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Breast cancer (BC) is the leading cause of female cancer mortality and is a type of

cancer that is a major threat to women's health. Deep learning methods have

been used extensively in many medical domains recently, especially in detection

and classification applications. Studying histological images for the automatic

diagnosis of BC is important for patients and their prognosis. Owing to the

complication and variety of histology images, manual examination can be

difficult and susceptible to errors and thus needs the services of experienced

pathologists. Therefore, publicly accessible datasets called BreakHis and invasive

ductal carcinoma (IDC) are used in this study to analyze histopathological images

of BC. Next, using super-resolution generative adversarial networks (SRGANs),

which create high-resolution images from low-quality images, the gathered

images from BreakHis and IDC are pre-processed to provide useful results in the

prediction stage. The components of conventional generative adversarial

network (GAN) loss functions and effective sub-pixel nets were combined to

create the concept of SRGAN. Next, the high-quality images are sent to the data

augmentation stage, where new data points are created by making small

adjustments to the dataset using rotation, random cropping, mirroring, and

color-shifting. Next, patch-based feature extraction using Inception V3 and

Resnet-50 (PFE-INC-RES) is employed to extract the features from the

augmentation. After the features have been extracted, the next step involves

processing them and applying transductive long short-term memory (TLSTM) to

improve classification accuracy by decreasing the number of false positives. The

results of suggested PFE-INC-RES is evaluated using existing methods on the

BreakHis dataset, with respect to accuracy (99.84%), specificity (99.71%),

sensitivity (99.78%), and F1-score (99.80%), while the suggested PFE-INC-RES

performed better in the IDC dataset based on F1-score (99.08%), accuracy

(99.79%), specificity (98.97%), and sensitivity (99.17%).
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1 Introduction

Breast cancer (BC) is the primary cause of death from cancer for

women globally. For BC, classification, histopathology, imaging

[ultrasound, magnetic resonance imaging (MRI), and computed

tomography (CT)], and clinical findings are employed (1). By

generating histological tissue for microscopy, pathologists use

histology to evaluate the development of cancer. The tissues

surrounding cells and structures are represented in histopathological

specimens in a variety of ways (2). Hematoxylin and eosin (H&E) is a

commonly used histological dye. Cell nuclei are stained blue, and

the cytoplasm is stained pink. When stained with H&E, cancer cells

commonly have an abnormal appearance, and the pathologist

can identify them from normal cells by examining the structure of

cells (3, 4). Cancer cells multiply at a rapid pace, and if not correctly

identified, they become a serious threat to the patient (5). Early and

accurate diagnoses are considered to be significant in improving cancer

survival chances (6). Early BC has a persistence rate of approximately

80%, while late-stage illness has a rate of under 20% (7). Among the

several diagnostic screening methods for predicting early BC,

mammography has become the most expensive and most medically

acceptable method (8).

Invasive ductal carcinoma (IDC) and ductal carcinoma in situ

(DCIS) are two kinds of BC. Only 2% of patients with BC have DCIS,

which is a relatively low rate. Additionally, IDC is harmful because it

contains whole breast cells. Eighty percent of patients with BC have

IDC, with a mortality rate of 10% (9). Histopathological evaluation of

breast tissue biopsy images plays a substantial part in the detection of

BC (10). Pathological images not only include pathological

characteristics of growth, tumor form, and distribution but also

provide radiomics benefits such as low cost, high speed, and non-

invasiveness (11). Larger size patches that are sampled from a

histology image have enough data to be assigned to the patches

using the image label (12). However, it is possible that cell-level

patches are taken from high-resolution histology images that do not

have enough diagnostic information (13, 14). A deep learning

approach based on CNN and a clustering model are used to

automatically screen more discriminative patches (15). The primary

goal is to provide a thorough and efficient method for the multi-

classification of histology BC images to enhance diagnostic

capabilities, taking into account the aforementioned two factors.

The main contributions are specified as follows:
Fron
• Primarily, this research analysis is performed on

histopathological images (HIs) of BC using BreakHis and

IDC datasets. Previously, the collected datasets are pre-

processed by means of super-resolution generative

adversarial networks (SRGANs), which belong to

advanced deep neural network (DNN) processes and are

proficient in producing high-resolution images. SRGANs

upsample a low-resolution image into a higher-resolution

one with negligible data error.

• Afterwards, high-quality images are processed using data

augmentation techniques such as rotation, random

cropping, mirroring, and color-shifting to enhance the
tiers in Oncology 02
downstream performance. Data augmentation is vital for

many applications, as accuracy increases with the amount

of training data. In fact, research studies have found that

augmentation significantly enhances the accuracy on image

tasks, for example, classification.

• Then, feature extraction is performed by patch-based

feature extraction using Inception V3 and Resnet-50

(PFE-INC-RES) to regularize the network's output and

diminish the percentage of errors.

• Once the feature extraction is done, a transductive long

short-term memory (TLSTM)-based classifier is introduced

that efficiently classifies the BC as malignant and benign,

which results in higher classification accuracy.
The structure of this manuscript is prepared as follows: Section

2 describes the existing works and Section 3 describes the proposed

methodology of this study. Section 4 demonstrates the results and

comparison. Section 5 delivers the discussion part. The conclusion

is described in Section 6.
2 Literature review

Saini and Susan (16) implemented a deep transfer network,

VGGIN-NET, to discuss the class imbalance problem in BC. The

appropriate layers from the VGG16 were combined with the naïve

inception module, dense layer, batch normalization, and flattening

to construct the VGGIN-NET architecture. Regularization was

employed in the form of data augmentation and dropout to

enhance the performance of the VGGIN-NET. Both the majority

and minority classes of the VGGIN-NET were effectively classified.

Furthermore, the suggested VGGIN-Net is designed to deal with the

imbalanced BC dataset and helps to improve the robustness and

generalizability of the approach. Whenever the number of layers in

VGGIN-Net increases, the convolutional kernel reduces the

number of parameters in the convolutional layer, which was

equivalent to increasing the regularization. Still, other deep

network architectures require the multi-class unbalanced

biological dataset for the classification of BC.

Joseph et al. (17) presented a handcrafted feature extraction

method and DNN for the multi-classification of BC employing

histopathology images on BreakHis. The features were utilized to

train DNN classifiers by SoftMax and four dense layers. The

presented model avoids overfitting issues by employing the data

augmentation method. However, the extraction of several

handcrafted features leads to high-dimensional feature vectors,

which enhance computing complexity and contain unnecessary or

redundant data.

