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Introduction: The mechanistic/mammalian target of rapamycin (mTOR) is a

serine/threonine kinase, which is downregulated or upregulated and is

implicated in different types of cancer including hematologic neoplasms, skin

prostate, and head and neck cancer.

Aim: The aim of this study was to explore the current knowledge of mTOR

signaling in acute lymphoblastic leukemia and Hodgkin lymphoma.

Methods: A systematic review was performed according to Preferred Reporting

Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, searching

PubMed, Discovery Service for National Autonomous University of Mexico,

Registro Nacional de Instituciones y Empresas Cientıfícas y Tecnológicas

(RENIECYT), and Scientific Electronic Library Online (SciELO) from 1994 to

2023. A total of 269 papers were identified for acute lymphoblastic leukemia,

but based on specific criteria, 15 were included; for Hodgkin lymphoma, 110

papers were identified, but 5 were included after manual searching.

Results: A total of 20 papers were evaluated, where mTOR activity is increased in

patients with Hodgkin lymphoma and acute lymphoblastic leukemia by different

molecular mechanisms.

Conclusions: mTOR activity is increased in patients with both hematologic

neoplasms and NOTCH; interleukin 4, 7, and 9, and nuclear proteins have

been studied for their role in the activation of mTOR signaling.
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Cuéllar Mendoza et al. 10.3389/fonc.2024.1304605
1 Introduction

The mechanistic/mammalian target of rapamycin (mTOR) is a

serine/threonine kinase. It functions as two distinct complexes

named mTORC1 and mTORC2. Both complexes consist of

mTOR, but differ in other proteins, like raptor (regulatory-

associated protein of mTOR) and DEPTOR (DEP domain

containing mTOR interacting protein) for mTORC1 and Rictor

(rapamycin insensitive companion of mTOR) and Protor (protein

observed with Rictor) for mTORC2. Both complexes regulate some

factors that mediate protein synthesis/turnover, metabolism,

autophagy, nucleotide synthesis, and cell migration (1).

Acute lymphoblastic leukemia is the most common childhood

malignancy; it represents 30% of cancer cases. The survival rates

have increased because of the effectiveness of its treatment in the

last 20 years. In addition, progress has been made in diagnosis by

morphology, immunophenotype, and genetic features with clinical

relevance in staging the patients (2–4.) and providing

better treatment.

Hodgkin lymphoma is an eponym that encompasses multiple

B-cell neoplasms in which the immune microenvironment has a

major contribution. These neoplasms can be divided into classical

Hodgkin lymphoma, with Reed Sternberg cells that express CD15

and CD30 and the nodular lymphocyte predominant Hodgkin

lymphoma, which only represents 5% to 10% of all Hodgkin

lymphomas that have the “popcorn cells” that express OCT2 (5).

Most of the literature on mTOR and its role in Hodgkin

lymphoma and acute lymphoblastic leukemia is about treatment

and case reports. The use of mTOR inhibitors has been studied in

some cases of these two neoplasms. It has been shown that some of

these chemotherapeutic agents inhibited cell proliferation and

induced apoptosis in leukemia cells (6–8).

Despite the use of mTOR inhibitors in both neoplasms, there is

a shortage of information about the biological significance of mTOR

signaling; the difference in the signaling complex is activated in the

neoplastic and non-neoplastic cells. For that reason, our aim is to

review the mTOR signaling pathway and its biological significance

in both diseases.
2 Materials and methods

A literature search of English, German, and Spanish language

studies about mTOR signaling in acute lymphoblastic leukemia and

Hodgkin lymphoma was performed using PubMed, Discovery

Service for National Autonomous University of Mexico, Registro

Nacional de Instituciones y Empresas Cientıfícas y Tecnológicas

(RENIECYT), and Scientific Electronic Library Online (SciELO)

from 1994 to 2023 to identify relevant papers on this topic.

In the case of acute lymphoblastic leukemia, the first search was

made with the keywords “mTOR”, “signaling”, and “acute

lymphoblastic leukemia”. A second search was made using the

keywords “not therapeutics” and “not inhibitor”. With Hodgkin

lymphoma, the keywords “mTOR”, “signaling”, and “Hodgkin

lymphoma” were used. The literature search was performed by
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two researchers. The last search was performed on 20 September

2023. The complete algorithm is provided in annex 1.
2.1 Inclusion criteria
- Hodgkin lymphoma and/or acute lymphoblastic leukemia

- mTOR signaling

- Studies in English, German, or Spanish

- Preview reviews
2.2 Exclusion criteria
- Studies about other lymphomas/leukemias

- Studies in other languages

- Studies focusing only on treatment/therapeutics

- Studies focusing only on the inhibitors
The researchers have screened the selected literature according

to the criteria. When titles and abstracts did not allow them to

identify the criteria, the full text was reviewed for this analysis.

