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Epithelial–mesenchymal transition (EMT) is a complex physiological process that

transforms polarized epithelial cells into moving mesenchymal cells. Dysfunction

of EMT promotes the invasion and metastasis of cancer. The architectural

transcription factor high mobility group AT-hook 2 (HMGA2) is highly

overexpressed in various types of cancer (e.g., colorectal cancer, liver cancer,

breast cancer, uterine leiomyomas) and significantly correlated with poor survival

rates. Evidence indicated that HMGA2 overexpression markedly decreased the

expression of epithelial marker E-cadherin (CDH1) and increased that of vimentin

(VIM), Snail, N-cadherin (CDH2), and zinc finger E-box binding homeobox 1

(ZEB1) by targeting the transforming growth factor beta/SMAD (TGFb/SMAD),

mitogen-activated protein kinase (MAPK), and WNT/beta-catenin (WNT/b-
catenin) signaling pathways. Furthermore, a new class of non-coding RNAs

(miRNAs, circular RNAs, and long non-coding RNAs) plays an essential role in

the process of HMGA2-induced metastasis and invasion of cancer by

accelerating the EMT process. In this review, we discuss alterations in the

expression of HMGA2 in various types of cancer. Furthermore, we highlight the

role of HMGA2-induced EMT in promoting tumor growth, migration, and

invasion. More importantly, we discuss extensively the mechanism through

which HMGA2 regulates the EMT process and invasion in most cancers,

including signaling pathways and the interacting RNA signaling axis. Thus, the

elucidation of molecular mechanisms that underlie the effects of HMGA2 on

cancer invasion and patient survival by mediating EMTmay offer new therapeutic

methods for preventing cancer progression.
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1 Introduction

The extracellular matrix (ECM) is a non-cellular support

structure that exists in all tissues, and each organ has a unique

ECM composition (1). Apart from a support structure for tissue

architecture, the ECM is actually a dynamic compartment that

modulates and regulates cell functions, such as adhesion,

migration, proliferation, and differentiation (2, 3). It is composed

of numerous matrix macromolecules, including collagen, laminin,

elastin, fibronectin, and hyaluronic acid (4, 5). Epithelial–

mesenchymal transition (EMT) is an important physiological

process through which polarized epithelial cells are transformed

into moving mesenchymal cells (6). The main phenotypic changes

in EMT are the downregulation of E-cadherin (CDH1) and the

upregulation of vimentin (VIM) (7). EMT is active during

embryonic development, invasion, metastasis, and therapeutic

resistance in cancer (6).

The progression of EMT is influenced by the expression of multiple

transcription factors, such as high mobility group AT-hook 2

(HMGA2) (8, 9). The HMGA proteins act as non-histone

components of chromatin (10) and participate in regulating

chromatin structure and DNA recombination (11, 12). The HMGA

family consists of two members, HMGA1 and HMGA2, which play

important roles in several processes (e.g., gene regulation, cell cycle

changes) (13, 14). HMGA2 is relatively abundant in the early embryo

and most types of cancer; however, it exhibits lower expression in adult

tissues (15, 16). Research has shown overexpression of HMGA2 in a

variety of cancers [e.g., colorectal cancer (CRC), liver cancer, breast

cancer (BC), and uterine leiomyomas], suggesting an essential role in

tumor development and invasion (17–20). Furthermore, clinical

studies have revealed a significant correlation between the expression

of HMGA2 in tissue samples and the grading and metastasis of cancer,

as well as the survival rate of patients with cancer (21, 22). Wu et al.

demonstrated that high levels of HMGA2 were significantly correlated

with poor survival of patients with BC, particularly those with stage II–

III disease. In addition, gene set enrichment analysis indicated that

HMGA2 expression was positively correlated with gene expression of

the mesenchymal phenotype (23). HMGA2 expression is obviously

increased in BC, and interference with HMGA2 can inhibit the

metastasis and invasion of tumors (24). Moreover, the expression

levels of EMT-related proteins were decreased after interfering with

HMGA2 expression (24). Similarly, another study has shown that

HMGA2 induced metastasis of human epithelial cancers by activating

the expression of transforming growth factor beta type II receptor

(TGFbRII) (8). Activation of the EMT process was regarded as a major

driver of aggravation from tumorigenesis to metastasis (25). Moreover,

an in-vitro study strongly suggested a key role of HMGA2 in EMT (26,

27). Most previous studies demonstrated that HMGA2 plays a key role

in cancer growth, invasion, and the EMT phenotype, which involved

the interactions of multiple signaling proteins and non-coding RNAs

(28, 29).