Hamza et al. (18) introduced an improved bald eagle search

optimization with synergic deep learning for BC detection employing

histopathological images (IBESSDL-BCHI). The introduced method's

purpose was to detect and classify BC utilizing HIs. The IBES enables

the accurate classification of HIs into two categories: malignant and

benign. The IBESSDL-BCHI achieves an improved general efficacy

score for the classification of BC. However, to ensure robustness and
frontiersin.or
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scalability, the IBESSDL-BCHI method needs to be validated on

large-scale real-time datasets.

Khan et al. (19) implemented a MultiNet framework that relies

on transfer learning to categorize binary and multiclass BC using

the datasets of BreakHis and ICIAR-2018. In the MultiNet

framework, three well-known pre-trained models, VGG16,

DenseNet-201, and NasNetMobile, were used to extract features

from the images of the microscope. A robust hybrid model was

created by transferring the extracted features into the concatenate

layer. In BreakHis and ICIAR-2018, the MultiNet framework

effectively classifies all images as benign. However, establishing a

learning rate in the MultiNet framework was difficult since high

learning rates lead to unwanted behavior.

Guleria et al. (20) presented a variational autoencoder (VAE)

based on a convolutional neural network (CNN) for reconstructing

the images to enhance the detection of BC. Images processed from

histopathology were presented to detect brain cancer. Various CNN

configurations with autoencoder variants were used to produce the

prediction outcomes of the VAE. The presented method minimizes

the amount of time pathologists use to manually examine the

report. However, the computational cost for the architecture of

training deep VAEs based on CNN was high.

Liu et al. (21) introduced a novel framework AlexNet-BC model

for the classification of BC pathology. The suggested method was

trained on ImageNet and fine-tuned by the augmentation. An

enhanced cross-entropy loss function was used to penalize and

generate forecasts appropriate for uniform distributions. AlexNet-

BC has high robustness and generalization characteristics that

produce benefits for histopathological clinical systems of

computer-aided diagnosis. However, the classifier of SoftMax has

a significant threat of overfitting when combined with the loss

function of cross-entropy.

The implementation of multiscale voting classifiers (MVCs)

for BC histology images was presented by Jakub Nalepa et al. (22).

The suggested MVC used clinically interpretable features that are

taken from histopathology images of BC. Afterwards, the method

was utilized to classify a four-class real-world H&E set using the

BACH challenge framework. Finally, the statistical tests supported

the trials and showed that the provided classifiers offer high-

quality classification, are fast to train, and can draw conclusions

quickly. This method helps to reduce the number of false

negatives; the number of false positives for these classes partially

increases, but it was significantly more cost-effective for

medical applications.

Kumari and Ghosh (23) offered a transfer learning method

based on the deep convolutional neural network (DCNN) to classify

BC from the histological images. The transfer learning method has

employed three different DCNN architectures as base models:

Densenet-201, Xception, and VGG-16. Each test image has been

categorized as malignant or benign after the features from each test

image was extracted using three pre-trained base models. The

presented method has the potential because of the method's high

classification accuracy, which helps doctors accurately diagnose BC

in patients. However, the presented method was ineffective in

classifying breast histopathology images into various stages of BC.
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A deep CNN method has been introduced by Bhausaheb and

Kashyap (24) to identify and categorize BC. The deep CNN, which

depends on optimization, was utilized for classification, while the

V-net design was used for segmentation. The weighted variables are

effectively and very steadily trained using the optimization method

in conjunction with a deep CNN classifier. However, only

histopathologic images have been utilized for verifying the

recommended approach.

A data exploratory technique (DET) through predictive

algorithms has been developed by Rasool et al. (25) to improve the

accuracy of BC diagnosis. The distribution and correlation of features,

the removal of recursive features, and the optimization of hyper-

parameters are the four layers that make up the DET. Four models'

preliminary information were acquired, and predictive algorithms

like SVM, LR, KNN, and the ensemble model were used to classify the

data. The four algorithms' best performances were taken into

account, improving classification accuracy, whereas if tested using

the WDBCD dataset, the SVM generates an ineffective outcome.

In order to classify BC, Egwom et al. (26) established a machine

learning model called linear discriminant analysis–support vector

machine (LDA-SVM), which was used to classify BC, and LDA was

used to extract features based on the pre-processed images. To

improve accuracy, the information was trained using the cross-

validation method. However, the lack of a feature selection

procedure made classification a little more difficult.

For the categorization of histopathology images, Fan et al. (27)

used transfer learning methods (AlexNet) of the SVM classifier and

the traditional softmax classifier. To increase accuracy, the fully

connected layer was used in conjunction with SVM. Cross-

validation on a fourfold scale is used by the softmax-SVM

classifier to increase the effectiveness. In order to identify BC in

histopathology images, Ahmed et al. (28) employed PMNet, and the

classification procedure makes use of a scaled matrix. Applying the

dryad test database, the PMNet system for classification has been

assessed. However, it is a laborious and difficult task that is

dependent on the knowledge of pathologists.

This work offers a thorough analysis of the advancements in the

field of pathological imaging research related to BC and offers

dependable suggestions for the design of deep models for various

applications. The number of BC diagnoses has significantly

increased over time, and this increase has been associated with

genetic and environmental problems. There are two groups of BC-

related lesions: benign (not cancerous) and malignant (cancerous).

Subsequently, because it is dependent on temperature and skin

lesions, digital infrared imaging is not the ideal tool for diagnosing

early BC. To accelerate the cancer detection process, detection

methods have been produced based on the histopathology dataset

for BC. Still, conventional feature extraction techniques extract a

few low-level characteristics from images, and in order to choose

meaningful features, previous information is required, which can be

substantially influenced by people. Furthermore, there are few

sampled cell-level patches that do not have adequate data to

balance the image tag. In order to surpass the problems

associated with unsuitable classification, this study presented an

advanced classification by means of deep learning algorithm.
frontiersin.org
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3 Proposed method

The proposed method included several steps, for example, pre-

processing, augmentation, extraction, and classification, where the

input data are obtained from BreakHis and IDC. Then, the images

gathered from BreakHis and IDC are pre-processed using SRGAN

to produce high-resolution images. The pre-processed image then

proceeds to the data augmentation stage, where rotation, random

cropping, mirroring, and color-shifting are used to either generate

new data points or make minor adjustments to the dataset. Next,

utilizing PFE-INC-RES, the features from the augmentation are

extracted. TLSTM is introduced during the classification stage,

where the extracted features are processed, to decrease the

frequency of wrong diagnoses and boost classification accuracy.

