can improve the

radiation tolerance of NPC cells and inhibit the progression of the

cell cycle at the M or G2 stage, revealing its contribution to

postradiotherapy DNA repair. Mechanistically, for the first time,

this study proposed the critical effect of EBV-miR-BART8-3p on

improving NPC cell radiation tolerance by regulating ATR or ATM

expression to prevent DSBs (68). In contrast, the authors revealed

that miR-29c and miR-124 knockdown can reduce cell

radiosensitivity to irradiation and increase the expression of g-
H2AX (69, 70).

3.2.4 Other novel phenotypes
With the deepening understanding of the mechanism of radio

resistance, novel phenotypes closely related to radio resistance,

including those related to autophagy pathways, metabolism-

related targets, methylations, and cancer stemness, have been

explored and validated,.

Autophagy is often the main feedback mechanism of cancer

cells to radiation and has been extensively studied in preclinical

settings. A mechanistic study revealed that miR-340-3p can

suppress FKBP5 expression and alleviate cytophagy, thereby

improving the radiation sensitivity of NPC cells. This might lead

to the identification of a new target for optimizing the effectiveness

of radiotherapy in treating NPC (34). Interestingly, exosomal miR-

197-3p can suppress AKT/mTOR signaling by activating

phosphorylation and blocking autophagy mediated by heat shock

70-kDa protein 5 (HSPA5) (71). However, another study suggested

that miR-454-3p can directly target PTPRD, and that STAT3 is

directly dephosphorylated, which promotes ATG5 transcription

and stimulates autophagy affected by radiotherapy (19).

Mitochondrial dysfunction, increased glycolysis and other

abnormal metabolic activities can lead to radio resistance (72, 73).

There is a strong correlation between the development of NPC and

the expression of hexokinase 2 (HK2), a subclass of kinases. NPC

cells acquire energy mainly through glycolysis, not through
Frontiers in Oncology 05
oxidative phosphorylation of mitochondria. The glycolytic

capacity can be enhanced when HK2 is highly expressed. Zhan

et al. revealed that the miR-9-5p can effectively suppress tumor cell

growth by targeting HK2 through Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment, Gene Ontology (GO) and protein-

protein interaction network (PPI) analyses of differentially

expressed genes (DEGs) (74). The authors found that miR-214

could directly target lactotransferrin (LTF) and enhance the

radiosensitivity of NPC cells (75). However, miR-150 targets

glycogen synthase kinase-3b (GSK3b) to improve NPC cell

resistance to radiation. Western blot assays showed that the

expression of GSK3b proteins in CNE-2 resistant cells was

repressed, and after restoration, the sensitivity of CNE-2-resistant

cells to radiotherapy was improved (33).

Other phenotypes also shed light on the selection of treatments

and prognostic targets for radiotherapy resistance. Deng et al.

demonstrated that miR-613 can decrease TIMP3 methylation and

improve the expression of TIMP3 proteins by suppressing

DNMT3B. As a result, the STAT1/FOXO1 signaling pathway was

suppressed, and NPC cell sensitivity to radiation was enhanced (36).

Notably, miR-124, which targets JAMA, can suppress stemness and

increase NPC cells sensitivity to radiation both in vivo and in

vitro (76).
3.3 MiRNAs associated
with chemoresistance

Chemotherapy is considered an adjunctive therapy for the

treatment of NPC. For NPC at the middle and late stages, the

common practice is to combine radiotherapy and chemotherapy for

improved treatment efficacy (77). Although most patients who receive

platinum-based chemotherapy have a positive treatment effect,

recurrence is always induced as resistance to chemotherapeutic drugs

has increased (78). These findings necessitate further exploration of

how multidrug resistance occurs in NPC. Recent studies have shown

that miRNAs can mediate the growth, migration, invasion, apoptosis,

tumor stemness, exosome formation, DNA damage repair, and

autophagy of tumor cells, thereby regulating the emergence and

development of chemotherapy resistance in patients with NPC. The

regulatory changes in chemotherapy sensitivity may be related to

miRNAs inhibiting the expression of oncogenes to promote the

expression of tumor suppressor genes or suppressing the expression

of tumor suppressor genes to accelerate the expression of oncogenes.

