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Hematopoietic stem cells (HSCs) produce all blood cells throughout the life of

the organism. However, the high self-renewal and longevity of HSCs predispose

them to accumulate mutations. The acquiredmutations drive preleukemic clonal

hematopoiesis, which is frequent among elderly people. The preleukemic state,

although often asymptomatic, increases the risk of blood cancers. Nevertheless,

the direct role of preleukemic HSCs is well-evidenced in adult myeloid leukemia

(AML), while their contribution to other hematopoietic malignancies remains less

understood. Here, we review the evidence supporting the role of preleukemic

HSCs in different types of blood cancers, as well as present the alternative models

of malignant evolution. Finally, we discuss the clinical importance of preleukemic

HSCs in choosing the therapeutic strategies and provide the perspective on

further studies on biology of preleukemic HSCs.
KEYWORDS

hematopoietic stem cell, preleukemic state, clonal hematopoiesis, acute myeloid

leukemia, chronic myeloid leukemia, acute lymphoblastic leukemia, chronic
lymphocytic leukemia, mature cell neoplasm
1 The phenomenon of blood production

Hematopoietic stem cells (HSCs) reside at the apex of the “hematopoietic tree”

hierarchy and produce all blood cells throughout lifespan of an organism (1). HSCs

possess the unique potential for both multipotent differentiation and self-renewal (2). They

reside in specialized microenvironment called bone marrow niche, which regulates and

drives HSCs activity (3).

HSCs are like a “hit squad”– innumerous, but extremely specialized. It is estimated that

in adult humans 4.4 – 21.5 × 104 of HSCs actively contribute to white blood cell production

at a given moment (4). For comparison, one microliter of blood physiologically contains
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4 –10×103 of white blood cells (WBCs) and 3.5–5.2 ×106 of red

blood cells (RBCs), what gives in total 2-6 × 1010 of WBCs and 2-3 ×

1013 of RBCs, assuming that average blood volume in adult human

is 5-6 liters (5). Overall, approximately 106 of new blood cells arise

in each second, all of them descending from HSCs (1). This implies

very high turn-over of hematopoietic cells and requires precise

biological mechanisms to control this dynamic system.

HSCs undergo asymmetrical divisions to generate two daughter

cells with different fates: 1) a stem cell that sustains HSCs’ pool, 2) a

progenitor cell destined for proliferation and differentiation (6).

This process is critical for hematopoietic homeostasis, as it

maintains massive amplification of terminally differentiated cells

of all blood lineages. However, stem cells can adjust their trend of

division to a given situation and divide symmetrically, generating

only stem or only progenitor cells (7, 8). Classically, HSCs give rise

directly to the multipotent progenitors (MPPs). MPPs still maintain

full lineage differentiation potential but lose the ability to self-renew.

Downstream progenitors acquire lineage-specific potential, toward

myeloid (common myeloid progenitor, CMP) or lymphoid

(common lymphoid progenitor, CLP) lineage and gradually

become oligo-, bi- and unipotent. Mature cells are the final step
Frontiers in Oncology 02
in hematopoietic differentiation. All populations of mature cells

have relatively short lifespan [with only some exceptions like

memory lymphocytes (9)] and perform highly specialized

functions. Overall, maturation of HSCs entails increased

proliferation capacity with decreased multipotency and self-

renewal (Figure 1) (1).

However, the hematopoietic hierarchy in the classical model

seems to be oversimplified and studies still define new

hematopoietic stem and progenitor cell (HSPC) subpopulations,

with mixed levels of stem and lineage-potential properties (10).

Although by definition all HSCs are multipotent and can

reconstitute whole hematopoietic system, analyses of human and

murine hematopoiesis confirm that phenotypical HSCs population

is intrinsically heterogeneous (11–15). First, detailed multicolor

flow cytometry allows to establish set of markers that precisely

distinguish multipotent progenitors from self-renewing HSCs, e.g.

HSCs lack CD244 and CD48 (16, 17) but express CD150 (16) and

EPCR (18). Next studies on mice divide the HSC pool into fractions

based on the expression of cell surface markers: vWF (19), CD41

(20), CD61 (21), CD150high (22), Neogenin-1 (Neo-1) (23), levels of

c-Kit (24), or combination of CD49b and CD229 (25).
FIGURE 1

Classical model of hematopoiesis. HSC, hematopoietic stem cell; MPP, multipotent progenitor; CMP, common myeloid progenitor; CLP, common
lymphoid progenitor; MEP, megakaryocyte-erythrocyte progenitor; GMP, granulocyte-monocyte precursor; MkP, megakaryocyte precursor; ErP,
erythrocyte precursor; RBCs, red blood cells; mDC, myeloid dendritic cell.
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Each of these defined fractions preferentially differentiates

toward selected lineage probably due to the transcriptional lineage

priming (26). Nonetheless, the hierarchical relationship between the

balanced and lineage-biased fractions within the HSC pool still

remains not fully understood (27). The differences are also evident

between HSCs from young and old individuals. Aged HSCs show

limited self-renewal, lower regenerative potential and increased

lineage-biased differentiation upon transplantation (22, 23, 27, 28).

The progenitor pool is also highly heterogenic. MPPs can be

divided into four subsets (MPP1, MPP2, MPP3 and MPP4)

according to lineage-bias, immunophenotype, molecular and

functional characteristics (29). What is more, Yamamoto et al.

described in mice myeloid-restricted repopulating progenitors

(MyRPs) with high self-renewal activity – the population that falls

outside the common scheme of hematopoiesis (30).

While all the recently described markers allow to distinguish

new populations, there are also concepts suggesting that

differentiation is not a stepwise but rather a continuous process

(31, 32). The progenitor cell passes through lineage-committed

transcriptomic states in a constant manner, without any halts

between subsequent hematopoiesis levels, defined as cells with

uniform phenotype and potential (32). Then the classification of

cells to particular fractions would be rather indicative.
2 Hematopoiesis under
pathological conditions

Blood is characterized by rapid cell turnover (33), multilevel

hierarchical organization (even 17 to 30 maturation levels) (33), and

relatively quiescent state of stem cells (2 to 20 months between cell

divisions in humans) (4). A trade-off between limited divisional

load (thereby reduced mutation rate) and continued descending

toward the terminally differentiated and non-proliferating cells

(with final “washing out” of cells, including cells with mutations,

from the tissue) reduces accumulation of genetic alterations

(34–36).

Despite mechanisms reducing excessive somatic evolution,

blood malignancies accounts for more than 7% of cancer deaths

(35, 36). Due to long lifespan and self-renewal, HSCs are especially

prone to accumulate a set of mutations, what may initiate the clonal

evolution toward hematologic malignancies (37). Although most of

spontaneously occurring somatic mutations do not have a

noticeable clinical effect (38) or altered cells are quickly removed

by the immune system (39, 40), in some cases mutations can affect

key genetic factors and provide a selective advantage to a particular

cell, leading to its clonal growth (38). If the mutation happens at the

level of non-stem cell, it probably disappears with the host cell due

to physiological course of differentiation and cell death (41, 42).

Thereby, HSCs with their natural self-renewing ability are suitable

cellular target for primary malignant lesions (43). When HSC

acquires first mutations, it turns into preleukemic HSC (44–46).

Large scale DNA sequencing of blood cells from people with no

clinical signs of any hematological diseases revealed that this

preleukemic state is relatively common and clearly age-related. It

showed that among healthy adults, 1% below 40 years old and even
Frontiers in Oncology 03
more than 10% above 60 years old, already have clones of blood

cells produced by preleukemic HSCs. This phenomenon is called

clonal hematopoiesis of indeterminate potential (CHIP) (47, 48).

The majority of CHIP cases are associated with mutations in

DNMT3A, TET2, and ASXL1 genes (49).

The strong association of clonal hematopoiesis with age and

defined set of driver mutations projects the possible mechanisms of

selection pressure. It was shown that hematopoietic clones with

somatic mutations undergo both negative and positive selection

(50). However, during aging of the organism the evolutionary paths

based on only negative selection decline and the role of positive

selection increases (50). This can be ascribed to the functional

effects of the most common mutations in CHIP. The most

commonly mutated genes - DNMT3A, TET2, and ASXL1 – are

epigenetic regulators (51). These mutations cause hypo- or hyper-

methylation or dysregulate histone modifications. As the result, the

mutated HSCs have higher self-renewal and disturbed

differentiation what leads to their clonal dominance (52–55).

Additionally, the expansion of selected clones during aging may

be linked to increased inflammatory signaling in elderly individuals.

It was observed that aging microenvironment may resemble the

state of mild chronic inflammation (56). These similarities led to

“Inflamm-aging” model that proposes the inflammatory signaling

as one of the main driving forces of developing clonality in aging

hematopoietic system (56).

On the one hand, preleukemic HSC seems to retain multilineage

differentiation potential with both myeloid and lymphoid lineages, as

majority of people with CHIP remain free of hematological diseases.

On the other, preleukemic HSC already harbors some of the

leukemia-specific mutations, has an increased ability to survive, a

competitive repopulation advantage over non-mutated HSC and can

undergo further somatic evolution (45, 46, 57). With such features

preleukemic HSC may become cell-of-origin for hematologic

neoplasm (45). This results in significantly high risk of blood

malignancies among people with CHIP (58).