Figure 1 shows the overall procedure involved in BC classification.
3.1 Dataset description

3.1.1 BreakHis dataset
Here, in this dataset, 9,109 microscopic images of breast tumor

material obtained from 82 patients with dissimilar magnification

factors (40×, 100×, 200×, and 400×) make up BC Histopathological

Image Classification (BreakHis). It now has 5,429 malignant samples

and 2,480 benign samples. Together with the P&D Laboratory of

Pathological Anatomy and Cytopathology in Brazil, the record was

originally created (http://www.prevencaoediagnose.com.br).

Additionally, researchers might find this dataset to be beneficial
Frontiers in Oncology 04
because it enables benchmarking and assessment in the future (29).

To digitize the images from the breast tissue slides, a Samsung digital

color camera SCC-131AN is connected to an Olympus BX-50 system

microscope equipped with a relay lens that has a magnification of

3:3� The 1/3" Sony SuperHADTM (Hole-Accumulation Diode) IT

(Interline Transfer) CCD (charge-coupled device) used in this camera

has a total pixel count of 752×582 with a pixel size of 6.5 μm × 6.25

μm. Magnification factors of 40�,   100�,   200�,   and   400�   are

used to gather images in three-channel RGB (red–green–blue)

TrueColor (24-bit color depth, 8 bits per color channel) color

space. The following is how images are acquired at various

magnifications: The pathologist initially determines the tumor's

identity and establishes a region of interest (ROI). Several images

are taken at the lowest magnification   (40�)   to cover the whole

ROI. Almost all the time, the pathologist chooses images with only

one form of tumor; however, occasionally, images consist of

transitional tissue.

The latest version's examples were obtained using the surgical

open biopsy (SOB), similarly recognized as the partial mastectomy

technique. Relative to other needle biopsy techniques, this type of

operation extracts a greater quantity of tissue, and it is performed

under general anesthesia in a hospital. Depending on how the

tumoral cells appear through a microscope, benign and malignant

breast tumors can be divided into many kinds. Every image's file

name contains information regarding the image itself, including the

biopsy technique, the type of tumor, the patient’s identity, and the

magnification level. Figures 2, 3 display the BreakHis dataset's sample

benign and malignant images with a 200� magnification factor. The

proposed method is introduced for classifying BC images with a

magnification of 200� in benign andmalignant tumors. The detected

areas have been magnified to 200�for enabling the pathologist to

compute cell shape and achieve a higher accuracy.

3.1.2 IDC dataset
In the Hospital of the University of Pennsylvania (HUP) as well

as the Cancer Institute of New Jersey (CINJ), 162 women’s WSIs for

diagnosed IDCs have undergone initial digitization. The least

prevalent form of BC is IDC. Diagnosticians generally concentrate

on zones that contain IDC once the severity of the complete mounted

sample is determined (https://www.kaggle.com/datasets/

paultimothymooney/breast-histopathology-images). As a result, the

common pre-processing stage for automatic aggressiveness grading is

to define the precise sections of IDC inside of a whole mount slide. A

total of 162 complete mounted slide images of BC samples that had

been scanned at 40× made up the original dataset. A total of 277,524

patches of size 50 × 50 were retrieved from it, of which 78,786 were

IDC-positive patches and 128,738 were IDC-negative patches. The

file name for every patch follows a specific format (30). The image

patches were shuffle-selected and categorized into three groups. The

training and testing sets have been split as 80:20 from the total

dataset. Figure 4 displays the IDC dataset’s sample images.

After the data collection, the super-resolution reconstruction

technique is used to convert the images from low-resolution (LR) to

high-resolution (HR) domains, which improves image resolution

while restoring the image data. To convert LR images into HR

images, traditional image super-resolution algorithms must first
FIGURE 1

Overall block diagram of the proposed system.
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pair HR and LR images, then figure out their maps. Since true HR

and LR image pairs are hard to come by, the present approach for

creating HR-LR image datasets mostly consists of establishing a

degradation model, from which the corresponding LR image is

derived from the HR image. At the moment, the accuracy of the

degradation model has a significant impact on how well super-

resolution techniques work with nonideal datasets. To solve the

above stated issue, this research suggested a super-resolution GAN

model for the collected datasets to enhance the image resolution

quality, which is clearly described below.
3.2 Preprocessing using super-resolution
generative adversarial networks

The components of conventional GAN loss functions and

effective sub-pixel nets were combined to motivate the concept of
Frontiers in Oncology 05
SRGAN. In order to create image details and achieve a better visual

impression, SRGAN uses a convolutional neural network as the

generation network. This allows the network to be improved by

discriminating against training and generating a network. The

perceptual loss function is the most notable component of

SRGANs. As the generator and discriminator are trained using

the GAN design, SRGANs rely on an additional loss function to

reach their destination.

In SRGANs, both of the networks are deep convolution neural

networks and contain convolution layers and upsampling layers.

Each convolution layer is followed by a batch normalization

operation and an activation layer. Therefore, in this phase,

SRGANs are suggested, which learn the extracted LR images

through the multi-scale properties of the two subnetworks,

followed by employing high-frequency data across multiple scales

to produce HR images. Super resolution (SR) takes the benefits of

GAN’s ability to reconstruct an image’s appearance and make an

image with high-frequency features (31).

The aim is to generate an SR image from LR using HR’s bicubic

procedure. The LR and HR images will be denoted by X d  Y

accordingly. The end-to-end mapping function Gq( • ) among X d

 Yare solved through the subsequent Equation 1:

q̂ =
arg  min

q
1
No

N
i=1L(Gq(Xi),Yi) (1)

q refers to the network parameter set that needs to be enhanced;

L( • ) refers to the loss function for lessening the variance among X

and Y The training sample’s number is referred to as N GAN is a

generative framework that contains a generator (G) and a

discriminator (D) as demonstrated in Figure 5. Although the
A B DC

FIGURE 3

Four types of malignant sample images with a magnification of 200�. (A) Ductal carcinoma, (B) Lobular carcinoma, (C) Mucinous carcinoma,
(D) Papillary carcinoma.
A B DC

FIGURE 2

Four types of benign sample images with a magnification of 200�. (A) Adenosis, (B) Fibroadenoma, (C) Phyllodes tumor, (D) Tubular adenona.
A B

FIGURE 4

The sample images of the IDC dataset. (A) IDC (-), (B) IDC (+).
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discriminator D valuates if the input data are generated by G to be

false or real, G receives the data using the initially provided noisy

data. Once D is capable of assessing the legitimacy of data and G

roduces enough strength to distort D judgment, G and D plays

towards one another frequently through this procedure, which

continues to return data while enhancing their network

features accordingly.