The extracted data included author name, publication year, and

findings in mTOR signaling. This review was conducted using the

Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines. Flow diagrams for Hodgkin

lymphoma (Figure 1) and acute lymphoblastic leukemia

(Figure 2) are illustrated.
FIGURE 1

Flow diagram for mTOR signaling and Hodgkin lymphoma.
Literature selection, according to PRISMA criteria. A total of 383
articles were identified; in the first revision, 377 were excluded. Five
full-text articles were assessed and included in the study.
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3 Results

Based on the previously specified criteria, 20 papers (including

original papers and review studies) were included in this review, 15

for acute lymphoblastic leukemia and 5 for Hodgkin lymphoma.

Data for the studies are shown in Tables 1, 2. The Hodgkin

lymphoma study of Márk et al. showed that mTOR activity is

increased in 93% of samples from Hodgkin lymphoma patients and

that patients with good prognosis had low mTOR activity and

patients with bad prognosis have high mTOR activity with no

statistical significance. Two studies have shown that phospho-

mTOR and its phosphorylated products are increased in Hodgkin

lymphoma with emphasis in Reed Sternberg cells. The last two

studies including information on mTOR are review papers with the

same information.
Frontiers in Oncology 03
Regarding acute lymphoblastic leukemia and mTOR signaling,

8 of 14 papers are related to NOTCH activation and its role in T-cell

type leukemia, and 2 papers revealed the importance of interleukins

in mTOR signaling, showing that IL4 and IL7 are important for the

activation of downstream targets in the mTOR signaling pathway.

Moreover, two studies show that nuclear proteins like

Nucleophosmin/B3 and Sam68 have a regulating role in the

activation of mTOR.
4 Discussion and conclusions

mTOR signaling is altered in hematologic neoplasms as can be

seen in some reviews (12, 13), Hodgkin lymphoma and acute

lymphoblastic leukemia being no exception. This signaling

pathway is important for metabolism, apoptosis, protein

synthesis, autophagy, and cell migration.

In Hodgkin lymphoma, the study of Márk et al. (MÁRK)

showed that mTOR is increased in most Hodgkin lymphomas.

One of the most interesting findings is the fact that 6 of 72 patients

who had low levels of mTOR were in complete remission after 5

years; despite not finding a statistical difference, including more

patients in this type of studies is necessary to determine whether

this would be a good prognostic factor when staging the disease.

Moreover, in this study, Rictor was overexpressed. The

overexpression of Rictor and, in consequence, mTORC2, which is

related to cell migration, proliferation, and cell survival, can explain

why lymphomas overexpressing this protein had poorer prognosis.

Previous studies (9, 10) demonstrated that Hodgkin lymphoma

cells in vivo overexpressed mTOR and their downstream products.

It is important to note that the data were emphasized on

Reed Sternberg cells; considering the importance of the

microenvironment in Hodgkin lymphoma, the expression of

mTOR in other cells needs to be assessed in future studies. In

addition, the activation of this pathway has led to case reports and

clinical trials using everolimus with good response in Hodgkin

lymphoma (28–30).
TABLE 1 mTOR and Hodgkin lymphoma.

Author Year Description

Dutton A
et al. (9)

2005 Downstream effectors of PI3K including mTOR substrates S670 and 4E-BP-1 were phosphorylated in Hodgkin lymphoma cell lines and in Reed
Sternberg cells in vivo.

De J
et al. (10)

2010 phospho-mTOR has nuclear and membranous expression in six cases of classical Hodgkin lymphoma nodular sclerosis type. The
immunohistochemistry data suggest that it depends on mTORC2.

Márk A
et al. (11)

2013 Hodgkin lymphoma showed higher mTOR activity compared to normal lymphoid tissue by tissue microarrays in 93% of the cases with BCL-XL
and NF-KB expression correlated with this m-TOR activity. In addition, Rictor (mTORC2) was overexpressed in one Hodgkin lymphoma. Six of
72 cases with low mTOR activity were in complete remission with at least 5-year disease-free survival, and high mTOR activity was detected in the
biopsies of all patients who had poor prognosis and died.