Therefore, targeting HMGA2 for the regulation of EMT may be

an important strategy for combating tumor metastasis, recurrence,

and drug resistance. In this literature review, we highlight the EMT-

induced role of HMGA2 in tumor development and invasion and

discuss signaling pathways that may be affected by HMGA2.
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According to available evidence, HMGA2 suppression may be a

promising target for cancer therapy.
2 Physiological function of HMGA2

The HMGA family includes four subtypes, namely, HMGA1a,

HMGA1b, HMGA1c, and HMGA2 (30, 31). Among them,

HMGA1a–c are different splicing products of the HMGA1 gene,

while HMGA2 is a gene product of HMGA2 (32). As amember of the

HMGA family, HMGA2 comprises five exons. The first three exons

contain DNA-binding domains (termed AT-hook motifs) (15, 33).

The “AT-hook” DNA-binding motif contains a unique palindrome

sequence PGRGP, surrounded by one or two positively charged

amino acids (i.e., lysine or arginine) on each side (34, 35). This

special structure facilitates the binding of HMGA2 to the AT-rich

regions and an acidic C-terminal tail in the small grooves of DNA.

This leads to ordered changes in DNA structure and further affects

several processes (e.g., changes in chromatin structure, DNA damage/

repair, DNA replication and transcription) (36–38). It is also possible

to activate the transcription of target genes by competing with the

junction histone H1 to open dense chromatin (39). HMGA2 is highly

expressed in the early developmental stage and participates in the

differentiation of mesenchymal stem cells during fetal development

(40). However, it remains silent in normal mature tissues, except for

lung tissue, kidney tissue, and synovial tissue (41, 42). The loss of

epithelial markers and the acquisition of mesenchymal markers are

typical characteristics of EMT, which play a key role in embryonic

development (43). It was reported that high expression of HMGA2 in

cancer changes the cell phenotype from epithelial to mesenchymal

(44). In non-small cell lung cancer (NSCLC), the protein phosphatase

4 regulatory subunit 1 (PPP4R1) interacts with HMGA2 to promote

cell migration and metastasis via activating EMT (45). Furthermore,

Kou et al. suggested that HMGA2 facilitated metastasis and the EMT

process in renal cell carcinoma cells by the TGFb/SMAD2 pathway

(46). In prostate cancer, AMPK plays a critical role in the promotive

effect of HMGA2 on EMT (47). Similarly, another study revealed that

HMGA2 was a direct regulatory target for various EMT-related non-

coding RNAs (43). Therefore, HMGA2may be essential in regulating

the EMT process in cancer (Figure 1).
3 Regulatory role of the HMGA2 axis
in the EMT process in cancer

3.1 Gastric cancer

EMT is a key factor in the invasion and metastasis of gastric

cancer (GC) (48). It was demonstrated that the transcription factors

zinc finger E-box-binding homeobox 1 (ZEB1) and Snail induced

EMT by suppressing the expression of CDH1 (49–51). Analysis of

surgical specimens of GC and clinical pathological data from

patients with cancer showed that HMGA2 overexpression was

compared with normal epithelium (52). However, HMGA2

knockdown obviously increased the expression of CDH1 and

decreased that of N-cadherin (CDH2), ZEB1, and Snail (52).
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Moreover, similar research found that HMGA2 decreased the

expression levels of Snail and b-catenin in GC cells, indicating

that HMGA2 may promote the migratory capacity of GC cells by

regulating EMT (53). The key role of the WNT/b-catenin pathway

in regulating cell adhesion and migration is closely related to EMT

(54, 55). Zha et al. demonstrated that HMGA2 induced the EMT

phenotype by targeting the WNT/b-catenin pathway in MKN45

cells (56) (Figure 1). Dysfunction of non-coding RNAs has been

associated with the development of malignant tumors (57, 58).