As a result, in order to address the adversarial min–max

problem, additionally design a discriminator network DqD and

optimize it alternately with GqG which is defined in Equation 2,

min max

qG qD
EY∼Pdata (Y)½logDqD (Y)� +  EX∼Pdata(X)½log (1 − DqD (GqG (X)))� (2)

Pdata(X) and Pdata(Y) signify true sample and generator

distribution. Subsequently, the total loss function LSRtotal 
demarcated as the weighted sum of individual loss functions,

which is defined in Equation 3,

LSRTotal  = a1L
SR
MSE + a2L

SR
Gen , (3)

LSRGen  =
1

r2WHorW
i=1orH

i=1 Yi;j − GqG (X)i;j
� �2

LSRGen  =oN
n=1 − log DqD (GqG (X))

Here, the weighting parameters are referred to as a1 and a2L
SR
MSE  

signifies the content loss that is exploited as optimization target for

SR image; LSRGen  signifies the adversarial loss of GAN; r refers to the

downsampling factor; W  and H represent the image size (32).
3.3 Data augmentation

The process of including slightly altered copies of current data

without effectively gathering new data from previous training data is

known as data augmentation. Additionally, the photographs show

variation in elements like magnification, perspective, region of

interest, and light, which complicates the classification work.

Because of this unpredictability, the classifier may possibly overfit

or underfit, which would result in subpar accuracy. The classifier

will therefore not generalize very well. The training dataset size can

be intentionally increased via data warping or oversampling, which

additionally helps the model avoid overfitting by preventing it from

the source of the issue. We added to our data using several
Frontiers in Oncology 06
augmentation settings, including rotation, random cropping,

mirroring, and color-shifting (33), to address this overfitting.

3.3.1 Rotation
The key benefit of rotation over flipping is that, when used to

some degree, including in the range [−45, +45], it does not

completely alter the meaning of the data. The additional benefit

when performing rotation at random throughout training is that the

algorithm never encounters the same image repeatedly.

3.3.2 Random cropping
Random cropping is a process that involves randomly selecting

a portion of the image to crop, which improves durability over

partial occlusions. It is carried out to reduce overfitting and

introduce regularization throughout training. It is frequently used

during training, which prevents the model from seeing the same

image repeatedly.
3.3.3 Mirroring
Mirroring across the vertical axis is perhaps the most

straightforward data augmentation technique. By flipping an

image, a new image is produced. Mirroring continues to maintain

the same class of picture for the majority of computer vision

applications. This approach is useful in areas like face recognition

and object identification datasets where object orientation is not

essential. By rotating or mirroring the image, the model could be

learned to recognize an object in any direction.
3.3.4 Color shifting
Color shifting is an additional type of data augmentation that is

frequently employed to strengthen the learning algorithm’s

resistance to changes in the colors of the relevant images. These

data augmentation techniques add new instances to the training set

while simultaneously expanding the range of inputs the model

encounters and absorbs. The model is encouraged to learn broader

patterns as a result of both of these factors, which make it harder for

the model to merely memorize mappings. These augmented images

are specified as input to the extraction phase, where patch-based

automatic feature extraction using pretrained architectures is

introduced and explained in detail.
FIGURE 5

Process of the GAN model.
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3.4 Patch-based feature extraction using
pretrained architectures

The framework for the multi-class categorization of BC

histology images provides a concise summary of the key

processes: To maintain important details and to contain features

at the cell and tissue levels, firstly extract two distinct kinds of

patches from BC histological images using the PFE-INC-

RES method.

3.4.1 Sampling patches
The objective is to divide the histology image into the subsequent

two categories: malignant and benign. The data gathered from the

images have a significant impact on categorization performance.

Subsequently, to depict each complete image, employ breast cell-

related characteristics and global tissue features. In order to decide if

cells are cancerous, cell-level characteristics, including nuclei data

form and fluctuation, and cell organization features, consisting of

volume and anatomy, are used. The histology images in the dataset

have pixels that are 0.42 mm by 0.42 mm in size, and the cell radius is

roughly between 3 and 11 pixels. Therefore, to obtain cell-level

characteristics, we extract tiny patches of 128� 128  pixels. In

addition, the sick tissue may have an unusual shape. The starting

tissue division is not the only place where invasive cancer can spread

(34). To distinguish among in situ and invasive carcinomas,

knowledge of tissue architecture is crucial. It is impractical for

CNNs to acquire characteristics from a large-sized histological

image. Then, extract patches of  512� 512 pixels to store data on

the global tissue patterns based on image size in the provided dataset.

Then, from BC histological pictures, extract patches using a sliding

window method. Also extract continuous, non-overlapping patches

from histology pictures since the 128� 128  pixel patches are modest

and concentrate on cell-related properties. Additionally, we take

overlapping patches of 512� 512  pixels by 50% overlap to obtain

data regarding constant tissue shape as well as architecture. The label

for each extracted patch matches the associated histological image.

3.4.2 Feature extractor
Two pre-trained models are used for patch-based feature

extraction, namely, Inception-V3 and ResNet-50, also known as

PFE-INC-RES. The cell shape, texture, tissue architecture, and other

aspects of the histopathology images vary. For classification, the

representation of complicated features is important. The feature

extraction method is labor-intensive, and extracting discriminatory

features using it is challenging since it requires extensive expert

subject knowledge. CNNs have achieved impressive achievements

in a variety of disciplines and can directly extract representative

characteristics from histopathology images.
3.4.2.1 Inception-V3

Inception-V3 is selected as a preliminary feature extraction

method since it has the capability to extract high-level features with

a variety offilter modifications (277), as well as an efficient grouping

of several forms of convolution process (35). In this technique, a

gain of 28% can be achieved utilizing two (3� 3) convolutions. The
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total number of parameters discovered for the (3� 3) convolution

layer is nine. In contrast, a sequence of two (1� 3) convolution

layers followed by a third (1� 3) layer, which results in a total of six

constraints, represents a 33% reduction overall. The suggested

architecture uses a reduction method to overcome issues with

conventional pre-trained models.