Arita
et al. (12)

2013 Review article in hematologic neoplasms and hyperphosphorylation of mTOR in Reed Sternberg cells by measurement of Akt and
downstream effectors

Morales
Martıńez
M
et al. (13)

2020 Review article for hematologic neoplasms; it is stated that Deptor protein expression is high in classical Hodgkin lymphoma.
FIGURE 2

Flow diagram for mTOR signaling and acute lymphoblastic leukemia.
Literature selection according to PRISMA criteria. A total of 1,014
articles were identified in the first search. Then, the articles with the
keywords therapeutic and inhibitor were removed; thus, 269 articles
were screened. After duplicates, other languages and duplicates
were removed; 15 studies were assessed and included.
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In acute lymphoblastic leukemia, most of the studies explain the

relation between mTOR and NOTCH in T-cell leukemia and how

NOTCH activation leads to mTOR signaling. In the treatment of

these leukemia, mTOR inhibitor combinations cited are those with

inhibitors of the NOTCH1 signaling network. This evolutionally

conserved signaling network represents the most common

abnormality in this subtype. NOTCH1 can activate the PI3K/

AKT/mTOR network at multiple levels, regulating cell size,

glucose accumulation, and glycolysis during T-cell development

(31). Consequently, inhibition of NOTCH1 correlates with the

suppression of mTOR. Different PI3K upstream signaling

receptors, such as the interleukin 7 receptor a chain, are

upregulated by NOTCH1 signaling in T-cell progenitors (31).

It is important to note that there is a difference between B- and

T-cell leukemia, and that, in B-cell leukemia, there is a low

expression of DEPTOR in contrast with the high expression on T

cells (13). This could explain the difference in papers published

between these two neoplasms and the role of mTOR.
Frontiers in Oncology 04
Some molecular lesions related to adverse clinical prognosis in

ALL are involved in mTOR-mediated signaling with three classes of

mTOR inhibitors included in the scenario of treatment: allosteric

inhibitors (rapamycin and rapalogs like everolimus and

temsirolimus) that mainly target mTORC1, ATP-competitive dual

PI3K/mTOR inhibitors, and mTOR kinase inhibitors that target

both mTORC1 and mTORC2 but not PI3K. Furthermore,

rapamycin has been tested in combination with Janus kinase,

cyclin D3, and CDK4/6 inhibitors, showing induction of

autophagy in cancer cells. The second generation of mTOR

inhibitors like AZD8055, AZD2014, and TAK-228 has reported

apoptotic and anti-leukemic activity in vitro and in vivo (32).

RAD001, a selective mTORC1 inhibitor, decreased cell viability,

induced cell cycle arrest in the G0/G1 phase, caused apoptosis and

autophagy, and was also induced in pre-B ALL cell lines (33). In

relapse and refractory T-ALL, clinical trials using the combination

of mTORC1 inhibitor temsirolimus and dasatinib are being used;

dasatinib inhibits phosphorylation and activation of the
TABLE 2 mTOR and acute lymphoblastic leukemia.

Author Year Description

Larson-
Gedman A
et al. (14)

2009 Review of the literature; NOTCH activates mTOR independent of PTEN/PI3K/Akt.

Cardoso BA
et al. (15)

2009 IL4 induced phosphorylation of mTOR downstream targets in T cell acute lymphoblastic leukemia. Moreover, they demonstrated that IL4
mediates proliferation of cells via mTOR-dependent regulation of cell cycle progression.

Lee K
et al. (16)

2012 T lineage cells require an intact mTORC2 to execute the biological effects driven by Notch; NF-KB activity and expression are reduced in Rictor
KO cells, and mTOR depletion lowered CCR7 expression in leukemic cells, which causes decreased tissue invasion.

Martelli AM
et al. (17)

2012 In T-cell acute lymphoblastic leukemia cells, both IL7 and IL9 could activate the PI3K/Akt (mTORC1) complex and also MEK/ERK signaling.
Both pathways converge on eIF4B, which is important for protein translation.

Hales EC
et al. (18)

2013 NOTCH 1 activating mutations were identified in more than 50% of all T-cell acute lymphoblastic leukemia, which, in turn, can activate the
PI3K-Akt-mTOR signaling, which contributes to the repression of p53-mediated apoptosis.

Nemes K
et al. (19)

2013 The activity of mTOR is related to phosphoproteins p4EBP1 and pS6 and may serve as marker of prognosis, as patients with poor prognosis
showed higher levels on ELISA analysis.

Okuhashi
et al. (20)

2013 NOTCH knockdown cells suppressed the expression and phosphorylation of mTOR; activation of NOTCH increased the level of mTOR
protein and its phosphorylation at 24 to 48 h after the stimulation.

Gopal PK
et al. (21)

2014 In most T-ALL cases, constitutive activation of PI3K/Akt/mTOR has been reported. Inhibition of Notch activation rendered mTOR in an
inactive state.

Wang L
et al. (22)

2014 Nucleophosmin/B23 (NPM) is a nuclear protein with prosurvival and ribosomal RNA processing functions; when it is downregulated, the
proteins in the PI3K/Akt/mTOR pathway are downregulated; in addition, this signaling pathway is involved in drug sensitivity with inhibition
of cell proliferation after NPM silencing.