Accumulating evidence indicates that HMGA2 primarily acts as a

downstream factor of long non-coding RNAs (lncRNAs) for

regulating tumor progression (59, 60). Overexpression of

circ_0000267 in GC tissues and cell lines is related to cancer

progression through regulation of the miR-503-5p/HMGA2 axis

(61). In GC stem cells, it was demonstrated that knockdown of

FEZF1 antisense RNA 1 (FEZF1-AS1) suppressed GC stem cell

progression. Notably, FEZF1-AS1 promoted EMT, invasion, and

migration of GC stem cells via the miR-363-3p/HMGA2 pathway

(62). Collectively, these results indicated that HMGA2 may be a key

target for inhibiting EMT in GC progression.
3.2 Lung cancer

The functions of HMGA2 in lung cancer have been studied

extensively (63, 64). For instance, HMGA2 promoted proliferation,
Frontiers in Oncology 03
apoptosis, and EMT in lung cancer cells and was a biomarker for

lung adenocarcinoma (64). Li et al. presented evidence indicating

that the loss of three transcription factors (i.e., Foxa2, Cdx2, and

Nkx2-1) is sufficient to induce the upregulation of Tks5long,

HMGA2, and the EMT mediator Snail (65). In addition, PPP4R1

cooperated with HMGA2 to promote EMT by activating the

mitogen-activated protein kinase/extracellular signal-regulated

kinase (MAPK/ERK) signaling pathway, thereby accelerating

migration and invasion in NSCLC (66). The interaction between

miRNAs and HMGA2 to promote EMT in lung cancer has been

demonstrated. It was shown that miR-195 could target and

downregulate HMGA2 to induce EMT and proliferation in lung

cancer cells (43). As a negative regulator of tumors, fragile histidine

triad diadenosine triphosphatase (FHIT) can inhibit metastasis in

lung cancer (67). Overexpression of FHIT leads to the

downregulation of the EMT-related genes VIM and fibronectin.

This effect is exerted by activating miR-30c/HMGA2 to decrease

HMGA2 (67). In addition, miR-150-5p expression was significantly

suppressed in cancer stem cells, and this observation may be related

to disease progression and poor survival in patients with lung

cancer. Overexpression of miR-150-5p significantly suppressed

the metastasis of NSCLC cells by directly targeting HMGA2

signaling (68). Furthermore, circular RNAs (circRNAs) also play

an important regulatory role in the miRNA/HMGA2 pathway. For

example, interference of circ_100565 is in favor of NSCLC cell

progression by targeting the miR-506-3p/HMGA2 axis (69).
FIGURE 1

Dysfunction of epithelial–mesenchymal transition (EMT) is an important factor promoting the invasion and metastasis of cancer. HMGA2
overexpression decreased the expression of epithelial marker CDH1, whereas it increased the levels of VIM, Snail, Slug, and FN by targeting the
TGFb/SMAD, MAPK, and WNT/b-catenin signaling pathways. Furthermore, new classes of non-coding RNAs (miRNAs, circRNAs, and lncRNAs) play
an essential role in the process of HMGA2-induced metastasis and invasion of cancer by accelerating the EMT process. CDH1, cadherin 1; circRNAs,
circular RNAs; b-catenin, beta-catenin; FN, fibronectin; HMGA2, high mobility group AT-hook 2; lncRNAs, long non-coding RNAs; MAPK, mitogen-
activated protein kinase; TGFb, transforming growth factor beta; VIM, vimentin.
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3.3 Colorectal cancer

Most previous studies in CRC demonstrated that HMGA2

contributed to disease progression and was associated with poor

patient survival (20, 28, 70). EMT is a key biological process in the

progression and invasion of CRC cells (71–73). Research

demonstrated that HMGA2 was regulated by directly binding to

the fibronectin 1 (FN1) and interleukin 11 (IL11) promoters. This

process accelerates EMT in CRC cells via the phosphorylated signal

transducer and activator of transcription 3-dependent (STAT3-

dependent) pathway (28, 74). In addition, HMGA2 short-hairpin

RNA (shRNA) attenuated the proliferation and invasion, while

exogenous HMGA2 expression induced an increase in epithelial

markers and a reduction in mesenchymal markers. These effects

were achieved by binding to the regulatory area of Slug (75).

Notably, HMGA2 plays an essential role in the regulation of the

EMT phenotype in CRC, which is associated with miRNA

regulation (75, 76). In CRC, highly expressed long intergenic

non-protein coding RNA 963 (LINC00963) was related to poor

prognosis. LINC00963 promoted the expression of EMT-related

genes and invasion of CRC through the miR-532-3p/HMGA2

pathway (77). Acting as an inhibitory regulator of upstream

genes, overexpression of miR-194 suppressed the expression of

HMGA2, thereby improving the cell survival, EMT process, and

drug resistance in CRC (78). Similarly, increased miR-330 levels

also reduced the phosphorylation of AKT and STAT3 and

downregulated the expression of SMAD3, Snail, and vascular

endothelial growth factor A (VEGFA) by suppressing HMGA2

(44, 79). Moreover, it was demonstrated that tumor protein p53-

induced (TP53-induced) miR-1249 suppressed the disease

progression and angiogenesis by regulating the VEGFA-mediated

AKT/mechanistic target of rapamycin kinase (AKT/mTOR)