The images with the dimensions (84� 84� 3) are originally

supplied to the suggested model for the extraction task without the

secondary module, which produces texture features Inceptio

nfeature _ texture from the final concatenate layer (mixed10) and

utilizes a flattened layer that produced an output of YInception as

shown in Equations 4, 5, where texture feature is converted into a

1D vector.

Inceptionfeature _ texture =  Inceptionmixed10 _ layer(I) (4)

YInception = flatten (Inceptionfeaturetexture ) (5)
3.4.2.2 ResNet-50

To obtain high-level feature extraction, ResNet-50 is utilized to

concentrate on low-level features and employ remaining

connections in the architecture (36). After becoming saturated

during convergence, the Inception-V3 efficiency somewhat

declines. In order to overcome these challenges, this dissertation

offers ResNet-50 for the FE procedure. ResNet-50 design has 50

layers in five blocks. The residual function, F, for each of these

blocks has three convolution layers with the dimensions (1� 1),

(3� 3), and 1� 1 respectively. The output (Z) is derived through

averaging its input x and residual function  F as shown in Equation

6. The weight matrixWi of three consecutive layers is updated by F

on x The input image I which has the shape (84� 84� 3), was used

to extract features that are provided to ResNet-50, and the output of

conv5 _ block3 _ out _ layer, ResNetconv5 _ block3 _ out _ layer   is employed

for final classification. ResNetfeature _ texture  previously converted by

means of a flattened layer to produce the 1D vector output of YResNet

that is demarcated in Equations 7 and 8 correspondingly.

Z = F(x,Wi) + x (6)

ResNetfeature _ texture =  ResNetconv5 _ block3 _ out _ layer(I)  (7)

YResNet = flatten (ResNetfeature _ texture)  (8)

The DNN classifier’s functional design uses the extracted

feature to predict a class. The concatenation of the two features is

done after taking the features from separate models. As a result, the

concatenation layer creates a single 1D hybrid vector called YHybrid

which includes features based on texture and form, i.e., expressed in

Equation 9.

YHybrid = concatenate (YInception,  YResNet , ) (9)
3.4.3 Screening patches
This section’s goal is to introduce the PFE-INC-RES-based

method for screening discriminative 128 by 128 pixel patches.
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The PFE-INC-RES is trained using highly discriminative data and

extract features with patches that are then retrained using the

patches. The PFE-INC-RES features that were extracted are used

as input for the TLSTM-based classification stage. In this phase, the

patient’s BC is separated into benign and malignant varieties based

on its nature, which is briefly detailed in the following subsection.
3.5 Classification using transductive long
short-term memory

An LSTM is a specific kind of recurrent neural network (RNN)

that records interunit relationships across extended distances. The

LSTM architecture was chosen because it has integrated nonlinear

hidden layers among input and output layers. These layers allow the

learning of complicated functions and features for better prediction

by underpinning the functional relationships from the incoming

data (37). This part (38) covers transductive LSTM (T-LSTM), a

limited-edition LSTM model. Additionally, all training data point’s

influence on T-LSTM’s recommended factors depends on how

similar it is to the test data point of length T As a result, the goal

is to enhance performance close to the test point, and the

effectiveness of the model in forecasting training samples close to

the test point is given more attention (39). This makes it conceivable

to claim that the test point is a necessity for all linear models.
Fron
• Consider Z(h) as a hidden state, the state space model of T-

LSTM is mentioned in Equation 10,

Ct,h = f (Ct−1,h,   ht−1, h,xt ;  wlstm,h, blstm, h)

ht,h =   g(ht−1,h,   ct−1, h,xt ;  wlstm,h, blstm, h)

(
(10)
It should be noted that the model shown in Equation 14 differs

from the previous one in that the model variables in T-LSTM

depend on the test point’s feature space, whereas the parameter

estimations in LSTM are independent of the test point. The T-

LSTM model’s structure is depicted in Figure 6.
• Use the subscript h to demonstrate that the linear models

depend on the newly supplied data point Z(h). Note that the

test label is considered to be invisible, and that the test

point’s function during the training stage is to change the

significance of data points, which is close to their

feature vectors.

• The prediction is expressed as Equation 11 by utilizing the

dense layer,

ŷ (t)
h =  wT

dense,hht+T−1,h +  bdense,h, t = 1,…,N , (11)

• Here, wT
dense,h  ∈ Rn�1 and bdense,h,  ∈  R   are referred to as

weights and bias terms.

• To determine the needs of the fresh hidden point, consider st,h as

the resemblance among T  Z(t), Z(h), wh and bh  by signifying

every constraint in (wlstm,h,wdense, h) and (blstm,h,bdense, h)
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correspondingly. The objective function is expressed in

Equation 12,

(ŵ lstm,h,ŵ dense,h,b̂ lstm,h,b̂ dense,h,) = (ŵ h,b̂h,) =  arg  min wh,bh,
Jh (12)

Jn  =
1
NoN

t=1St,n (ŷ
(t)
h − yðtÞ)2 + Ὑh wT

h wh

where St,h  ∈ R+.

ϒh  referred to as a tuning parameter in Equation 12.

Moreover, the transductive method’s tuning parameter is the

number of neurons displayed in LSTM. Additionally, the

model in this instance is unable to employ training data from

the majority of similar datasets. As a result, there should not

be a significant change in the original series pattern, and our

study is predicated on that assumption. In feature space, there

is not much of a distance between two consecutive data

points. Since samples from the final training phase were

collected before the test point, they are located in feature

space close to the test point. The validation group is chosen to

consist of these samples.