Therefore, miRNAs with special functions can be utilized as target

agents to improve patient prognosis and diminish drug tolerance.

3.3.1 Cisplatin
Prospective, randomized, controlled clinical trials of platinum-

based chemotherapy regimens combined with immune or targeted

therapy are ongoing. The combined use of cisplatin and gemcitabine

induction chemotherapy can prevent micro metastases and prolong

the survival of patients with late-stage local NPC (1, 79). However, the

underlying mechanisms of recurrence and metastasis after
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chemotherapy resistance are unclear. Several miRNAs have been

found and validated to modulate cisplatin-based chemotherapy

sensitivity through classical or nonclassical phenotypes.

Proliferation, apoptosis, migration, invasion, and EMT are still

commonly studied phenotypes (Table 1).

Yuan et al. revealed that when a miR-125b inhibitor was

transfected, cell death and cytotoxicity caused by DDP were reduced,

and cisplatin resistance was enhanced (80). Similarly, Shi et al. reported
Frontiers in Oncology 06
that ectopic overexpression of miR-26b can suppress cell activity and

lead to cell death (81). When evaluating the IC50 value, Lin et al.

determined that miR-515-5p can be sequestered by circNRIP1 to

reduce the IC50 value of cisplatin by inhibiting posttranscription IL-

25 expression (82). At the functional level, miR-218-5p can inhibit

NPC cell proliferation, migration and EMT via modulation of the

GDPD5/SEC61A1 axis. This process also enhanced the

chemosensitivity of NPC cells (83). In addition, miR-34c, which can

directly target SOX4, a major regulator of EMT, was downregulated in

NPC patients, inducing the upregulation of Snail, ZEB1, CDH2 and

SOX2 and the downregulation of CDH1 and claudin-1 in vitro. From

the perspective of phenotype, suppression of miR-34c can lead to drug

resistance to cisplatin, while overexpression of miR-34c can improve

NPC cell sensitivity to cisplatin (84). Additionally, miR-139-5p (85),

miR-205 (86), miR-296-3p (87), miR-454-3p (88), miR-19b-5p (89),

and miR-106a-5p (90) were also studied and found to improve

chemotherapy sensitivity or attenuate chemoresistance in vivo and in

vitro via analogous phenotypes.

Recently, tumor stemness, exosomes, and autophagy have been

reported to regulate chemotherapeutic sensitivity to cisplatin. Liu

et al. reported that EBV-miR-BART22 could facilitate tumor

metastasis and stemness while promoting cisplatin tolerance.

Cinobufotalin can powerfully restore cisplatin tolerance induced

by EBV-miR-BART22 by activating MAP2K4 to fight against the

nonmuscle myosin heavy chain IIA/glycogen synthase 3b/b-
catenin pathway (91). Cai et al. reported for the first time the

effect of EBV-miR-BART7-3p on promoting tumor sphere growth

and increasing the expression of stemness markers at different

research levels (92). However, miR-302c-5p can suppress drug

resistance to cisplatin and inhibit stem cell properties, as

determined by means of a sphere formation assay and detection

of the expression of stemness markers (93). Initially, Li et al.

compared the exosomal miR-106a-5p level in the serum of

patients, and reported that last-cycle patients with chemotherapy

resistance had higher exosomal miR-106a-5p levels than first-cycle

patients without chemotherapy resistance. In addition, exosomal

miR-106a-5p promoted NPC cell proliferation. The main reason is

that exosomal miR-106a-5p targets ARNT2 and consequently

induces AKT phosphorylation. In addition to enhancing cell

proliferation, exosomal miR-106a-5p can also reduce cell death

and control the generation of tumors (94). Zhao et al. suggested

that a decreased survival rate and a nonideal response to

chemotherapy are associated with a reduction in miR-1278.