pathway. This observation further supported that TP53-induced

miR-1249 inhibited the EMT in CRC by targeting VEGFA and

HMGA2 (80). Numerous studies reported that dysregulated

expression of circRNAs participates in the pathological processes

of CRC (26, 45, 81). NOP2/Sun RNA methyltransferase 2

(NSUN2) is an N6-methyladenosine-modified circRNA highly

expressed in CRC cells and patients. It has been shown to

enhance the stability of HMGA2, increase CDH1 expression, and

decrease VIM expression. These findings suggested that circRNA

NSUN2 accelerates the EMT process in CRC cells by targeting the

HMGA2 pathway (82). Additionally, circRNA 100146 was highly

expressed in CRC patients and cells. Knockdown of circRNA

100146 in CRC cells disrupted the proliferation and EMT by

sponging the miR-149/HMGA2 pathway (33257506). The

c i r cRNA in exosomes par t i c ipa ted in in t e r ce l lu l a r

communication and may be closely related to tumor metastasis

(83). It was found that exosomal circRNA poly(A) binding protein

cytoplasmic 1 (PABPC1) promoted the EMT-mediated CRC liver

metastasis by increasing the expression of HMGA2 and bone

morphogenetic protein 4/ADAM metallopeptidase domain (19

BMP4/ADAM19) (84). To some extent, these research studies

revealed the role of HMGA2 and the potentially involved

mechanism in CRC.
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3.4 Breast cancer

BC remains the main cause of cancer-related disease burden in

women (85). EMT leads to the development of drug resistance in

BC cells, and inhibition of the EMT process can improve drug

sensitivity (86, 87). Accumulating evidence has shown that HMGA2

is highly expressed in patients with BC. This high expression was

positively related to advanced tumor grade. Moreover, HMGA2

enhanced the migratory and invasive abilities of BC cells by

inducing EMT (23, 88, 89). Multiple signal proteins play essential

roles in the process of HMGA2, participating in the metastasis and

invasion of BC by accelerating EMT. Kolliopoulos et al. investigated

HMGA2-depleted cells, which were stimulated with TGFb. Genes
known to be upregulated during EMT, such as Snail, serpin family E

member 1 (SERPINE1), and FN1, were suppressed. This evidence

reinforced the key role of HMGA2 in TGFb-induced EMT (38). In

addition, the WNT10B network b-catenin/HMGA2/enhancer of

zeste 2 polycomb repressive complex 2 subunit (b-catenin/
HMGA2/EZH2) signaling was related to survival and metastasis

in triple-negative BC (90). Similarly, in triple-negative BC, HMGA2

suppressed the ubiquitination of Yes-associated protein (YAP) and

modulated YAP stability, thereby regulating the EMT in tumors

(24). Furthermore, the knockdown of combined HMGA2 and BTB

domain and CNC homolog 1 (BACH1) obviously decreased cell

migration and EMT. These results suggested that combined

targeting of HMGA2 and BACH1 is an effective therapeutic

strategy for treating BC (91). It has been indicated that cancer

stem cells may arise from non-stem cancer cells upon

microenvironment signals (92). A study demonstrated that the

Lin-28B/let-7/HMGA2 axis was activated by STAT3/nuclear

factor kappa B (STAT3/NFKB) to regulate the EMT/cancer stem

cell formation; of note, HMGA2 plays a major role in this axis (93).

Recently, the differential expression of clinical pathological factor-

related miRNAs has been associated with HMGA2-induced EMT.

For instance, miR-33b was lowly expressed in BC tissues and

suppressed the EMT progress and invasion of BC despite

targeting HMGA2, spalt-like transcription factor 4 (SALL4), and

twist family bHLH transcription factor 1 (TWIST1) (94).

Furthermore, acting as a negative regulatory factor, miR-143-5p

could decrease VIM and CDH2 protein expression and increase

CDH1 protein expression by directly targeting HMGA2 (95).