• The parameters are dependent on Z(h). Therefore, every

unseen subsample has been rehabilitated. It shows every

constraint w(h) and b(h) is diverse for every test point.
Depending on the particulars of the problem, one can question

if this approach is suitable for modeling due to the high processing

cost of T-LSTM. In contrast to the transductive technique, which

trains a different model for each test point, the qualitative

methodology’s components are chosen without regard to the test

point. When the relationship between components in distinct

sections of the input space vary, T-LSTM is also relevant.
• For Z(h) the updated hidden state is described as

Equation 13,
ht0 ,h = g( ht0−1,h, ct0−1,h, Z(h)
t0 ; ŵ lstm,h,  b̂ lstm,h) (13)
• Here, t0 h…, h+T−1. Later, the final prediction is attained as
Equation 14,
FIGURE 6

Structure of the T-LSTM process.
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Fron
ŷ (h)
h =  ŷ T

dense,h hh+T−1,h + b̂ dense, h (14)
Z(h) is referred to as input. Still, the updated hidden state and

prediction in T-LSTM based on the new point Z(h) feature vector,

where model constraints are adjusted between training points and Z(h)

is designated as the h subscript in ht0 ,h and ŷ (h)
h in Equations 13, 14.
4 Results

In this research, two datasets called the BreakHis dataset and

IDC are used to evaluate the proposed PFE-INC-RES model. The

suggested method is implemented into testing with MATLAB

2021b version 9.11, which has the following system requirements:

Windows 11 OS, an Intel Core i7 processor, and 16 GB of RAM.

The system performance was estimated by the suggested BC

detection approach by means of several metrics. The statistical

analysis of accuracy, specificity, precision, sensitivity, F1-score, and

its mathematical expression is described in Equations 15–19:

Accuracy  =  
TP + TN

TP + TN + FP + FN
  (15)

Sensitivity =  
TP

TP + FN
(16)

Specificity =  
TN

TN + FP
(17)

Precision  =  
TP

TP + FP
(18)

F1 − score  =  
2TP

2TP + FP + FN
(19)

where TP is true positive, TN is true negative, FP is false

positive, and FN is false negative.
4.1 Performance analysis on the
BreakHis dataset

The proposed PFE-INC-RES is evaluated on a 40× magnitude

factor (MF) in the BreakHis dataset using a variety of extraction

methods, which is revealed in Table 1; Figure 7. This section
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validates the suggested PFE-INC-RES executed with a training

and testing split ratio of 80:20 on 40× using AlexNet, GoogLeNet,

ResNet-50, and Inception-V3.

According to Table 1, the proposed PFE-INC-RES clearly

exceeds the current classifiers in terms of accuracy (99.84%),

sensitivity (99.78%), specificity (99.71%), and F1-score (99.80%).

Once the features have been extracted, the TLSTM for the BC

classifier on the BreakHis dataset is applied using the PFE-INC-RES

technique. Then, using a 40× MF, the TLSTM approach is tested

with a variety of classifiers, including MVC, CNN, RNN, deep belief

networks (DBNs), and LSTM.

Table 2 clearly demonstrates that the existing LSTM classifier

performs classification in terms of accuracy (89.94%), sensitivity

(87.49%), specificity (88.65%), and F1-score (88.14%), which are

less than those of the TLSTM model. The proposed PFE-INC-RES

is then verified using a variety of feature extraction techniques

(AlexNet, GoogLeNet, ResNet-50, and Inception-V3), as revealed in

Table 3; Figure 8.

According to Table 3, the suggested PFE-INC-RES performs

better than the currently used feature extraction methods in terms

of accuracy (97.36%), sensitivity (97.01%), specificity (96.48%), and

F1-score (97.14%) on a scale of 100× MF. Once the characteristics

from the PFE-INC-RES technique are extracted, TLSTM is used to

classify BC. The TLSTM approach is then tested using a variety of

classifiers, including MVC, CNN, RNN, DBN, and LSTM, on a

100× MF, as revealed in Table 4.

Table 4 clearly proves that the LSTM classifier performs

classification in terms of accuracy (86.62%), sensitivity (87.69%),

specificity (84.35%), and F1-score (85.16%), which are less than

those of the TLSTM model. After that, the proposed PFE-INC-RES

is then verified on a 200× MF using a variety of feature extraction

techniques, as shown in Table 5; Figure 9.

According to Table 5, the suggested PFE-INC-RES performs

better than the current feature extraction methods in terms of

accuracy (94.18%), sensitivity (92.86%), specificity (91.77%), and

F1-score (91.48%) by a factor of 200× MF. Once the characteristics

from the PFE-INC-RES technique are extracted, TLSTM is used to

classify BC. The TLSTM approach is then assessed using a variety of

classifiers, including MVC, CNN, RNN, DBN, and LSTM, on a

200× MF, as revealed in Table 6.

Table 6 clearly demonstrates that the LSTM classifier performs

BC classification in terms of accuracy (77.49%), sensitivity

(76.18%), specificity (75.52%), and F1-score (74.48%), which are

less than those of TLSTM. Next, the proposed PFE-INC-RES is then
TABLE 1 Analysis of feature extraction methods at 40× MF.

Methods Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%)

AlexNet 81.37 82.55 84.27 82.88

GoogLeNet 84.41 84.06 86.32 84.34

ResNet-50 90.34 89.87 87.14 88.25

Inception-V3 91.48 90.36 88.37 89.91

PFE-INC-RES 99.84 99.78 99.71 99.80
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tested on 400× MF using a variety of extraction methods, as

revealed in Table 7; Figure 10.

Table 7 shows that the suggested PFE-INC-RES performs better

than the current feature extraction approaches in terms of accuracy

(90.08%), sensitivity (89.18%), specificity (88.76%), and F1-score

(89.14%) by a factor of 400×. Once the characteristics from the PFE-

INC-RES technique are extracted, TLSTM is used to classify BC.

The TLSTM approach is then assessed using a variety of classifiers

including MVC, CNN, RNN, DBN, and LSTM, on a 400× MF, as

shown in Table 8.

Table 8 clearly demonstrates that the LSTM classifier performs

classification in terms of accuracy (73.36%), sensitivity (72.46%),

specificity (71.34%), and F1-score (72.45%), which are less than
Frontiers in Oncology 10
those of the TLSTM model. In terms of BC classification, the

suggested technique is more effective than conventional classifiers.

To evaluate the efficacy of the suggested approach, statistical

tests such as the Friedman, Wilcoxon, Quade, and Friedman aligned

tests have been conducted. In this research, the performances that

were utilized to contrast the classification algorithms are

investigated using the Friedman test (statistical analysis). The

Friedman test is also known as a nonparametric statistical test

that is employed in this study. This test assesses the null hypothesis

that makes all column effects equal by using the ranks of the data

rather than the actual data. In particular, every classifier model was

employed in this study to extract features. The chance of reaching

the observed sample outcome (p-value) in the scalar value within
TABLE 2 Analysis of deep learning classifiers on 40× MF.