Although preleukemic HSCs’ existence often remains

asymptomatic, sometimes it already causes noticeable

hematological symptoms such as low-risk myelodysplastic

syndrome (MDS) (59). Preleukemic HSCs' progeny not only

inherit the baggage of mutations, but can also be affected by

genetic hit themselves. The final, neoplastic mutation occurs at

the progenitor cell level (44). The combination of all mutations

leads to adaptive self-renewal activation and/or block in

differentiation (44). Fully transformed progenitor with acquired

self-renewal capacity is called the leukemic stem cell (LSC) or

leukemia propagating cell (60, 61) (see Box 1 with the

nomenclature note). LSC directly gives rise to bulk leukemic

blasts and sustains their production (61). It is important to state,

that the involvement of preleukemic HSCs in leukemogenesis is well

evidenced in two types of leukemia: acute myeloid leukemia (AML)

and chronic myeloid leukemia (CML) – both called as paradigmatic

HSC-source diseases (62). However, the importance of preleukemic

stage likely differs in AML and CML. The preleukemic stage, with

stepwise accumulation of epigenetic mutations in HSC, is essential

in AML development. In contrast, it is thought that CML may

develop due to single BCR-ABL translocation hit, while the
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potential prior preleukemic set of mutations only modulates the

severity of the CML progression (62). But interestingly, there are

some observations suggesting that HSCs may also contribute to

generation of other types of hematopoietic neoplasms, including

acute lymphoblastic leukemia (ALL) (63), chronic lymphocytic

leukemia (CLL) (64) or even mature cell malignances

(lymphomas) (65).

Nevertheless, apart from preleukemic HSC model that is

demonstrated in AML and CML, there are other possible

mechanisms among different levels of hematopoietic hierarchy

that drive the origins of blood malignancies (Figure 2).

Although the self-renewal properties in adult organisms are

mainly restricted to stem cells, there are still some exceptions such

as memory B and memory T lymphocytes (9). These mature cells

already have active self-renewal machinery and a relatively long

lifetime, thereby are prone to accumulate mutations, similarly as in

the case of HSCs (9). Moreover, the process of lymphoid cell

maturation creates the opportunity to introduce malignant

mutations. Genetic alterations during V(D)J rearrangement, class

switch recombination or somatic hypermutation in B cells may

activate oncogenes like MYC (66). Additionally, massive

proliferation of lymphocytes can be induced by persistent

antigenic stimulation during chronic inflammation, bacterial or

viral infection and by signaling from self-antigens (66). Some B-cell

neoplasms show phenotypic and genetic similarities with memory B

cells, what might suggest that they are possibly derived from

memory B cells (67). This group includes a subset of CLL with

mutated IgV genes (68), hairy cell leukemia (HCL) (69), splenic

marginal zone (SMZL) lymphoma (70), non-splenic marginal zone

lymphoma (71) or mantle cell lymphoma (MCL) (72). Nevertheless,

there are indications that HSCs contribute to development of at

least some of lymphomas (65, 73–76).

Another possible scenario assumes reprogramming of primary

non-stem cells into cells with de novo self-renewal properties. A set

of acquired mutations can lead to aberrant activation of self-

renewing machinery and then to leukemogenesis. Although the

enforced self-renewal differs from intrinsic self-renewal potential of

stem cells, it may be sufficient for tumorigenesis (77). Such

exemplary mutation involves KMT2A gene (previously named

MLL) (78). KMT2A can be rearranged by chromosomal

translocation with one from at least 100 potential fusion partners

(79). This aberration is observed in both acute myeloid and

lymphoid leukemia patients (3% and 5% to 15% of cases,
Frontiers in Oncology 04
respectively) (79). It is also strongly associated with infant ALL

(80). KMT2A fusion proteins probably promote uncontrolled self-

renewal capacity in hematopoietic progenitors. Mouse model

studies revealed that myeloid progenitors with KMT2A

rearrangement express high levels of HOXA9 – the gene

responsible for self-renewal and immortality, normally expressed

in c-kit-positive immature hematopoietic cells. Thus, HOXA9 up-

regulation can drive the acquisition of leukemic self-renewal activity

among progenitors (81, 82). Next putative “offenders” are MYC

mutations (78).MYC gene balances self-renewal and differentiation

activity in HSCs (83). MYC deregulation is a frequent feature in B-

cell lymphomas (84). Contrary to other lymphoma oncogenes,

forced expression of MYC is sufficient to generate B-cell

neoplasm in mouse model (85). Moreover, majority of murine

lymphoma cells with MYC mutations seem to behave as cancer

stem cells able to initiate and sustain tumor development (86).

Other proposed examples of such oncogenic factors include

mutations in BMI1 gene and MOZ-TIF2 fusions (78).

Some children are born with mutations predisposing to

leukemia (Figure 3). Since 2016, the World Health Organization

Classification includes the entity called myeloid neoplasms with

germline predisposition (87). The mutations are within the germ

line, present in different cell types (not only in hematopoietic

system), and can be handed-down. Individuals with germline

mutations are at higher risk of developing myeloid neoplasms -

especially MDS and AML. The germline mutations can act as first

genetic hits in the process of disease development (88). Although

myeloid neoplasms with germline predisposition are considered as

rare, in many cases they probably remain underdiagnosed (89).

Another option assumes in utero origin of leukemic mutations (63).

These mutations happen in the fetus and are not inherited from

parents. The prenatal mutation can initiate life-long clonal growth

and evolution toward different hematologic malignancies, e.g. infant

ALL (the most frequently KMT2A-rearranged) (90, 91) or

myeloproliferative neoplasms (MPNs) in adult patients (92).

Indirect evidence to support the prenatal origin of the first

leukemic mutations comes from studies on twins. Monozygotic

twins share the same early genetic lesions due to common

hematopoietic system through vascular anastomoses. Dizygotic

twins have entirely separate vascular systems so the mutational

concordance is rather not observed (93).

Nevertheless, even if the morphology of neoplastic cells

resembles more differentiated or mature cells, some recent studies
BOX 1 Nomenclature note:

In the literature there is no consensus about precise definitions of discussed terms: cell-of-origin, cancer-initiating cell, cancer-propagating cells, cancer stem cell. In the
context of leukemia, the terms take the form of cell-of-origin of leukemia, leukemia-initiating cell, leukemia-propagating cell, leukemia stem cell. These terms are very often
interchangeably used, what might be misleading and cause ambiguous interpretations. To avoid misunderstanding, in this review we stick to the definitions
described below.

The cell-of-origin of leukemia, or leukemia-initiating cell, is a cell that has the first leukemia-associated mutation(s). Although the presence of cell-of-origin in
organism may be asymptomatic or show only dysfunction without signs of invasive disease, the cell-of-origin is the first link in oncogenesis chain, which may result in
overt malignancy.

In contrast, LSC is a cell after the final genetic hit, and complete malignant transformation. LSC aberrantly acquires self-renewal and multipotency properties. LSC
directly fuels (propagates) the full-blown leukemia development and can reconstruct the tumor after transplantation. Leukemia-propagating cell is a synonym for the LSC.

For example, in a majority of adult AML, the first leukemia-promoting mutation occurs at the level of HSC, making the preleukemic HSC the cell-of-origin of cancer.
In turn, LSC presents a phenotype of more differentiated progenitor cell, but acquires self-renewal property thanks to the final set of mutations (43, 60, 61).
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indicate that first genetic hits might occur already at the stem cell

level. The presence of the preleukemic states implies a question

about mechanisms that drive the evolution of the premalignant

clones and their transformation to overt leukemia. One of the

commonly proposed triggers is an excessive immune response to

common infections. Chronic inflammation is also able to initiate

the clonal outgrowth of cells and activate preleukemic state, with

possible further progression to overt leukemia (94). Furthermore, in

case of childhood ALL, there is a hypothesis that the insufficient

exposure to common pathogens during infancy may result in
Frontiers in Oncology 05
excessive and protracted immune response to later infections,

what facilitates childhood ALL development (63, 95, 96). There

are also reports about abnormal levels of pro-inflammatory

cytokines in blood of infants, who later in life develop

hematologic malignancies (97). Chronic inflammation is a

characteristic feature of aging (98). The mutations in DMT3A or

TET2 - two most common epigenetic alterations observed in age-

related clonal hematopoiesis and myeloid malignancies – initiate

the proinflammatory state (99, 100). Other possible mechanisms

include dysregulation of the endocrine system. Upregulated
FIGURE 2

Possible cellular compartments for the first and final genetic hits. (A–C) HSCs are prone to accumulate preleukemic mutations, due to long lifespan
and natural self-renewal properties. Progeny of mutated HSCs inherit the mutations. Final transforming hit may occur at different level of
hematopoietic hierarchy: (A) in progenitor cell or (B, C) mature cells. (C) The natural self-renewal of memory B and T cells may further facilitate the
accumulation of mutations and complete their malignant transformation. (A–C) The models assume that HSC constitutes the cell-of-origin, and
progenitor or mature cell with self-renewal becomes the leukemia stem cell. (D–F) Other models do not ascribe direct role to HSCs in malignant
transformation. (D) One possibility is that the early mutation warrants acquired self-renewal to progenitor cells that physiologically do not self-
renew. This drives further accumulation of mutations and leads to malignant transformation. (E) Alternatively, the mature self-renewing cells like
memory B and T cells may naturally accumulate mutations and constitute the origin of lymphomas or myeloma. (F) Non-self-renewing mature cell
is unlikely to become the cell-of-origin of leukemia as mature cells are terminally differentiated. and have to short lifespan to accumulate mutations.
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signaling from prolactin receptor creates pro-proliferative and

antiapoptotic conditions and enhances resistance to cytarabine

(101, 102). Recently increasing attention has been paid to the

commensal microbes and their role in leukemia development.