Research that focused on the effects of modifications on miRNA

has demonstrated that N6-methyladenosine modification of RNAs

is crucial for cancer progression (96). Zhao et al. reported that

methyltransferase 3, N6-adenosine-methyltransferase complex

catalytic subunit (METTL3) regulated EMT in BC by targeting

the metastasis-associated lung adenocarcinoma transcript 1/miR-

26b/HMGA2 (MALAT1/miR-26b/HMGA2) pathway. This finding

may provide an array of new therapeutic targets, including

HMGA2, for the treatment of BC (97). In addition, new classes of

non-coding RNAs (circRNAs and lncRNAs) play an essential role

in the process of HMGA2-induced metastasis and invasion of BC by

accelerating the EMT process. In BC, the upregulated expression of

circHMCU favored disease progression; circHMCU promotes cell

proliferation and metastasis by binding to HMGA2 (98). As an
frontiersin.org
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example of regulation of the lncRNA/HMGA2 pathway, the

lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) that

targeted the miR-211/HMGA2 axis can contribute to the EMT

p h e n o t y p e , t h u s p r omo t i n g BC m e t a s t a s i s a n d

chemoresistance (99).
3.5 Esophageal cancer

In esophageal cancer, the high expression of HMGA2 plays an

essential role in regulating EMT (100). Esophageal squamous cell

carcinoma (ESCC) is currently the most common type of

esophageal tumors. Currently, research is mainly focused on non-

coding RNAs as the molecular mechanisms related to HMGA2

during EMT in esophageal cancer (100). Mechanistic analysis

revealed that miR-490-3p is bound to the 3′-untranslated region

of HMGA2 to downregulate its expression. This effect suppressed

the invasion, migration, and EMT of ESCC cells (101). It was

elucidated that HMGA2 functions as an oncogene; silencing

HMGA2 decreased the expression levels of CDH2, VIM, and

Snail in ESCC cells by negatively regulating miR-204-5p (72).

However, miR-125b-5p acts as an upstream target; its

overexpression suppresses cell invasion by decreasing HMGA2 in

ESCC (102). In addition, upregulation of hsa_circ_0006948 can

promote the proliferation, migration, and invasion of ESCC cells.

These effects are exerted by sponging miRNA-490-3p to increase

HMGA2 expression (103).
3.6 Other types of cancer

An increasing body of evidence has shown that HMGA2 is

overexpressed in most tumor tissues or cancers, except for GC,

NSCLC, CRC, BC, and esophageal cancer, also including thyroid

cancer, bladder cancer, endometrial cancer, cervical cancer, tongue

cancer, and kidney cancer (104–109) (Table 1). High expression of

HMGA2was associated with EMT andmetastasis and predicted poor

prognosis in patients with cancer (104–106, 125, 126). Recent

research showed that exosomal HMGA2 from the Epstein–Barr

virus promoted tumor metastasis and EMT (109). Data

demonstrated that HMGA2 can regulate the TGFb/SMAD and

MAPK signaling pathways to induce tumor cell invasion and

migration. For example, knockdown of HMGA2 significantly

inhibited EMT in nasopharyngeal carcinoma cell lines by targeting

the TGFb/SMAD3 signaling pathway (105). In addition, in renal cell

carcinoma cells in vitro, overexpression of HMGA2 facilitated the

EMT process through the TGFb/SMAD2 signaling pathway (46).

Similarly, activation of the TGFb signaling pathway may be a key step

in EMT, induced by HMGA2 in human epithelial cancers (8).

Furthermore, the upregulation of HMGA2 induced EMT

phenotypes through regulation of the MAPK pathway (47).

Transcription regulatory factors also promoted the transfer and

expression of HMGA2, thereby promoting the growth and

metastasis of ovarian cancer (110). Massive miRNAs have been

clarified to affect EMT and invasion of cancers through regulating

the expression of HMGA2. In endometrial cancer, cell proliferation
Frontiers in Oncology 05
and the EMT were promoted after HMGA2 overexpression which

resulted from miR-302a-5p/367-3p downregulation (107).