Methods Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%)

MVC 81.22 80.13 81.09 80.52

CNN 83.49 82.59 84.68 81.47

RNN 85.39 83.43 86.64 82.34

DBN 88.37 85.58 87.89 86.38

LSTM 89.94 87.49 88.65 88.14

TLSTM 99.84 99.78 99.71 99.80
FIGURE 7

Graphical illustration of feature extraction methods at 40× MF.
TABLE 3 Analysis of feature extraction methods at 100× MF.

Methods Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%)

AlexNet 78.49 79.24 77.16 77.63

GoogLeNet 79.93 74.15 75.39 78.81

ResNet-50 82.34 83.64 84.19 86.19

Inception-V3 86.31 85.57 82.71 83.36

PFE-INC-RES 97.36 97.01 96.48 97.14
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FIGURE 8

Graphical illustration of feature extraction methods at 100× MF.
TABLE 4 Analysis of deep learning classifiers on 100× MF.

Methods Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%)

MVC 79.49 78.58 76.18 75.47

CNN 81.34 83.46 79.46 79.94

RNN 84.39 84.88 80.34 81.34

DBN 85.17 86.17 85.37 84.41

LSTM 86.62 87.69 84.35 85.16

TLSTM 97.36 97.01 96.48 97.14
F
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TABLE 5 Analysis of feature extraction methods on 200× MF.

Methods Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%)

AlexNet 76.39 75.16 72.88 73.37

GoogLeNet 74.39 73.18 71.14 72.29

ResNet-50 76.42 75.51 76.18 76.64

Inception-V3 78.84 74.78 76.69 77.79

PFE-INC-RES 94.18 92.86 91.77 91.48
FIGURE 9

Graphical illustration of feature extraction methods at 200× MF.
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TABLE 6 Analysis of deep learning classifiers on 200× MF.

Methods Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%)

MVC 70.29 69.28 68.72 68.21

CNN 73.38 72.24 72.48 71.29

RNN 76.15 75.17 74.39 75.64

DBN 75.64 72.29 72.34 71.59

LSTM 77.49 76.18 75.52 74.48

TLSTM 94.18 92.86 91.77 91.48
F
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TABLE 7 Analysis of feature extraction methods on 400× MF.

Methods Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%)

AlexNet 64.39 61.37 62.24 63.34

GoogLeNet 67.58 62.73 61.18 62.15

ResNet-50 68.31 67.13 64.43 61.78

Inception-V3 69.49 68.17 67.48 66.51

PFE-INC-RES 90.08 89.18 88.76 89.14
FIGURE 10

Graphical illustration of feature extraction methods at 400× MF.
TABLE 8 Analysis of deep learning classifiers on 400× MF.

Methods Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%)

MVC 60.49 58.43 59.82 58.66

CNN 63.04 61.82 61.41 62.44

RNN 62.47 61.71 62.08 60.27

DBN 66.38 63.81 64.75 65.17

LSTM 73.36 72.46 71.34 72.45

TLSTM 90.08 89.18 88.76 89.14
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the range [0, 1] is the result of this test. Smaller p values generally

prevent the null hypothesis from becoming true.
4.2 Performance analysis of the
IDC dataset

On the IDC dataset for BC classification, the proposed PFE-INC-

RES method is evaluated and contrasted with industry-standard

feature extraction techniques (AlexNet, GoogLeNet, ResNet-50, and

Inception-V3). The TLSTM is then evaluated for BC classification in

comparison to common classifiers (MVC, CNN, RNN, DBN, and

LSTM). The proposed PFE-INC-RES is evaluated in the IDC dataset

using a variety of feature extraction techniques, as shown in Table 9.
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This section validates the suggested PFE-INC-RES on 40× using

AlexNet, GoogLeNet, ResNet-50, and Inception-V3.

Table 9 clearly demonstrates that the proposed PFE-INC-RES

operates better than the current extraction methods on the IDC in

terms of accuracy (99.79%), sensitivity (99.17%), specificity

(98.97%), and F1-score (99.08%), while the existing Inception-V3

has obtained the following values: accuracy (91.78), sensitivity

(89.48%), specificity (89.77%), and F1-score (88.31%), which are

less than those of the proposed PFE-INC-RES. Figure 11 shows a

graphic representation of feature extraction techniques. Once the

characteristics from the PFE-INC-RES technique are extracted,

TLSTM is used to classify BC. The TLSTM approach is then

tested on the IDC dataset, which is shown in Table 10, using a

variety of classifiers, including MVC, CNN, RNN, DBN, and LSTM.
TABLE 9 Analysis of feature extraction on the IDC dataset.

Methods Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%)

AlexNet 87.66 84.37 85.41 86.52

GoogLeNet 84.38 86.11 88.19 84.38

ResNet-50 90.27 88.81 87.43 85.56

Inception-V3 91.78 89.48 89.77 88.31

PFE-INC-RES 99.79 99.17 98.97 99.08
FIGURE 11

Graphical illustration of feature extraction methods on the IDC dataset.
TABLE 10 Analysis of existing classifiers on the IDC dataset.

Methods Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%)

MVC 75.19 74.77 73.58 76.35

CNN 79.46 78.16 79.44 77.48

CNN 79.46 78.16 79.44 77.48

RNN 83.17 81.27 82.75 81.99

DBN 84.88 81.46 80.37 85.28

LSTM 89.34 83.57 84.69 85.43

TLSTM 99.79 99.17 98.97 99.08
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Table 10 clearly demonstrates that the TLSTM classifier

performs better than the current classifiers in all performance

metrics, while the existing LSTM has obtained the following

values: accuracy (89.34%), sensitivity (83.57%), specificity

(84.69%), and F1-score (85.43%), which are less than those of the

TLSTM classifier. In terms of BC classification, the suggested

technique is more effective than conventional classifiers. Figure 12

shows a graphical representation of classifiers on the IDC dataset.
4.3 Comparative analysis

This section provides information about the comparison of the

PFE-INC-RES approach to previous studies on BC classification.