Studies in mouse models showed that disruption of microbiome

by administration of antibiotics in young genetically predisposed

mice was sufficient to promote transition from preleukemic state to

overt B-ALL leukemia (103).

Importantly, the inflammatory conditions not only drive the

occurrence of premalignant cells and facilitate their leukemic

transformation, but also change their nearest microenvironment –

the niche. Proinflammatory cytokines can transform the niche into

leukemia-favoring area and fuel the genomic instability of

hematopoietic cells (104, 105). Disturbance of only one factor in

the niche can result in malignant transformation and development

of hematologic neoplasm (3, 106–109).

The universal effects of the described excessive or prolonged

inflammatory signals are elevation of ROS levels, shift from

quiescent state to active cycling and high proliferation rate, what

in turn enables evading from apoptotic pathways and exposes cells

to higher risk of DNA damage (94). The source of genetic
Frontiers in Oncology 06
alterations may also originate in the natural processes responsible

for development of adaptive immunity and recombination events.

Recombination activating genes (RAG1 and RAG2) and activation-

induced cytidine deaminase (AID) enzymes may contribute to

chromosomal breakpoints and their translocations as a basis for

further clonal evolution toward B-cell malignances (96, 110).

Moreover, overactivation of AID may constitute a link between

autoimmune diseases like lupus and increased frequency of

lymphoid neoplasms (111).

Although the mentioned studies contribute to understanding the

mechanisms beyond the malignant transformation, it is important to

state, that it is often not clear whether the observed mechanisms act

specifically at the level of stem cell or a premalignant clone.

Finally, the presence of premalignant state at the stem cell level

prompts to review the current therapeutic strategies, such as

autologous or allogenic hematopoietic stem cell transplantations.

Therefore, the aim of this review is to determine the role of HSCs in

the development of different blood malignancies in the light of

current knowledge. We will investigate the process of tumorigenesis

from the earliest stages and HSCs involvement in AML, CML, ALL,

CLL as well as mature cell lymphomas.
B

A

FIGURE 3

The origin of mutations predisposing to leukemia in newborns. (A) Germline and (B) in utero mutations may trigger preleukemic state and
predispose to develop hematologic neoplasm. The disease may appear quickly after birth (e.g., infant ALLs), late in adulthood (e.g. MPNs), or do not
occur at all, when no further somatic evolution happens.
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3 AML – the paradigmatic
HSC-source disease
AML is a hematological malignancy characterized by

accumulation of abnormal blood cells with myeloid morphology.

The disease predominantly occurs in later adulthood (median age at

diagnosis is above 65 years) (112). Overall genomic landscape in

AML is heterogenous and involves a wide spectrum of cytogenetic

and molecular aberrations (113). Mutational profile has overriding

impact on disease phenotype, course and outcome. Thus,

classification of AML involves many different subtypes and it is

still being complemented with new entities (114).

The concept of stem cell origin in cancer was discussed for

years, but the detailed studies on AML provided one of the first

elegant confirmations of this general notion. AML is the

paradigmatic HSC-source disease with intrinsic cellular

organization mimicking the hierarchy of normal hematopoiesis

(115). Although LSCs in AML have the progenitor phenotype

(116), the AML genesis begins within CD34+ CD38- HSCs pool

(45) (see Box 2 for methodological aspects of assessing HSC

biology). The full transformation to overt AML requires

accumulation of a set of mutations in a single cell clone. Thus,

HSCs with their natural long lifespan and self-renewal act as a

refuge for accumulating mutations in the process of somatic

evolution. The first somatic mutations turn self-renewing stem

cell into preleukemic HSC. This stage is often clinically silent and

remains undiagnosed. The final genetic hit occurs in progenitor

derived from preleukemic HSC and transforms it into LSC. LSC

acquires self-renewal properties, fuels disease progression and

provokes its overt clinical manifestation (Figure 2). This general

stepwise model is now well evidenced, and places preleukemic

HSCs as evolutionary ancestors of frank AML development (44–

46, 57, 123–125).

Further studies revealed that the stepwise model in adult AML is

also determined regarding the sequential order of mutations. First

mutations appear in the “landscaping” genes, which regulate gene

expression by epigenetic mechanisms, such as DNA methylation,

histone modification or regulation of chromatin topology, e.g.:

DNMT3a, TET2, and the members of the cohesin complex (45, 46,

57, 126–129). Some of the studies also rate IDH1, and IDH2 genes as

members of this group (46, 57). Mutations in the “landscaping” genes

are often observed in preleukemic phase. Such aberrations can be

detected in residual HSCs [Lin−CD34+CD38−CD90+, TIM3 and/or
Frontiers in Oncology 07
CD99 negative (130, 131)], myeloid blasts and non-leukemic cells

from lymphoid lineage in samples from AML patients. Secondary hits

involve genes belonging to proliferation signaling pathways, e.g. FLT3

or RAS (45, 46, 57, 129). Those mutations are rarely found in residual

HSCs, but are present in majority of blasts. Although AML blasts

carry FLT3-internal tandem duplication (FLT3-ITD), the residual

HSCs do not have this “late” mutation (45). Other classical example

of gene, which is mutated at later stages, is NPM1. In DNTM3a and

NPM1 mutated AML, both NPM1 and DNMT3a mutations were

present only in CD45dimCD33+AML blasts, whereas HSCs/MPPs,

lineage-committed progenitors, and CD33−mature cells harbored

only DNTM3a mutation (57). The effect of late stage NPM1

mutation among already mutated DNTM3a cells was further

prospectively studied in mice (132). Mutation of NPM1 in mice

with DNMT3a-mutant clonal hematopoiesis (CH) caused

progression to myeloproliferative disorders (132). In general, these

“late” events are underrepresented during preleukemic stages, but

directly precede the appearance of full-blown leukemia.

However, it is important to state that the “late” genetic events are

relatively unstable between diagnosis and relapse, in contrast to rather

stable presence of early mutations (46, 133, 134). The fact that “late”

genetic events can be lost and/or substituted by another mutation

implies that preleukemic HSCs may represent one of possible sources

of relapse (46, 135). It is elegantly evidenced that preleukemic HSCs

can survive standard induction chemotherapy and persist during

remission (136, 137). In AMLwithDNMT3a andNPM1mutations at

diagnosis, only the first one was detected during remission (57).

Moreover, preleukemic HSCs retain non-leukemic reconstitution

potential and actively give rise to multilineage mature cells.

Lin−CD34+CD38−CD90+ preleukemic HSCs isolated from patients

with AML1-ETO-positive AML in long-term remission (up to 150

months) produced AML1-ETO-positive normal myeloid colonies but

not leukemic blasts (138). Therefore, the early, “landscaping”

mutations in preleukemic HSCs are stable between diagnosis and

remission (46) or relapse (133), while induction therapy usually

eradicates the clones with “late” genetic events (46). Importantly,

the persistence of the preleukemic hits inDNMT3a, SRSF2, TET2 and

ASXL1 during first remission is associated with unfavorable clinical

outcome and higher cumulative risk of relapse (139). Overall,

considering the intrinsic preleukemic HSCs’ features (like partial

transformation or increased proliferation capacity) and further clonal

evolution (enhanced by mutagenic chemotherapy), preleukemic

HSCs should be considered as possible founders of new leukemic

clones leading to relapse in AML.
BOX 2 Methodological aspect of assessing HSC biology.
HSCs are commonly associated with Lin-CD34+CD38- cell phenotype. But according to our best knowledge, flow cytometry gating based only on CD34 and CD38 markers
is insufficient in studies on HSCs biology as downstream MPPs share the same phenotype and thus cannot be distinguished from HSCs (117). Functional analysis like
clonal tracing (4, 118), FACS-sorted cell transplantations (119–121) or humanized mouse models (117, 122) reveal that hematopoietic stem cells with natural ability to
both multipotent differentiation and long-term self-renewal are enriched in Lin–CD34+CD38-CD90+CD45RA– fraction. We honestly believe that clear
immunophenotypical distinction between self-renewing HSC and non-self-renewing MPP should be a critical aspect in such type of studies. However, some articles,
also reviewed here, do not include Lin-CD34+CD38-CD90+CD45RA- as the immunophenotype of highly purified human HSC, what may be the reason for inconsistent
observations. Thus, interpretation of studies about HSCs should always be associated with a dose of criticism and analysis of applied methodology.