Furthermore, miR-302a-5p/367-3p and miR-142-3p act as tumor-

suppressive miRNAs, playing a key role in the regulation of EMT by

targeting HMGA2 in human cervical cancer (117). In addition, miR-

219-5p and miR-154 suppressed the growth and EMT of prostate

cancer cells by directly sponging the expression of HMGA2 (114,

115). In laryngeal squamous cell carcinoma, HMGA2 expression was

negatively related to the levels of miR-98, and the miR-98/HMGA2/

periostin (miR-98/HMGA2/POSTN) axis played an important role

in reversing EMT (112). Furthermore, it has been reported that miR-

101, miR-204-5p, miR-485-5p, and miR-150 reverse metastasis and

EMT by targeting the HMGA2 (29, 111, 113, 116, 118). Another

research study demonstrated that miR-33b reversed the EF24-

mediated suppression of EMT by suppressing HMGA2 expression

in melanoma (127). It was found that lncRNAs significantly affect the

EMT of cancers by modulating the miRNA/HMGA2 axis. In tongue

squamous cell carcinoma cells, HOXA distal transcript antisense

RNA (HOTTIP) knockdown suppressed the cell migration and EMT

by the miR-124-3p/HMGA2 axis, and the H19/let-7a/HMGA2/EMT

pathway was also involved in the regulation of EMT (123, 124). In

addition, in nasopharyngeal carcinoma, HOXC13 antisense RNA

(HOXC13-AS) promoted EMT-induced invasion via regulating the

miR-383-3p/HMGA2 pathway (121). Similarly, modulation of the

miR-424-5p/HMGA2 pathway by LINC01116 indicated a potential

pathway for overcoming the resistance of osteosarcoma to

chemotherapy (122). In addition, the small nucleolar RNA host

gene 16/let-7b-5p/HMGA2 (SNHG16/let-7b-5p/HMGA2) axis and

the lncRNA LINC00355/miR-424-5p/HMGA2 axis play an

important role in the EMT of cancers. Suppression of these

signaling axes can prevent tumor metastasis (69, 122, 128, 129).

Apart from lncRNAs, circRNAs (as upstream regulatory targets)

affect EMT in cancers by modulating the miRNA/HMGA2 axis. A

study indicated that hsa_circ_0000264 may serve as a target for the

treatment of head and neck squamous cell carcinoma-EMT by

regulating the hsa-let-7b-5p/HMGA2 pathway (119). Studies

showed that circ_0000658 was highly upregulated in bladder

cancer; nevertheless, circ_0000658 knockdown reduced the EMT

phenotypes by regulating the miR-498/HMGA2 pathway (120).
4 Gene therapy methods

4.1 Short-interfering RNA

RNA interference (RNAi) is among the most commonly used

and important gene therapy methods, involving the use of short-

interfering RNAs (siRNAs) (130). The term siRNA refers to a

sequence specifically designed to silence the expression of a target

gene. Such sequences are currently used in cancer research (in-vitro

cells or in-vivo animal models), providing promising options for the

targeted treatment of cancer and other diseases (131, 132). Research

demonstrated that the transfection of cells with HMGA2 siRNA

markedly suppressed HMGA2 expression, reduced the levels of

EMT-related genes, and alleviated the migratory capacity of A549

cells (131). In ACHN cells, the expression of CDH1 was
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upregulated, whereas that of CDH2 and Snail was downregulated in

the tumors treated with HMGA2 shRNA. These results implied that

HMGA2 shRNA may be a treatment strategy for renal cell

carcinoma (108). In recent years, nanoparticles have attracted

attention due to their application in RNAi. The selection of

nanoparticles for the molecular delivery of RNAi is mainly

attributed to their unique advantages over other carriers (130).

Eivazy et al. delivered HMGA2 siRNA by trimethyl chitosan

nanoparticles. The delivery of HMGA2 siRNA significantly

reduced the expression of HMGA2 and VIM, whereas it

increased that of CDH1 (133).
Frontiers in Oncology 06
4.2 Clustered regular interval short
palindromic repeat sequences/CRISPR-
associated protein 9 RNA

Clustered regular interval short palindromic repeat sequences/

CRISPR-associated protein 9 (CRISPR/Cas9) RNA nucleases are a

powerful reverse-genetic tool that can easily achieve targeted editing

of multiple genes, thereby inducing complete gene knockout (134).

The use of the CRISPR/Cas9 system for targeted gene therapy

against tumors has been widely reported. In doxorubicin-resistant

BC cells, flow cytometric analysis showed that targeting MDR1
TABLE 1 HMGA2 promotes EMT in multiple types of cancer.