According to the results of the CCK-8 assay, which included a

negative control group, excessive miR-1278 expression in NPC

cells led to a reduction in growth and a decrease in the IC50 of

DDP. Additionally, DDP resistance and autophagy inhibition

related to miR-1278 can be reversed when ATG2B is highly

expressed (95). Interestingly, a novel mechanistic study

demonstrated that when TGFb1 was reduced, additional pro-

TGFb1 was activated and cisplatin tolerance caused by TGFb1
was enhanced. Therefore, excessive miR-449b overexpression leads

to a reduction in TGFbI, which further disrupts the balance

between pro-TGFb1 and TGFb1. This findings highlights a new

mechanism of resistance to chemotherapy in NPC patients (96).
TABLE 1 miRNAs and cisplatin resistance in NPC.

miRNA Expression Source Targets
or pathway

miR-454-3p Down Cell,
Tissue

HOXA11,
AKT/mTOR

miR-34c Down Cell,
Tissue

SOX4

miR-BART7-3p Up Cell,
Tissue

SMAD7

miR-449b Up Cell TGFb1

miR-125b Down Cell Bcl-2

miR-26b Down Cell JAG1

miR-302c-5p Down Cell HSP90AA1

miR-106a-5p Up Exosome ARNT2

miR-515-5p Down Cerum IL-25

miR-BART17-5p,miR-
BART19-3p

Down Cell BRCA1

miR-218-5p Down Cell,
Tissue

GDPD5

miR-1278 Down Cell ATG2B

miR-342-5p Down Cell –

miR-205 Down Cell HER3

miR-205-5p Up Cell PTEN,PI3K/AKT

miR-19b-5p Down Cell,
Tissue

KRAS

miR-296-3p Down Cell,
Tissue

MK2,Ras/Braf

miR-139-5p Down Cell –

miR-let-7a Down Cell,
Tissue

–

miR-519d Down Cell,
Tissue

PDRG1

miR-106a-5p Down Cell SOX4

miR-338-3p Down Cell,
Tissue

SMAD5,PI3K/ATK

miR-137 Down Cell ERRa

miR-BART22 Up Cell,
Tissue

MAP2K4,
PI3K/AKT
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3.3.2 Paclitaxel
Paclitaxel is a common combination drug for NPC

chemotherapy. In previous studies, the combination of paclitaxel

and carboplatin was shown to have good toxicity and potential for

large-scale application in clinical practice, with an objective response

rate (ORR) reaching 60% (97, 98). Research has also shown that

miRNAs participate in the modulation of paclitaxel resistance

(Table 2). Addressing chemoresistance may further improve the ORR.

Wang et al. confirmed that when miR-130b-5p was

upregulated, cell invasion or movement under the effect of EMT

was enhanced, and the suppressive effect of NEF on metastasis and

chemoresistance to Taxol was weakened (99). However, there is a

close correlation between miR-422a overexpression and high

survival in NPC patients. Furthermore, miR-422a suppressed its

target gene, FOXQ1, and reduced the risk of EMT, metastasis and

docetaxel tolerance to chemotherapy (100). According to a TdT-

mediated dUTP-biotin nick end labeling (TUNEL) assay and the

acquired ratio of BAX to BCL-2, excessive miR-29c expression and

a decrease in ITGB1 enabled NPC cells to be more sensitive to

paclitaxel and accelerated cell death (64). Transfection of the miR-

29a mimic suppressed the expression of PCNA, STAT3 and p-

STAT3; slowed cell proliferation; and accelerated cell death by

suppressing Bcl-2 and STAT3. Moreover, there is a negative

association between the expression level of miR-29a and drug

resistance in NPC patients (101).

3.3.3 5-Fluorouracil
5-Fluorouracil (5-Fu) is another traditional chemical applied for

head and neck cancer treatment. Similarly, miRNAs influence 5-Fu

resistance through various phenotypes (Table 3). It was reported

that overexpressed miR-299 targeted VEGFA and inhibited NPC

cell proliferation and invasion and promoted chemotherapeutic

sensitivity to 5-Fu (102). Liu et al. reported that treating NPC cells

with the ERRa inverse agonist XCT-790 or knocking down ERRa
could reduce resistance to chemotherapy. Furthermore, when cells