Additional level of complexity results from observations of intrinsic heterogeneity among human HSC pool (15), similarly as it is in murine hematopoiesis (23). In
such case, bulk studies – although very valuable - are always restricted to average results across heterogeneous population. Therefore, analysis at the single cell level should
be the essence of the projects about HSC biology, what may result in new clinically important outcomes.
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The whole pathway from the first preleukemic hits to full-blown

leukemia in adult AMLs usually takes years. However, it could vary

significantly depending on the mutation profile. Few prospectively

tracked patients with DNMT3a, TP53, spliceosome genes and

RUNX1 mutations at the time of the initial screening have

developed AML within 7.4, 4.9, 6.7 and 1.5 years respectively

(140). Additional data is delivered by studies on allogeneic bone

marrow transplantations, after which both donor and recipient

developed AML. This analysis indicates that preleukemic stage

could take at least 7 years (141, 142). Other case report study

shows that the delay can last even more than 15 years (143).

Although these are rough estimations, they clearly indicate that

adult AML development is usually a long-term process, spread over

the years.

It is important to state that the length of preleukemic state is

influenced by the order of mutation acquisition. It was elegantly

evidenced in MPNs with TET2 and JAK2 mutations that type of

mutations and their order determines the kinetics of neoplasm

development (144, 145) The precedence of the “landscaping”

mutation over the signaling/proliferative mutation (the scenario

characteristic for AML) was associated with older age of patients

than when the mutation order was reverse (Figure 4).
4 CML and its origin from HSC level

CML is a slow-growing myeloproliferative neoplasm, classically

marked by the presence of the Philadelphia (Ph) chromosome – a

product of a reciprocal translocation between chromosome 9 and

22, t(9;22)(q34;q11) (146). Resulting oncogenic BCR-ABL1 fusion
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gene encodes a chimeric protein with constitutive tyrosine kinase

activity (147). The disease predominantly occurs in late

adulthood (148).

CML is the second paradigmatic HSC-derived hematologic

neoplasm, however the preleukemic stage in CML has different

character than during AML development (62). The CML hallmark -

BCR-ABL1 translocation - occurs at the level of HSC in almost all

cases (149). Acquisition of such genetic alteration transforms a

normal Lin–CD34+CD38– HSC into a CML-initiating cell/leukemia

stem cell, with a proliferative advantage and bias toward myeloid

differentiation (62, 150). Importantly, natural self-renewal capacity

of a primary cell, in which BCR-ABL1 translocation occurs, is

necessary for CML development as BCR-ABL1 itself does not

confer self-renewal (151–153). Some studies report detecting very

low levels of BCR-ABL1 transcript in peripheral blood from healthy

individuals by sensitive RT-PCR methods (154–156). However, as

these analyses were performed on whole peripheral blood, the

readouts might come from cells other than HSCs, what explains a

lack of clinical symptoms.

While the first genetic hit in CML is at the HSC level like in

AML development, the initial accumulation of mutations in

“landscaping” genes, typical for AML, is not always observed

in CML. Minority of patients with CML (15-20%) have mutations

in epigenetic regulators. Moreover, the order of the mutations is not

determined like in AML. These “landscaping” mutations occur

either before the Philadelphia translocation or are acquired

during the treatment (after initial translocation occurred) (157,

158). This suggests that mutations in epigenetic regulators are not

required for the CML manifestation. However, the order of their

appearance is linked to the treatment outcome and progression to
A

B

FIGURE 4

Effect of mutation order on leukemogenesis. Type of mutations and their order may determine the phenotype and the kinetics of neoplasm
development. (A) The priority of the “landscaping” mutation (TET2) results in domination of TET2 single-mutant cells within HSPC pool. The patients
are older at the diagnosis, what indicates that acquisition of secondary/transforming hits requires more time. (B) The first hit in the signaling/
proliferative mutation (JAK2) drives expansion of HSPCs pool and majority of these cells are JAK2-TET2 double-mutant. Patients are younger at the
diagnosis, indicating shorter time from first hit to overt neoplasm.
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blast phase. Patients who have the “landscaping” mutations before

the Philadelphia translocation respond to treatment better than

patients who acquired new mutations during treatment (157).

Clonal somatic evolution of mutated HSCs may follow diverse

paths in the course of CML. It is also possible that initial clones,

present at low frequency at the beginning, expand during treatment.

Indeed, both bulk and single cell analyses of BCR-ABL1-positive

HSCs/LSCs revealed their functional diversity (159, 160). Identified

subpopulations differentially responded to tyrosine kinase

inhibitors (TKIs) treatment. Additionally, there was a subfraction

of leukemic stem cells (CD45RA−c-kit−CD26+), which was

quiescent and more resistant to therapy (160). The quiescent

fraction of LSCs can reverse to active state and drive leukemia

development (161, 162).

t(9;22)(q34;q11) translocation is presumably the necessary and

sufficient condition to provoke clinical manifestation of CML, what

may be explained by the wide spectrum of biological functions of the

resulting BCR-ABL1 fusion gene (163, 164). The BCR-ABL1 fusion

gene is recognized as a multifaced promotor of DNAmutations as the

Ph-positive cells become more prone to accumulate genetic lesions

(165, 166). The proposed mechanisms of its action are impairment of

the DNA double-strand breaks repair (167) or augmenting the

damaging impact of endogenous reactive oxygen species or

genotoxic xenobiotics (168). Furthermore, BCR-ABL1 may trigger

DNA methylation changes and misshape the epigenetic landscape

(169, 170). Thus, the Philadelphia translocation may be seen as the

“landscaping” step in leukemogenic cascade, which facilitates further

malignant transformation.

The BCR-ABL1-positive LSCs can drive further CML

progression. Cooperation between increased level of t(9;22)

transcript and genetic instability transforms relatively mild

chronic phase to more aggressive and life-threatening blast phase.

Expansion of BCR-ABL1 mRNA and protein is a hallmark of

advanced stage (171, 172). Furthermore, Jamieson et al. reported

that during blast phase Lin−CD34+CD38+ granulocyte-macrophage

progenitors (GMPs), which present high levels of BCR-ABL1 and

nuclear b-catenin, may turn into leukemic stem cells with self-

renewal capacity (173). Therefore, LSCs in blast phase of CML can

show different immunophenotypes: Lin–CD34+CD38−, Lin–

CD34+CD38+ or even CD34−, like LSCs in AML (62). Secondary

genetic lesions involve variety of changes – point mutations, gene

deletions/insertions, chromosomal translocations or changes in

number of chromosomes. Different mutations are found in

myeloid or lymphoid forms of blast phase. The most frequent

mutations occur within TP53, RUNX1, CDKN2A/B or IKZF1 genes.

Additional alterations in the BCR-ABL1 kinase domain are also

possible (174–179), but in general genetic and cellular heterogeneity

in chronic phase of CML is much lower than observed in AML (62).

The discovery that Philadelphia translocation drives the CML

and subsequent development of specific TKIs targeting the resulting

fusion protein revolutionized hematology (180, 181). This

achievement shows that is it possible to design a novel and

specific clinical strategy targeting the source of malignancy.

However, although the TKI therapy prolonged survival in many

CML patients, CML LSCs may be insensitive to conventional

treatment and persist during remission as a potential source of
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disease recurrence. Resistance can be primary or acquired due to

subsequent ABL1 kinase domain mutations (162, 182, 183). Despite

achieving even long-term molecular remissions, only minority of

CML patients can definitely discontinue TKIs treatment. Most

patients need prolonged therapy, even throughout their life (184).

TKIs inhibit LSCs proliferation, but do not induce effective

apoptosis, especially among quiescent LSCs, as their survival

seems to be BCR-ABL1 kinase independent (185–187). As total

eradication of LSCs by conventional therapy is unachievable,

alternative curative approaches involving kinase-independent

intrinsic or cell-extrinsic mechanisms are still necessary.
5 HSC and acute lymphoid leukemia

As long as AML and CML are considered as paradigmatic HSC-

source diseases, the role of HSCs in development of ALL is less

clear. ALL is a heterogenous hematologic cancer, in which

accumulated blast cells phenotypically resemble different stages of

lymphoid progenitors’ differentiation. The disease is mainly

diagnosed in children and young adults (incidence peak between

age of 2 and 5 years), in a form of B-cell acute lymphoblastic

leukemia (B-ALL) (>80% of ALL cases) (188). The most common

chromosomal alterations in B-cell type are hyperdiploidy, PAX5

alterations and recurring translocations: KMT2A rearrangements

(v; 11q23); t(12;21)(p13;q22) encoding ETV6-RUNX1; t(9;22)(q34;

q11) encoding BCR-ABL1; t(1;19)(q23;p13) encoding TCF3-

PBX1 (189).

Relevant observations about pediatric ALL come from

retrospective analyses of neonatal blood spots from Guthrie Card

and case studies on monozygotic twins with concordant acute

lymphoblastic leukemia (63, 104). A few independent analyses of

archived neonatal blood spots from hematooncological patients

revealed that majority of them were positive for tumor-specific

mutations at the time of birth (190–192). Thus, the first genetic

aberrations predisposing to pediatric B-ALL seems to arise in utero

(Figure 3). However, the prenatal event seem to be insufficient to

cause overt leukemia (with some exceptions like KMT2A

rearrangement). Monozygotic twins with concordant ALL can

have different subsequent alterations (193–195). In addition, the

latency period to clinical manifestation of leukemia can be variable.