Cancer type HMGA2
expression

Signaling network Change in EMT

Upregulation Downregulation

Nasopharyngeal carcinoma (105) Upregulation HMGA2/TGFb/SMAD3 VIM, Snail CDH1

Renal cell carcinoma (46) Upregulation HMGA2/TGFb/SMAD2 CDH2, TWIST1, TWIST2 CDH1

Human epithelial cancers (8) Upregulation HMGA2/TGFb N/A CDH1

Prostate cancer (47) Upregulation HMGA2/MAPK/ERK Snail, TWIST1, VIM N/A

Ovarian cancer (110) Upregulation BACH1/HMGA2 Snail, SNAI2 N/A

Endometrial cancer (107) Downregulation miR-302a-5p/367-3p/HMGA2 CDH1 Slug, Snail, CDH2

Pancreatic cancer (111) Downregulation miR-101/HMGA2 CDH1 VIM, CDH2

Laryngeal squamous cell
carcinoma (112)

Downregulation miR-98/HMGA2/POSTN CDH1 Snail, ZEB1

Bladder cancer (113) Downregulation miR−485−5p/HMGA2 CDH1 VIM, CDH2

Prostate cancer (114) Downregulation miR-219-5p/HMGA2 CDH1 VIM, CDH2

Prostate cancer (115) Downregulation miR-154/HMGA2 CDH1 VIM

Oral squamous cell carcinoma (116) Downregulation miR-150/HMGA2 CDH1 VIM, CDH2

Human cervical cancer (117) Downregulation miR-142-3p/HMGA2 CDH1 VIM, CDH2

Nasopharyngeal carcinoma (118) Downregulation let-7a/HMGA2 CDH1 VIM, Snail, Slug

Head and neck squamous cell
carcinoma (119)

Upregulation hsa_circ_0000264/hsa-let-7b-
5p/HMGA2

VIM, Snail, Slug CDH1

Bladder cancer (120) Upregulation circ_0000658/miR-498/HMGA2 CDH2, Slug, Snail,
ZEB1, TWIST1

CDH1

Hepatocellular carcinoma (19) Upregulation circHPS5/HMGA2 Slug, Snail, VIM CDH1

Nasopharyngeal carcinoma (121) Upregulation HOXC13-AS/miR-383-3p/HMGA2 VIM CDH1

Bladder cancer (122) Upregulation lncRNA LINC00355/miR-424-
5p/HMGA2

VIM, ZEB1 CDH1

Hepatocellular carcinoma (69) Upregulation SNHG16/let-7b-5p/HMGA2 Slug, CDH2, VIM CDH1, CTNNA

Oral tongue squamous cell
carcinoma (123)

Upregulation lncRNA HOTTIP/HMGA2/WNT/
b-catenin

b-Catenin, c-Myc CDH1

Tongue squamous cell carcinoma (124) Upregulation H19/miR-let-7/HMGA2 TWIST1, ZEB1, Snail CDH1

Osteosarcoma (122) Upregulation LINC01116/miR-424-5p/HMGA2 VIM, CDH2 CDH1
BACH1, BTB domain and CNC homolog 1; CDH1, cadherin 1; CDH2, cadherin 2; CTNNA, alpha-catenin; b-catenin, beta-catenin; EMT, epithelial–mesenchymal transition; ERK, extracellular
signal-regulated kinase; H19, H19 imprinted maternally expressed transcript; HMGA2, high mobility group AT-hook 2; HOTTIP, HOXA distal transcript antisense RNA; HOXC13-AS,
HOXC13 antisense RNA; HPS5, HPS5 biogenesis of lysosomal organelles complex 2 subunit 2; LINC, long intergenic non-protein coding RNA; lncRNA, long non-coding RNA; MAPK,
mitogen-activated protein kinase; N/A, not available; POSTN, periostin; SNHG16, small nucleolar RNA host gene 16; TGFB, transforming growth factor beta; TWIST1, twist family bHLH
transcription factor 1; VIM, vimentin; ZEB1, zinc finger E-box-binding homeobox 1.
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using the CRISPR/Cas9 system increased drug accumulation within

the cell compared with untreated cells (135). Song et al. found an

indirect increase in the expression levels of HMGA2 and SRY-box

transcription factor 9 (SOX9) after CRISPR/Cas9-based knockout

of neurofibromin 1 (NF1; a tumor suppressor mutated in

neurofibromatosis). These data suggested that NF1 plays a key

role as a liver tumor suppressor by negatively regulating HMGA2

and that NF1 and HMGA2 may be useful prognostic or therapeutic

indicators (136). In addition, in papillary thyroid carcinoma cells,

the CRISPR/Cas9-mediated knockout of HMGA2 inhibited cell

proliferation and invasion. It was suggested that HMGA2 knockout

blocked the cell cycle in the G2/M phase and promoted cell necrosis

(135). The results mentioned above showed that targeting HMGA2

using CRISPR/Cas9 technology can reduce drug resistance in

cancers. Using the CRISPR/Cas9 technology and targeting

HMGA2 could inhibit the progression of cancer. However,

further investigation should be conducted in various types of

cancer. Furthermore, the CRISPR/Cas9 technique has limitations,

including safe and efficient cell delivery, off-target mutagenesis, and

potential immunogenicity. Hence, effective solutions are required to

overcome the limitations of this technique (127, 137, 138).
4.3 Proteolysis-targeting chimeras