On the BreakHis dataset, the PFE-INC-RES approach is compared

to existing models such as VGGIN-NET (16), DNN (17), IBESSDL-

BCHI (18), MultiNet (19), AlexNet-BC (21), and DCNN (23),

which is shown in Figure 13 and Table 11. Because of increased

exploration and exploitation, which helps in overcoming weak

convergence and local optimum conditions, the PFE-INC-RES

model performs more efficiently in terms of classification. The

PFE-INC-RES model extracts the best characteristics to lessen the

issue of overfitting.

Table 11 clearly shows that the existing models such as VGGIN-

NET (16), DNN (17), IBESSDL-BCHI (18), MultiNet (19),

AlexNet-BC (21), and DCNN (23) have achieved an accuracy of

97.10%, 97.89%, 99.63%, 99%, 98.15%, and 99.12%, respectively, on

the BreakHis dataset, while the proposed PFE-INC-RES has

obtained a higher accuracy of 99.84%, a sensitivity of 99.78%, and

a specificity of 99.80%, which are better than those of the existing

models. Table 12 and Figure 14 show the evaluation study for BC

classification on the IDC dataset.

Table 12 clearly shows that the PFE-INC-RES model shows a

higher performance accuracy of 99.79%, which is better than the

existing models, whereas the existing VAE-CNN (20), AlexNet-BC

(21), DCNN (23), AlexNet-SVM (27), and PMNet (28) have
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accomplished an accuracy of 73.65%, 86.31%, 99.42%, 78%, and

86%, respectively, on the IDC dataset. From the overall analysis, the

proposed PFE-INC-RES surpasses the conventional models on the

basis of all the performance metrics in both BreakHis and

IDC datasets.
5 Discussion

From the analysis, traditional feature extraction methods only

extract a few low-level characteristics from images; prior knowledge

is needed to select optimal features. Moreover, a portion of the

sampled cell-level patches lack sufficient data to balance the image

tag. This work presented a deep learning algorithm-based advanced

classification technique to address the problems associated with

inappropriate detection and classification. Appropriate data

representation is necessary for this research project to succeed. A

significant portion of the work is focused on feature engineering, a

labor-intensive procedure that utilizes plenty of in-depth domain

knowledge to extract valuable features. Additionally, the

classification of histology images of BC into benign and

malignant categories was the main focus of this study. The overall

results from a comparative study show that the suggested PFE-INC-

RES achieved better results when associated with existing classifiers.

For the BreakHis dataset, the proposed PFE-INC-RES is compared

with the existing VGGIN-NET (16), DNN (17), IBESSDL-BCHI

(18), MultiNet (19), AlexNet-BC (21), and DCNN (23) classifiers,

which achieved an accuracy of 97.10%, 97.89%, 99.63%, 99%,

98.15%, and 99.12%, respectively, on the BreakHis dataset.

Similarly, on the IDC dataset, the PFE-INC-RES model shows a

higher performance accuracy of 99.79%, which is better than that of

the existing models, whereas the existing VAE-CNN (20), AlexNet-

BC (21), DCNN (23), AlexNet-SVM (27), and PMNet (28) have

accomplished an accuracy of 73.65%, 86.31%, 99.42%, 78%, and

86%, respectively. The suggested PFE-INC-RES performance is

evaluated separately for accuracy (99.84%), specificity (99.71%),
FIGURE 12

Graphical illustration of various classifiers on the IDC dataset.
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sensitivity (99.78%), and F1-score (99.80%) based on the overall

analysis conducted on the BreakHis dataset. The suggested PFE-

INC-RES outperformed the previous models in the IDC dataset in

terms of accuracy (99.79%), specificity (98.97%), sensitivity

(99.17%), and F1-score (99.08%). The suggested system can be

modified for a variety of tasks related to the classification of

histological images that are relevant to clinical settings.
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6 Conclusion

BC is a type of cancer that is associated with a high cancer

mortality rate in women. It can take a lot of time to diagnose

diseases using HIs when numerous images with varying

magnification levels need to be examined. Nowadays, deep

learning methods are widely applied in many medical fields,

especially those involving classification. However, the learning

methods that were in place at the time were consistently

producing low classification accuracy. Consequently, deep

learning models are employed to analyze histological images of

BC using publicly accessible datasets named BreakHis and IDC. The

images obtained from BreakHis and IDC are then pre-processed

using SRGAN, which creates realistic textures throughout single-

image super-resolution. After the image has been pre-processed, it

progresses on to the data augmentation stage, where new data

points are generated for the dataset by using rotation, random

cropping, mirroring, and color-shifting. The features are then

extracted from augmentation using PFE-INC-RES. Using feature

extractors, the extracted features are chosen from both larger and

smaller patches, and the final feature is computed to train a

classifier. The TLSTM classifier is included after the extracted

features have been analyzed during the classification stage to

minimize the count of false diagnoses and increase classification

accuracy. The accuracy (99.84%), specificity (99.71%), sensitivity

(99.78%), and F1-score (99.80%) of the suggested PFE-INC-RES

performances were assessed for the BreakHis dataset, while in the

IDC dataset, the proposed PFE-INC-RES achieved better results in

terms of accuracy (99.79%), specificity (98.97%), sensitivity

(99.17%), and F1-score (99.08%). This analysis clearly states that

the proposed PFE-INC-RES significantly outperforms the

conventional methods. In the future, an enhanced feature

extraction method will be introduced and will be performed using

an optimization approach to improve the classification accuracy.
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FIGURE 13

Comparison performances on the BreakHis dataset.
TABLE 11 Comparison of the BreakHis dataset.

Methods Accuracy (%) Sensitivity (%) F1-score (%)

VGGIN-
NET (16)

97.10 Not Available
(N/A)

97

DNN (17) 97.89 98 98

IBESSDL-
BCHI (18)

99.63 98.09 98.18

MultiNet
(19)

99 99 99

AlexNet-
BC (21)

98.15 Not Available
(N/A)

Not Available
(N/A)

DCNN (23) 99.12 Not Available
(N/A)

Not Available
(N/A)

Proposed
PFE-

INC-RES

99.84 99.78 99.80
-, Not Available (N/A).
FIGURE 14

Comparison performance on the IDC dataset.
TABLE 12 Comparison of the IDC dataset.

Methods Accuracy (%)

VAE-CNN (20) 73.65

AlexNet-BC (21) 86.31

DCNN (23) 99.42

AlexNet-SVM (27) 78

PMNet (28) 86

Proposed PFE-INC-RES 99.79
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