In a reported case, one of the twins with concordant ALL was

diagnosed at the age of 14, 9 years later than the twin-sibling (196).

Overall, disease development time can be prolonged up to 15 years

after birth (197). Moreover, it is possible that only one twin from the

pair develops leukemia, whereas second remains healthy. The

concordance rate for disease development in twins ranges from at

least 50% for children under one year old with KMT2A-r ALL to

about 5–10% for other cases (104, 198). Concluding, these analyses

coherently draw the two-step model of childhood ALL

development. The first malignant transformation occurs

prenatally and initiates a clinically silent pre-leukemic clone. To

generate fully transformed cells, accumulation of secondary genetic

lesions is necessary to complement the primary oncogenic event

(199, 200). Fortunately, probability of transition from pre-leukemic

to leukemic state in non-KMT2A-r ALLs is relatively low. It is
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estimated that almost 99% of ETV6-RUNX1-positive pre-leukemic

clones never progress to clinical ALL (201).

Nevertheless, consensus about cellular origin of ALL is still

elusive. According to current theory, particular genetic mutations,

responsible for different types of B-ALL, occur at different levels of

hematopoietic tree (202). Furthermore, in pediatric ALL stem

cell hierarchy is disturbed, and phenotypically diverse blasts

have stem-like properties. All leukemic subpopulations with

CD34+CD19-, CD34+CD19+ or CD34-CD19+ immunophenotypes

have the capacity to engraft and reconstitute the leukemia in

immunodeficient mice (203, 204). This can be explained by the

study on mouse model showing that B cells have unusually high

degree of plasticity and under pathological condition, such as Pax5

mutation, can dedifferentiate at least to the state of early lymphoid

progenitors and produce functional T cells (205). Therefore,

similarity between leukemia stem cell phenotype and given

physiological B cell developmental stage is not necessarily

indicative of the cellular origin of the leukemia (206).

Likely, the hematopoietic stem cell population is also altered, at

least in some types of ALL. First, genes commonly mutated in ALL

are involved in early lymphoid priming of hematopoietic stem and

progenitor pool (207). Second, ALL recurrence is in majority caused

by blasts arising from a clone ancestral to the leukemia at time of

diagnosis (208). This builds rationale that HSCs are involved in ALL

development. Till now, studies show that role of HSCs differs in

various types of B-ALL with different etiological mechanisms.
5.1 ALL with ETV6-RUNX1

ETV6-RUNX1 is the most frequent chromosomal alteration in

ALL, related to almost 25% of pediatric B-ALL cases and probably

exclusive for childhood. ETV6-RUNX1 fusion gene (also known as

TEL-AML1) is the product of t(12;21)(p13;q22) translocation (209).

Fortunately, it is linked to a low-risk B-ALL and favorable treatment

outcome. The translocation is a classic example of prenatal

oncogenic event, occurring in utero and persisting postnatally

(210–212).

Few independent studies using mouse models indicate that

ETV6-RUNX1 oncogene acts on the level of the HSCs,

transforming them into pre-leukemic HSCs and cells-of-origin in

ALL (213, 214). The induction of t(12;21) translocation at the pro-

B-cell stage had no impact on B-cell development (200). Moreover,

sequence analysis of ETV6-RUNX1 breakpoints indicated that the

translocations predominantly occur before B-lineage commitment,

in cells lacking the expression of TdT or RAGs (110). Interestingly,

acquisition of ETV6-RUNX1 fusion does not cause any obvious

phenotype alterations in HSCs. ETV6-RUNX1-positive pre-

leukemic HSCs sustain normal hematopoiesis, quiescence, and

small population size without growth advantage. Therefore, they

can persist in the bone marrow and avoid exhaustion, but

simultaneously accumulate subsequent genetic lesions (214, 215).

ETV6-RUNX1-positive HSCs are not able to generate overt

leukemia themselves, but require secondary genetic mutations

(216). HSCs with the same ETV6-RUNX1 breakpoints give rise to
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B-lineage committed progenitors with different immunoglobulin

rearrangements (217, 218).

On the other hand, during full-blown leukemia, propagating

stem cells are likely committed to the B-lymphoid lineage (202).

Analysis of pediatric ALL samples revealed expanded CD34+CD38−

population (1.3% of all mononuclear cells (MNC); healthy subjects:

0.1–0.2%), consisting of two distinct subpopulations (1): major

abnormal CD34+CD38−CD19+ cell subpopulation (1.1% of MNC)

and minor CD34+CD38−CD19− cell subpopulation (0.2% of MNC).

In fluorescence in situ hybridization assay, all CD34+CD38−CD19+

cells but no CD34+CD38−CD19− cells carried the ETV6-RUNX1

fusion. In addition, all CD34+CD38+ progenitors were t(12;21)

positive. Importantly, no CD34+CD33+CD19− myeloid cells with

the fusion gene were identified, indicating that ETV6-RUNX1 fusion

did not occur at multipotent stem cell level (202).

Another study described a case of twins – first twin was

diagnosed with ETV6-RUNX1-positive B-ALL at age of 2 years

while second twin remained healthy. The leukemic twin carried the

CD34+CD38−/lowCD19+ cancer-propagating population in bone

marrow. Interestingly, the low number of CD34+CD38−/lowCD19+

cells (0.002% of MNC) was also detected in the healthy twin, but not

in hematologically normal age-matched children (219). The notable

difference was that the CD34+CD38−/lowCD19+ cells in leukemic

twin expressed CD10, while the same population in healthy twin

lacked CD10 expression. Thus, the CD34+CD38−/lowCD19+ may act

as preleukemic population. The question remains, what is the origin

of this population: 1) does the ETV6-RUNX1 fusion occur at HSC

level and trigger the aberrant CD34+CD38−CD19+ phenotype or 2)

the translocation arises in a B cell-committed progenitor that

acquires this phenotype, while the CD34+CD38−CD19−

compartment retains normal in size and phenotype, without

clonal involvement (202).
5.2 ALL with KMT2A rearrangements

Rearrangements of KMT2A gene are predominantly observed

in infant acute leukemias and confer unfavorable prognosis (220).

Despite advances in risk-adapted chemotherapy and novel

therapeutic agents, the prognosis is still poor (221). In

monozygotic twins concordance rate of developing ALL reaches

even 100% (198). This aggressive form of leukemia likely results

from biological properties of KMT2A fusion genes. This particular

mutation is sufficient for leukemogenesis and possibly the process of

malignant transformation is completed already in utero (63).

Additionally, KMT2A rearrangements likely occur in CD34+

CD19− cells (90, 222). Single-cell multiomic profiling reveals

that in the peripheral blood of infant patients there is small

population of cells that resemble HSPCs. This population

presents CD34+CD19− phenotype, express several canonical stem/

progenitor tissue factors and is negative for B cell developmental

genes. Simultaneously, some of these HSPC-like cells already carry

KMT2A rearrangement and are able to generate leukemia in NSG

mice (90). Nevertheless, we still lack the precise identification where

at the hematopoietic hierarchy the KMT2A rearrangement occurs.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1308709
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Filipek-Gorzała et al. 10.3389/fonc.2024.1308709
5.3 ALL with BCR-ABL

There are two types of t(9;22) translocations detected in some of

the ALLs: one results in BCR-ABLp210 fusion while the second in

BCR-ABLp190 fusion. The BCR-ABLp210-positive ALL likely

represents another malignancy in which HSCs are the cells-of-

origin (202). The fusion protein was observed in each analyzed

stem/progenitor compartment from ALL samples: CD34+CD38+,

CD34+CD38−CD19+ , CD34+CD38−CD19− as we l l a s

CD34+CD33−CD19+ pro-B cells or CD34+CD33+CD19− and

CD34−CD33+CD19− myeloid populations (202). These data

strongly suggests that BCR-ABLp210 fusion occurs in the stem

cell pool in this type of ALL. Nevertheless, BCR-ABLp210

translocation is relatively rare in case of ALL, but is a classical

hallmark of CML. Consistently, in both BCR-ABLp210-positive

ALL and BCR-ABLp210-postive CML, multipotent HSCs are the

cells of origin.

In contrast, t(9;22)-positive ALL with differently placed

breakpoint encoding BCR-ABLp190 fusion arises rather in B cell–

committed progenitor cells as CD34+CD38−CD19− population

remains normal in size and along with myeloid cells are negative

for BCR-ABL1p190 fusion (202). The different target population of

BCR-ABL1p190 and BCR-ABL1p210 hits reflects different biological

activity of these two forms of fusion protein (223).

6 HSC and chronic
lymphocytic leukemia

CLL is a lymphoproliferative neoplasm, characterized by an

accumulation of clonal mature B cells with aberrant expression of

CD5 and exclusively one type of immunoglobulin light chains (k or

l). The leukemic cells infiltrate bone marrow, blood and lymph

nodes. Presence of more than 5 × 103/µL B cells in peripheral blood

for at least 3 months is a clinical criterium for CLL diagnosis (224,

225). CLL could be divided in two groups based on somatic

hypermutations within the variable regions of immunoglobulin

heavy-chain (IGHV) in B-cell receptor (BCR). CLL subtype with

mutated BCRs (IGHV-M) has favorable prognosis while CLL with

unmutated BCRs (IGHV-UM) is linked to poor prognosis

(226, 227).