Hu Y
et al. (23)

2016 Demonstrate that NOTCH 1 bound and activated the human DEPTOR promoter in T-cell acute lymphoblastic leukemia, which contributes to
cell proliferation and viability and promotes glycolysis in the cells.

Chan SM
et al. (24)

2016 The withdrawal of Notch signals prevents the stimulation of mTOR pathway by mitogenic factors in T-cell acute lymphoblastic leukemia; in
addition, it is implicated that c-Myc is an intermediary between the Notch and mTOR signaling

Wang Q
et al. (25)

2016 Sam68 is an RNA-binding protein and an adaptor molecule; when it is depleted, there is a downregulation in p-Akt. The expression of mTOR
was downregulated with the knockdown of Sam68 in T-cell acute lymphoblastic leukemia cells.

Oliveira ML
et al. (26)

2018 They review the effects of IL7 and IL7R in T-cell leukemia; IL7 is capable of activating Bcl 2 in an mTOR-dependent way in T-cell leukemia, in
contrast to normal cells that require STAT 5 for this function.

Wang J
et al. (27)

2019 Reduced IGF-1R signaling leads to reduced levels of phospo-AKT, phospho-P70S6K, and phosphor-mTOR.

Grüninger
PK
et al. (28)

2022 The leukemic cells were strongly dependent on MTORC2 complex (RICTOR) but not on RAPTOR (MTORC1) for proliferation and survival.
Pharmacological inhibition of mTOR caused an increased dependence on glucose for the cells.
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lymphocyte-specific protein tyrosine kinase to blunt T-cell receptor

and, combined with mTORC1 inhibition, induces T-ALL cell killing

(34). In Hodgkin lymphoma, the actions of rapalog everolimus

result in decreased protein synthesis and cell cycle arrest, showing

efficacy as a single agent in heavily pretreated relapsed/refractory

disease (7, 8).

Some interleukins and growth factors affect the expression and

activation of mTOR in leukemic cells. The presence of IL4, IL7, and

IL9 is important to activate mTOR and promote the survival of

leukemia cells. In non-neoplastic cells, it has been found that the

mTORC1 pathway is predominantly activated in pro-B, pre-B, and,

to a lesser extent, immature and mature cells, which are consistent

with the expression of the IL7-receptor during these maturation

stages. Considering that IL7 is an important cytokine for survival

and cell differentiation in normal cells, this function could be

conserved in this neoplasia. Moreover, the reduction of IGF-1R

could reduce levels of phosphor-mTOR (30); the relation between

IGF-1R and mTOR is important for cell metabolism, and how it

could change leading to glycolytic pathways, which can be

important in cell survival. In the case of IL9, Sirtuin 1 is a

deacetylase, which is a cellular metabolic sensor;, Sirtuin 1 targets

the IL9 gene locus and controls IL9 production in human CD4+ T

cells through the SIRT1-mTOR-HIF1-glycolysis pathway (35).

There is an observation that IL9 synergizes with IL7 in inducing

T-ALL cell proliferation (36).

In the T-ALL cell line TAIL7, IL4 induced phosphorylation of

mTOR downstream targets p70 S6K, S6, and 4E-BP1; this event was

inhibited by treatment with rapamycin (15).

Nucleophosmin/B23 is a nuclear protein with prosurvival and

ribosomal ARN processing functions, and it has been studied that

knockdown of nucleophosmin reversed the drug resistance by

downregulating the Akt/mTOR signal pathway in the

lymphoblastic cell line Molt-4/ADR (22). Sam68 belongs to the

signal, transduction, and activation of the RNA family and it is

linked to tumoral progression; in the study of Wang et al., Western

blot showed that Sam68 knockdown resulted in the reduced

expression of p-AKT, pFOX01, and mTOR; after restoring the

expression of SAM68, these were recovered, which indicated that

the apoptosis and S arrest phase of lymphoblastic cells may be

mediated by the AKT downstream signaling pathway (25).

We need to emphasize that, in most studies, non-neoplastic cells

were excluded, so there is an opportunity in studying these cells for

their potential as a therapeutic target of mTOR inhibitors. mTOR

research is important for new generations of scientists because it

controls some of the most critical functions in cells; in addition, the

polarization of the responses that it could create with the change in

one molecule can determine how the immune response against

cancer is shaped and it could help determine prognosis in patients.

Furthermore, in the study of non-neoplastic and neoplastic cells in

patients with cancer, there is a possibility that we find differences in a

molecule that controls survival, proliferation, and cell metabolism in

normal and neoplastic cells at the same time; thus, we could have a

better understanding of cancer biology, and if we can find these

differences, they can be targeted by molecules that have a good safety

profile and have been used in other diseases.
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