At present, proteolysis-targeting chimeras (PROTACs) have

been developed as a useful technology for targeted protein

degradation (139). Designed hydrophobic tagging (HyT) probes

are synthesized by covalently connecting the hydrophobic portion

to the ligand of target nuclear proteins [protein of interest (POI)]

(140, 141). The binary POI–HyT complex can simulate the partial

denaturation state of protein degradation, and the most commonly

used hydrophobic parts include adamantane and tert-butyl

carbamate (BOC3) arginine (141). PROTACs can induce the

dynamic degradation of intracellular proteins or POIs. Thus, they

play an important role in addressing drug resistance by degrading

the pathogenic protein without compensatory increase or mutation

(142). Unlike nucleic acid-based techniques for protein regulation,

such as RNAi and CRISPR/Cas9, these low immunogenicity

chimeras cause reversible and rapid target depletion (143). In

addition, PROTACs can be recovered after POI ubiquitination

and degradation, allowing these molecules to recatalyze the

elimination of additional POIs (143). Thus far, the treatment

strategy involving the use of PROTACs has been successfully

applied to conditionally degrade approximately 50 proteins in

vitro and in vivo, including bromodomain containing 4-targeting

(BRD4-targeting) PROTACs, cereblon-based (CRBN-based)

PROTACs, MCL1 apoptosis regulator, BCL2 family member-

based (MCL1-based) PROTACs, and STAT3-based PROTACs

(144). For example, Wang et al. developed the efficient STAT3

inhibitor SI-109 and used it to develop PROTAC SD-36 targeting

STAT3. The results showed that, at low nanomolar concentrations,

SD-36 effectively reduces STAT3 in numerous types of leukemia

and lymphoma cells (145). Furthermore, Crews et al. synthesized

the first PROTAC DAS-2-2-6-CRBN targeting BCR-ABL. This

PROTAC resulted in efficient BCR-ABL degradation and growth
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inhibition in chronic myeloid leukemia K562 cells (146). Research

has revealed the presence of >600 E3 ubiquitin ligases in humans;

many of those can be used to design PROTACs (147). Thus, further

research studies are warranted to identify alternative therapies

based on PROTAC-mediated degradation of HMGA2.
5 Conclusions and perspectives

HMGA2 is overexpressed in multiple types of cancer and has

been associated with the EMT process and tumor invasion. Thus,

targeting HMGA2 may provide multiple benefits in terms of tumor

growth, the EMT phenotype, metastasis, and invasion. These effects

indicate that HMGA2 is a promising target for enhancing cancer

therapy and improving the patient survival rate. Most recent studies

have demonstrated that HMGA2 is highly expressed in cancer and

linked to the EMT, invasion, and poor prognosis. HMGA2 acts as a

key factor in the complex networks of the TGFb, MAPK, and WNT/

b-catenin signaling pathways involved in the EMT process and

invasion of tumor cells. Furthermore, most non-coding RNAs

(miRNAs, lncRNAs, and circRNAs) participate in the regulation of

HMGA2 expression in cancer to affect EMT. In addition, evidence

has indicated that HMGA2 siRNA and CRISPR/Cas9-mediated

knockout of HMGA2 serve as potential therapeutic approaches by

suppressingHMGA2 for the treatment of cancer. However, currently,

there are limited treatment options targeting the inhibition of

HMGA2 expression to mitigate EMT and invasion of cancer. For

example, small molecule inhibitors targeting HMGA2 have not yet

been studied or identified. Thus far, there is a lack of drugs targeting

HMGA2 to delay EMT and invasion of cancer. Gene modification

strategies (e.g., acetylation, methylation, and ubiquitination) targeting

HMGA2 are urgently required for the treatment of cancer. This

approach may suppress EMT and increase the survival rate of

patients with cancer. Furthermore, it is necessary to elucidate the

specific molecular mechanism through which HMGA2 mediates the

EMT process in cancer. Such knowledge will contribute to the

discovery of more effective treatment strategies for inhibiting tumor

metastasis and controlling resistance to chemotherapy.

In conclusion, targeting HMGA2 through direct and indirect

regulation offers a promising direction for antitumor therapy.
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