Virtually every case of CLL is preceded by a pre-leukemic state

called monoclonal B lymphocytosis (MBL) (228, 229). Patients with

MBL have fewer than 5 × 103/µL of circulating B cells, do not

present disease-related symptoms, but the B cells are already

monoclonal or oligoclonal. Patients with low-count MBL

(<0.5x103/µL B cells) are not expected to develop overt leukemia.

Patients with high-count MBL (with 0.5-5x103/µL of B cells) carry a

1–2% annual risk of progression to CLL (228–230). MBL is more

frequent in older individuals (3 to 5% of general population over the

age of 50 years) and can be detected up to 6 years before appearance

of overt leukemia. In 20%–70% of cases MBL consists of more than

one B cell clone (231). Similarly as in MBL state, in patients with

CLL more than one clone can be detected in up to 14% of

cases (232).
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Apart of MBL state, CHIP also increases the risk of developing

CLL. CHIP can be divided in two distinct groups: lymphoid (L-CH)

and myeloid clonal hematopoiesis (M-CH) (233). The L-CH is linked

to higher risk of CLL. However, L-CH is less frequent than M-CH,

and L-CH-mutations occur at different levels of hematopoietic

hierarchy (HSCs, immature lymphoid precursors, mature cells). In

contrast to MBL, L-CH involves all clonal populations regardless of

the status of IGH genes rearrangement (233).

The cellular origin of CLL is still unclear. Process of B cell

maturation is complex and involves many different stages where the

initial mutation may start the CLL leukemogenesis (234–238). One

of the models assumes the involvement of HSPCs in CLL

pathogenesis. Although this idea came up more than 20 years

ago, the first retrospective analysis of CD34+ populations from

CLL samples gave ambiguous results (239, 240). Genetic alterations

in CD34+ cells were present only in some patients, but provided the

proof of concept of possible early origin of CLL. The first study that

prospectively evidenced an early origin of CLL from HSCs was

presented by Kikushige et al. They observed that HSPC pool from

bone marrow of CLL patients was normal in number and

distribution of subpopulations (LT-HSCs, ST-HSCs, LMPP, MPP)

and did not have rearranged IGH genes, presenting germline

configuration. The number of B cell precursors (pro-B cells)

(CD34+CD38+CD10+CD19+) was increased 5-times on average,

but stil l presented polyclonal IGH rearrangement. In

xenotransplantation assay, purified CD34+CD38- HSCs from

patients with CLL could both regenerate their own population

and give rise to bilineage lympho-myeloid hematopoiesis, even

after serial transplantation experiments. On the contrary, neither

CD19+ CLL cells nor pro-B cells managed to make a stable

engraftment. However, transplanted CD34+CD38− HSCs

frequently gave rise to CD19+ B cells with typical CLL-like

phenotype, characterized by aberrant CD5 expression and mono-

or oligoclonal IGH rearrangement. Interestingly, the IGH

rearrangement in HSC-derived CLL-like cells was different from

the rearrangement observed in CLL cells from the patient.

Consistently, CLL-HSCs from single patient transplanted into

several mice simultaneously gave rise to B-cells clones with

distinct VDJ recombination (64). These results strongly support a

role of HSCs in development of CLL (241).

Other strategy to verify the role of HSCs in CLL is based on

analysis of typical for CLL genetic alterations among stem cell pool

and cells from non-lymphoid lineages. Well-known chromosomal

alterations in CLL are del13q14, del11q23, trisomy of 12 and del17p

(242). Although del13q14 and del11q23 were detected in purified

CD19+ CLL cells in some samples, none of them was detected

among CD34+CD38- HSCs or CD33+ myeloid cells from CLL

patients (64). Additionally, CLL-HSCs transplanted into

immunodeficient mice produced B cells without chromosomal

alterations found in original CLL clone. The possible explanation

is that these chromosomal alterations are not necessary for disease

initiation and occur later in B cell development. On the other hand,

CLL-HSCs showed high expression of early lymphoid transcription

factors including IKZF1 (IKAROS), TCF3 (E2A) and IRF8, what

likely caused the biased differentiation toward B cell lineage (64).
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Collectively, the study by Kikushige et al. suggests that HSCs

contribute to genesis of CLL. Although HSPC pool is not

contaminated with detectable CLL clones, the HSCs from CLL

patients already have biased differentiation toward B cell lineage.

These HSCs drive expansion of polyclonal B cell progenitors. Next,

auto- or xeno- antigens trigger BCR signaling, which expands

mono- or oligoclonal B cell populations. This results in

asymptomatic pre-leukemic state called MBL. MBL can further

progress into clinical CLL due to additional chromosomal or genetic

alterations (64, 241).

Next detailed studies based on mutation detection supported

the direct role of HSC in CLL. Damm et al. showed that mutations

in NOTCH1, SF3B1, TP53 and XPO1 genes were already present at

the level of CD34+ multipotent hematopoietic progenitors in the

majority of patients with CLL (243). Similarly, Quijada-Álamo et al.

demonstrated that mutations in NOTCH1, MYD88, FBXW7 and

XPO1 as well as chromosomal 11q and 13q deletions appeared in

CD34+CD19− hematopoietic progenitors (244). On the contrary,

TP53 and SF3B1 mutations occurred later in maturation (244).

Marsilio et al. analyzed different hematopoietic fractions: HSC plus

MPP (HSC+MPP, Lin−CD34+CD38lowCD45RA−CD90+/−);

downstream hematopoietic progenitor cell populations containing

CLP and CMP (Lin−CD34+CD38+); mature T cells (CD3+CD19−)

and monocytes (CD14+CD19−) in samples from CLL patients. They

demonstrated that in some cases the initial mutation occurred

already in cells with HSC or MPP phenotype (245). Moreover,

Agathangelidis et al. showed that ultra-stable CLL (lasting at least 10

years without progression), high-count MBL and low-count MBL

samples had similar genomic profiles. Polymorphonuclear cells

from the same CLL samples carried somatic mutations also

present in MBL/CLL clones (246). Altogether, this supports the

model of human CLL pathogenesis that begins with lymphoid

clonal hematopoiesis driven by initial mutation at the stem cell

level, through monoclonal B lymphocytosis, and ultimately overt

CLL as a result of continuous malignant genetic evolution (247).

Therefore, hematopoietic stem/progenitor cells can act as a cell-of-

origin in CLL.
7 HSC and other mature malignancies

Role of HSCs in development of mature malignancies remains

not fully understood. Nevertheless, several observations indicate the

possible contribution of HSCs to some types of mature

malignancies. S. Husby and K. Grønbæk proposed that initial

genetic hit in mature lymphoid diseases may occur at three

different levels: 1) immature or mature B/T cell, 2) progenitor cell

or 3) stem cell level (65). Current evidence suggests that

lymphomagenesis starts at stem cell level in at least some of the

mature lymphoid malignancies, involving CLL (described in the

chapter above), hairy cell lymphoma (HCL) and T-cell lymphoma

(TCL) (65).

Majority of patients with HCL carry BRAFV600E gene mutation

(248). Analysis of distinct subpopulations revealed that the

BRAFV600E mutation could be found not only in HCL cells, but
Frontiers in Oncology 12
also among lymphoid progenitors (defined as CD34+CD38high

CD10+CD19+), and HSCs (defined as CD34+CD38−CD90+

CD45RA−) (73). However, the BRAFV600E mutation was much less

frequent within HSCs in comparison to lymphoid progenitors, and no

mutation was found among myeloid progenitors (defined as

CD34+CD38+CD10−CD19−CD45RA+/−CD123+/−). Nevertheless,

transplantation of highly purified HSCs from an untreated HCL

patient to NSG mice gave rise to cells with HCL phenotype within 6

months, indicating the direct role of HSCs in HCL development.

Consistently, mice with BRAFV600E expression in stem and progenitor

cells (Mx-1-driven model) developed lethal hematological disease, in

contrast to mice with BRAFV600E expression restricted to B cells

(CD19-driven model), which did not present any hematological

phenotype (73). Altogether, the BRAFV600E mutation likely occurs

at HSCs level and initiates HCL development.

Next study investigated the role of HSCs in the development and

treatment of multiple myeloma (MM). Sridharan et al. described six

cases of patients with MMwho underwent autologous hematopoietic

cell transplantations (HCT) and later developed secondary

AML/MDS (sAML/sMDS) (74). First, they showed that TP53 and/

or RUNX1 mutations detected in sAML/sMDS, were already present

in HSPCs at the time of transplantation (HCT was usually years

before onset of sAML/sMDS). Second, in two cases the authors were

able to sequence CD138+ myeloma cells at time of diagnosis and

revealed that TP53mutation was the same inmyeloma cells and AML

blasts from sAML. The same mutations were also present in other

lineages (T cells and granulocytes). Nevertheless, frequency of the

particular mutations in HSCs was highly variable (from 0 to 55%

VAFs), what might indicate different kinetics and schemes of clonal

evolution between patients. These observations evidence that the

mutated CD34+CD38− stem/progenitor cells may contribute to both

MM development and therapy outcomes.