were transfected with the miR-137 mimic, ERRa mRNA became

less stable, and NPC cell sensitivity to 5-Fu therapy improved. In the

case of ERRa knockdown, the demand for glucose decreased in

chemo resistant cells, and the generation rate of ATP and lactate

decreased (103). Additionally, the tumor suppressor miRNA miR-

133a-3p induces 5-Fu sensitivity and directly targets the AKT/PI3K/

c-Myc/P53/EGF signaling pathway to reduce cell cycle arrest at the

G1/S stage (104).
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3.3.4 Other drugs
Xue et al. described the effect of miR-129 overexpression on

promoting apoptosis in a subline of NPC cells resistant to an HDAC

inhibitor (SAHA). Experiments on endogenous xenograft suggested

that miR-129 targeting Bcl-2 can address the issue of NPC cell

resistance to SAHA (105). Another study reported that when miR-

BART19-3p and miR-BART17-5p mimics were combined to

inhibit BRCA1 expression in NPC cells, the DNA repair ability

was weakened, while the doxorubicin sensitivity of the cells was

improved (106) (Table 4).
4 Conclusions and perspectives

Currently, increasing amount of miRNAs have been found to

significantly affect the radio resistance and chemoresistance of NPC.

The potential detailed mechanisms by which miRNAs regulate

radio resistance and chemoresistance in NPC are summarized in

Figures 3, 4, respectively. These endogenous dysregulated miRNAs

can predict NPC progression and prognosis. Although targeting

these dysregulated endogenous miRNAs has rarely been employed

in NPC research, studies in other tumors have revealed the potential

value of this strategy. For instance, natural drugs can regulate

miRNA functions and nanoparticle carriers of synthetic

oligonucleotides targeting cancerogenic miRNAs, or other

valuable repressor miRNAs are now applied in liver cancer

treatment. The specific mechanisms of certain miRNAs in

regulating radio resistance or chemoresistance have not been

determined. Therefore, screening key regulators from among the

numerous candidate miRNAs is still challenging. An increasing

number of clinical trials and translational studies are needed to

identify the optimum NPC therapies based on miRNAs, which may

ul t imate ly lead to poss ib le ways to overcome NPC

chemoradiotherapy resistance. In addition to their canonical

TABLE 2 miRNAs and paclitaxel resistance in NPC.

miRNA Expression Source Targets or pathway

miR-
BART7-3p

Up Cell,
Tissue

SMAD7

miR-130b-5p Up Cell –

miR-422a Down Cell,
Tissue

FOXQ1

miR-29c Down Cell ITGB1

miR-29a Down Cell STAT3
TABLE 3 miRNAs and 5-Fu resistance in NPC.

miRNA Expression Source Targets or pathway

miR-
BART7-3p

Up Cell,
Tissue

SMAD7

miR-515-5p Down Cerum IL-25

miR-299 Down Cell VEGFA

miR-133a-3p Down Cell,
Tissue

EGFR,PI3K/AKT

miR-137 Down Cell ERRa
TABLE 4 miRNAs and other drugs resistance in NPC.

miRNA Expression Source Targets
or pathway

miR-BART17-5p,miR-
BART19-3p

Down Cell BRCA1

miR-129 Down Cell,
Tissue

Bcl-2
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FIGURE 3

An overview of miRNAs implicated in the radio resistance of nasopharyngeal carcinoma. Various miRNAs involve in radio resistance of
nasopharyngeal carcinoma by affecting cell proliferation, invasion, apoptosis, cell cycle, autophagy, epithelial-mesenchymal transition, and cancer
stem cell via modulating the expression of downstream target gene. CSC, cancer stem cell; EMT, epithelial mesenchymal transition.
FIGURE 4

An overview of miRNAs involved in drug resistance of nasopharyngeal carcinoma. Multiple miRNAs participate in chemoresistance of nasopharyngeal
carcinoma by affecting cell proliferation, invasion, apoptosis, ATP production, autophagy, epithelial-mesenchymal transition, and cancer stem cell via
modulating the expression of downstream target gene. CSC, cancer stem cell; EMT, epithelial mesenchymal transition.
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func t ions , the ro l e s o f unconvent iona l miRNAs in

chemoradiotherapy resistance are mainly unclear. Future

advancements in this field of study may open up new avenues for

treating chemoradiotherapy resistance.
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