The prospective studies on mouse models evidenced possible

role of HSCs in development of B-lymphomas. One of the

frequently mutated genes in lymphomas is a transcriptional

regulator CREBBP (249). Horton et al. demonstrated that deletion

of CREBBP in HSPCs (Mx-1 driven model) led to development of

aggressive B-cell lymphomas (75). When CREBBP was removed in

lymphoid committed progenitors (CD19-driven model), lymphoma

occurred only occasionally and was much less aggressive. Moreover,

authors checked whether the CREBBP mutations occurred at stem

and progenitor level in 1 patient with diffuse large B-cell lymphoma

(DLBCL) and 2 patients with follicular lymphoma (FL), without

BM infiltration. The mutation was detected in one patient in

myeloid colonies derived from CD34+CD38+ cells, but no

mutation was present in colonies derived from CD34+CD38−

population. This may suggest that the CREBBP mutation occurs

in HSPC pool (CD34+CD38+ phenotype), but not necessarily at

stem cell level (CD34+CD38− phenotype).

Other studies using mouse models investigated the

development of mucosa-associated lymphoid tissue (MALT)

lymphoma. The genetic hallmark of MALT lymphoma is a

translocation of MALT1 gene (250). The expression of human

MALT1 under the Sca-1 promotor in mice led to expansion of

the HSPC pool. Murine Sca1+Lin− immature cells with human
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MALT1 expression had early priming toward B-cell differentiation

and initiated clonal hematopoiesis that later progressed to MALT

lymphoma. The malignant cells in mice reflected clinical,

histopathological, genetic, and molecular characteristic of human

MALT lymphomas (76). Furthermore, CD34+ cells from MALT

lymphoma patients had more than 700 differentially expressed

genes, in comparison to healthy controls. The most enriched

pathways were linked to inflammatory response and antigen

presentation. Thus, the pool of HSPCs may represent the origin

of MALT lymphoma. However current data cannot point precisely

whether MALT lymphoma starts at stem or progenitor level.

While some studies indicated the role of HSCs in some mature

B-cell malignancies, other failed to find similar evidence. Molecular

analysis on DLBCL or FL samples did not reveal CD34+ cells

involvement in lymphomagenesis (251, 252). In another study on

B-cell lymphomas, CD34+ cells were positive for CHIP-related

mutations, but not for mutations frequently found in B-cell

lymphomas (253). However, this may indicate that CHIP clones

contribute to B-cell lymphomas, while investigated mutations occur

at the level of more differentiated progenitors.

The mutational landscape of T-cell lymphomas also indicates

possible common source with clones driving CHIP. DMNT3A and

TET2 mutations are frequently detected in CHIP and preleukemic

phase of myeloid malignances (126). Interestingly, these mutations

are also found in patients with T-cell lymphoid malignances. In T-

cell lymphoma patients, the DNMT3A mutation was detected in

both T-lymphoma cells and the CD19+ blood fraction, whereas the

TET2 mutation was shared between neoplastic clone, B cells and

HSPCs (254, 255). The potential role of CHIP-related mutations in

T-cell lymphomas might be important in the light of autologous

chimeric antigen receptor (CAR) therapies. When patient’s own T-

cells already harbor the DMNT3A or TET2 mutations, the resulting

CAR-T cells might be source of secondary CAR-positive T-

lymphomas, however such cases seems to be very rare.

Mutations in DNMT3A and TET2 genes can be also detected in

classic Hodgkin lymphoma patients, but are rather infrequent (5 of

40 analyzed cases) (256). However, in some cases the malignant

Hodgkin/Reed-Sternberg cells did not carry the CHIP mutations,

which were frequent among other blood cells. This suggests that

there is possible indirect role of CHIP in development of blood

cancers. It is well evidenced that blood cells derived from CHIP

clones show pro-inflammatory activity (257, 258). In turn, chronic

inflammation may facilitate development of hematological

malignancies (256). Thus, the discrimination between the direct

(described as reservoir for driver mutations) and indirect,

proinflammatory effect of clonal hematopoiesis is not obvious.

Tracing the direct involvement of CHIP-related HSCs clones to

lymphomas is possible when MPN and lymphoma with common

mutations occur in the same patient. In 90% of these cases time

between MPN and lymphoma diagnoses is not longer than 5 years

(averagely 1,5 years) (259). One study described 3 cases of

angioimmunoblastic T-cell lymphoma (AITL) and concomitant

neoplasm from myeloid lineage with common mutations (260).

Moreover, one of those patients additionally developed genetically

related DLBCL. The common mutations were mainly in DNMT3A
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and TET2 genes, what builds rationale toward direct clonal

hematopoiesis involvement in pathogenesis of those malignancies.

Further evidence came from four patients with T-cell lymphomas of

T follicular helper cell origin who later developed myeloproliferative

neoplasms with the same CHIP-related mutations (261).

The mouse models also support the possible role of CHIP-

related mutations in driving lymphomas. When TET2 and

DNMT3A-mutated HSPCs were transplanted into primary

recipient mice, the animals developed AML or T-ALL. But after

secondary and tertiary transplantation, the recipient mice

predominantly developed lymphoma (T-cell angioimmunoblastic

subtype) (262). This shows that stem cells with CHIP-related

mutations may be the origin of T-cell lymphomas.

Other studies focused on cases with concurrent mantle cell

lymphoma (MCL) and CML. MCL and CML probably do not share

common cellular origin. The BCR-ABL1 translocation in CML

occurs at the stem cell level, but so far has not been detected in

lymphoma clones (263, 264). Moreover, MCL is insensitive to

specific TKI treatment against BCR-ABL1 fusion protein (263). In

these cases, the two diseases likely developed independently and do

not have genetic relationship. Nevertheless, this observation does

not rule out the possibility of stem cell origin in MCL (265). The

alternative explanation is that MCL and CML originate from

distinct HSC clones.

Finally, important observations came from autologous and

allogenic HCT. The presence of CHIP in lymphoma patients at

the time of autologous HCT is strongly associated with lower

survival and increased risk of therapy-related myeloid neoplasm

(266). There are also known cases of patients with MM who

developed sAML/sMDS after autologous HCT (74). Next, few

reports described the development of identical lymphoid

malignancies in both recipients and donors after allogenic HCT

(267–270). Molecular analysis revealed that in all cases the

lymphomas were derived from donor cells, even if the donors did

not have symptoms of malignancy at the time of transplantation.

Moreover, the latency periods between allogenic HCT and

diagnosis usually lasted several years and were similar in some of

the donor-recipient pairs, what may indicate involvement of long-

lived stem cells. However, in clinical settings the transplanted

material usually consists of whole mononuclear bone marrow or

mobilized blood, and stem cells constitute only minor part of the

graft. Thus, it is possible that the transplanted lymphoma

propagating cells were not necessarily a preleukemic stem cells.

Transforming mutation might occur at different than stem cell level,

but already warrants the self-renewal and drives the malignancy

after transplantation. Nevertheless, given the increasing number of

HCTs, including those for non-malignant hematological

conditions, screening of the graft for known CHIP mutations

might reduce the risk of graft-derived leukemia.

To sum up, several observations support the involvement of

early precursor cells in genesis of at least some types of mature

malignancies. The first mutations may originate in multipotent

stem or progenitor cells and initiate the expansion of clone which

has a potential to evolve into MPNs and/or lymphoid malignances

after accumulation of subsequent mutations.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1308709
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Filipek-Gorzała et al. 10.3389/fonc.2024.1308709
8 Perspectives and conclusions

The role of hematopoietic stem cells in hematologic

malignancies is a subject of intensive research. As the HSCs’

involvement is virtually undoubted in AML and CML, there is

also a growing body of evidence that stem cells contribute to at least

some types of ALL, CLL and even mature cell lymphomas. If the

assumptions about the preleukemic state of HSCs in different

hematologic neoplasms are accurate, they carry relevant

clinical implications.

An important issue is the discrimination between preleukemic

HSCs and measurable residual disease (MRD) (127). MRD refers to

leukemic cells resistant to chemotherapy and present in the

patient’s sample during follow up. Positive MRD is a strong

prognostic factor for subsequent relapse and shorter survival. Its

detection has major impact on the decisions on further therapy

(271). MRD analysis is mainly conducted by immunophenotyping

or molecular testing (272). The choice of the most appropriate

methodology for each case individually is a key point in obtaining

reliable results. On the one hand, MRD testing using early genetic

events like DNMT3amutations can involve also preleukemic clones

without overt transformation, giving falsely increased results (127).

On the other hand, late events, which are absent in preleukemic

cells, are significantly unstable during therapy (134). Thus, MRD

monitoring using late events can lead to falsely decreased or even

negative results, when the clonal evolution drives the expansion of

leukemic cells with novel mutation. Nevertheless, even if

preleukemic state does not define the disease itself or directly give

raise to a leukemic clone, higher preleukemic burden is correlated

with poor overall and relapse-free survival (137, 143).

The crucial clinical question is whether preleukemic HSCs can

drive leukemia relapse. One possibility is that the re-emergence of a

disease is likely caused by incompletely eradicated cells, likely

leukemia/malignant stem cells, from a primary dominant clone or

its progeny. However, extensive genetic analysis of 8 AML patients

indicated that relapse evolved from a minor subclone present at

diagnosis (133). Thereby, it cannot be excluded that the new clones

arise from preleukemic HSCs (Figure 5) (135). As it was elegantly

evidenced, preleukemic HSCs are resistant to standard

chemotherapy and can persist during remission (46). Induction

therapy in AML patients leads to the expansion of non-leukemic

hematopoietic clones, with typical preleukemic mutations (273).

Moreover, current methods of therapy are strongly mutagenic

themselves, so it is possible that preexisting preleukemic HSCs

acquire additional genetic alterations and transform into fully

leukemic cells (57).

The capacity of HSCs to restore the whole hematopoietic system

is a basis of HCT (274). To underline the core role of HSCs in HCT,

the procedure is often referred to as hematopoietic stem cell

transplantation (HSCT). However, it is important to state that the

term “HSCT” is misleading, as the functional HSCs represent a

minor fraction of the transplanted material, and only in rare cases

are enriched using the CD34 antigen (275). The importance of

preleukemic HSCs is especially evident in the context of autologous

HCT in the treatment of blood malignancies. Autologous HCT is

predominantly used in MM (almost 50% of autologous HCT), non-
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Hodgkin lymphoma, or Hodgkin lymphoma (274). However, if the

preleukemic HCSs contribute to different types of lymphomas and

MM, the autologous HCT carries the risk of reinfusion of

preleukemic HSCs that may drive the relapse or development of

secondary neoplasm. Furthermore, even if HSCs carry a small set of

asymptomatic genetic lesions, genotoxic treatment or conditioning

facilitates further malignant transformation. This may contribute to

neoplasm relapse after autologous HCT. Given that the typical

preleukemic mutations occur in epigenetic factors, which regulate

multilineage differentiation, the preleukemic HSC may drive

therapy-related malignancies of different blood lineages (266).

However, allogenic transplantation can also be the source of

preleukemic HSCs. There are many reports about so-called donor-

derived leukemias or even co-occurrence of neoplasms in donor

and recipient several years after allogenic HCT (276–278). Despite

prior examination, the candidates for stem cell donors can

asymptomatically carry abnormal HSCs, which would be

harvested for transplantation and infused to the donor. Therefore,

the detection of preleukemic mutations among donors for allogenic

HCT would minimize the cases of donor-derived leukemias.

Finally, if the hypothesis about HSCs being a primary cells-of-

origin in different hematologic neoplasms turns out to be true, it

opens new perspectives for disease prevention. It is well evidenced

that in adult neoplasms the period from the first oncogenic hit to

clinical manifestation usually takes several years (127). This brings

up the question whether it is possible to block the stream of somatic

evolution and leukemia development at the early stages by detecting

and eradicating preleukemic HSCs. Similarly, the presence of ALL-

predisposing preleukemic HSCs could be checked during newborn

blood spot screening and eradicated with targeted therapy.

It remains unclear to what extent the preleukemic cells can be

removed by the immune system. The low mutation burden of

preleukemic cells likely results in lower number of neoantigens,

which can be recognized by T cells. Nevertheless, even in case of

childhood leukemia, characterized by the low number of mutations

in comparison to adult leukemias, the neoepitope landscape

contains some possible targets (279, 280). It cannot be excluded

that the preleukemic cells already have the immune evasive

mechanisms allowing them to escape from recognition and

elimination by the immune system, such as downregulation of

antigen presentation, triggering co-inhibitory receptors on T cells

(PD-1, TIM-3) or overexpression of ligands for anti-phagocytic

receptors (CD47) on macrophages, which are typical for fully

transformed leukemic cells (281).

The universal link between factors that contribute to

development of premalignant state and further somatic evolution is

the excessive or chronic inflammation. Understanding of

those processes may possibly be used to prevent leukemic

transformation. In case of childhood ALL there is a possible link

between overactivation of immune response in case of insufficient

exposure to common pathogens during infancy. This might provide

rationale to propose non-specific “vaccines” for infants that would

stimulate a mild, controlled immune response, which in turn would

allow to avoid overactive, possibly leukemogenic, immune reactions

during later childhood.We also know the common mutations related

to CHIP. Thus, would it be possible to develop an anti-inflammatory
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therapy specific to the immune pathways related to these mutations?

These are examples of how the recent research on premalignant states

envisions new therapeutic possibilities.

Finally, to avoid the risk of relapse or de novo blood neoplasms

and to improve the safety of the HCT procedure, the novel strategies

would have to prospectively differentiate preleukemic HSCs from

non-mutated HSCs. But up to date, there are no markers specific for

preleukemic HSCs (126). Nevertheless, some studies on mouse

models propose a few markers to categorize a heterogenic pool of

strictly defined murine HSCs (27). We and others showed that it is

possible to prospectively isolate minor fractions of lineage-biased

HSCs (23). The Neo-1+Hoxb5+ HSCs in mice show myeloid bias

upon transplantation and a higher proliferation rate. Importantly,

this fraction represents a minority in young individuals, but

significantly expands during aging (23). The phenomenon of age-

related myeloid-bias is observed also in humans (28, 282). While

likely these myeloid-biased subpopulations are not mutated yet, it is

tempting to hypothesize that they may be the origin of preleukemic

HSCs, at least in myeloid malignancies (Figure 6). Additionally, there
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are other lineage-biased HSC fractions described (15). They may

represent the source of preleukemic HSCs in case of other than

myeloid malignancies or different age groups (see Box 3 considering

pediatric and adult leukemias).

Altogether, all of the mentioned possibilities require specific

molecular or cellular markers, by which the abnormal cells can be

prospectively isolated. We suspect that preleukemic HSCs present

different gene expression profiles and functional properties than

normal HSCs that not only increase their self-renewal, but affect

their interactions with bone marrow niche, together leading to

clonal advantage. Revealing these distinctive marks may facilitate

compiling the protocols for distinguishing and targeting

preleukemic HSCs. As preleukemic HSCs predominantly harbor

mutations in epigenetic factors, epigenetic modification agents

could be a promising tool to re-establish the physiology of the

hematopoietic stem cell population. Nevertheless, all these

mentioned possibilities require strict consideration in the context

of real clinical usage, technical requirements as well as ethical and

economic aspects.
B

A

FIGURE 5

Possible mechanisms of relapse in AML after initial treatment and remission. (A) One possibility is that chemotherapy fails to eradicate LSCs that
reconstitute the outburst of the leukemic blasts. (B) Alternative model assumes that chemotherapy eradicates the malignant LSCs, but causes new
mutation in preleukemic clones, that in turn results in new clones of LSCs and leukemia relapse.
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To conclude, there is a growing amount of evidence indicating

an active contribution of preleukemic HSCs to different

hematologic malignancies. Preleukemic HSCs can be present not

only in AML and CML – the paradigmatic HSC-source diseases, but

may also be involved in other types of leukemia or tumors with

mature cell phenotype. This exposes the possible next directions of

clinical applications and opens new perspectives for disease

prevention and treatment.
Author contributions

JF-G: Visualization, Writing – original draft, Writing – review

& editing. PK: Visualization, Writing – review & editing. AS:

Writing – review & editing. KS: Conceptualization, Funding

acquisition, Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. The work is

supported by Narodowe Centrum Nauki Harmonia Grant nr 2018/

30/M/NZ5/00869 and European Research Council Starting Grant

“StemMemo” nr 101041737 granted to KS and by the Strategic

Programme Excellence Initiative at Jagiellonian University.
Frontiers in Oncology 16
Acknowledgments

All figures were created using BioRender.com.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Correction note

A correction has been made to this article. Details can be found

at: 10.3389/fonc.2025.1633832.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
FIGURE 6

The potential role of lineage-biased HSCs in hematopoietic malignancies. Several studies evidenced the presence of self-renewing subpopulations
of HSCs that are multipotent, but show preferential differentiation toward selected lineages, eg. myeloid. The lineage-biased HSCs expand during
aging and therefore might be predisposed to accumulate mutations.
BOX 3 Pediatric versus adult leukemias » same names ≠ same diseases.

It is becoming more and more clear that pediatric and adult acute leukemias have significantly different biology. Studies by Dr. Meshinchi and his colleagues showed that the
biological characteristics of AML are distinct in various age ranges and pediatric AML significantly differs when compared to adult AML (283). Adult AML is characterized by
multiple mutations and alterations, accumulated over a long period of time. Leukemic cells from young patients predominantly carry structural alterations with a small number
of DNAmutations. These few DNA alterations usually relate to specific genes, variants, hotspots or prevalence rates, different from that observed in adults (284, 285). Moreover,
the genomic profile of childhood AML is very diverse as only a small subset of the mutations and structural alterations recurs within an observed group. That makes each case of
pediatric AML more unique (283). Similarly, significant differences in gene profiles appear between pediatric and adult ALL (286, 287). These observations provide a rationale
that pediatric and adult acute leukemias are distinct entities with different pathogeneses and treatment strategies.
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