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Purpose: This study aimed to develop and validate a clinicopathological model to

predict pathological complete response (pCR) to neoadjuvant chemotherapy

(NAC) in breast cancer patients and identify key prognostic factors.

Methods: This retrospective study analyzed data from 279 breast cancer patients

who received NAC at Zhejiang Provincial People’s Hospital from 2011 to 2021.

Additionally, an external validation dataset, comprising 50 patients from Lanxi

People’s Hospital and Second Affiliated Hospital, Zhejiang University School of

Medicine from 2022 to 2023 was utilized for model verification. A multivariate

logistic regression model was established incorporating clinical, ultrasound

features, circulating tumor cells (CTCs), and pathology variables at baseline and

post-NAC. Model performance for predicting pCR was evaluated. Prognostic

factors were identified using survival analysis.

Results: In the 279 patients enrolled, a pathologic complete response (pCR) rate

of 27.96% (78 out of 279) was achieved. The predictive model incorporated

independent predictors such as stromal tumor-infiltrating lymphocyte (sTIL)

levels, Ki-67 expression, molecular subtype, and ultrasound echo features. The

model demonstrated strong predictive accuracy for pCR (C-statistics/AUC

0.874), especially in human epidermal growth factor receptor 2 (HER2)-

enriched (C-statistics/AUC 0.878) and triple-negative (C-statistics/AUC 0.870)

subtypes, and the model performed well in external validation data set (C-

statistics/AUC 0.836). Incorporating circulating tumor cell (CTC) changes post-

NAC and tumor size changes further improved predictive performance (C-

statistics/AUC 0.945) in the CTC detection subgroup. Key prognostic factors

included tumor size >5cm, lymph node metastasis, sTIL levels, estrogen receptor
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(ER) status and pCR. Despite varied pCR rates, overall prognosis after standard

systemic therapy was consistent across molecular subtypes.

Conclusion: The developed predictive model showcases robust performance in

forecasting pCR in NAC-treated breast cancer patients, marking a step toward

more personalized therapeutic strategies in breast cancer.
KEYWORDS

breast cancer, predictive model, neoadjuvant chemotherapy, pathological complete
response, prognosis
Introduction

Breast cancer is a primary cause of cancer-related mortality

among women globally (1, 2). Despite strides in therapeutic

approaches, the death rate associated with advanced stages of the

disease remains distressingly high (3–5). In this context,

neoadjuvant chemotherapy (NAC) has risen to prominence as a

crucial measure for gauging therapeutic effectiveness. It has shown

notable efficacy in enhancing event-free survival (EFS) and overall

survival (OS) rates, particularly among patients who achieve

pathological complete response (pCR) during treatment (6–8).

Additionally, the customization of post-neoadjuvant treatments

has been promising in augmenting long-term outcomes for

patients who do not attain pCR (9, 10). This underscores the

importance of accurately predicting pCR in breast cancer patients,

a critical factor in optimizing treatment strategies and improving

survival prospects.

Extensive research has focused on identifying the determinants

of pathologic complete response (pCR) and prognosis following

NAC in breast cancer. Tumor-infiltrating lymphocytes (TILs),

recognized as key regulators within the tumor microenvironment

(11–14). The TILs could be classified into two types: intratumoral

(iTILs) and stromal (sTILs), depending on whether they are located

within the tumor nest or embedded in the tumor stroma (15, 16).

Studies have indicated that sTILs are a better and more reproducible

biomarker than iTILs (15, 17). TIL levels, particularly sTILs, have

been highlighted as predictors of response to neoadjuvant

chemotherapy in breast cancer (18, 19).

Circulating tumor cells (CTCs), which are a subset of tumor

cells shed into the peripheral blood as a result of tumor tissue
g characteristic curve;
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instability, have been identified as independent predictors of pCR

and prognosis (20, 21). Additionally, traditional diagnostics, such as

ultrasound paired with molecular markers like CA15-3 and CEA,

also correlate with pCR and prognosis (22–24). Recent advances

highlight the significance of combining imaging, pathology, and

hematology in assessing treatment efficacy, as shown in Wang

et al.’s model which integrates clinical and radiomics features

such as background parenchymal enhancement (BPE), human

epidermal growth factor receptor-2 (HER-2) status, and the Ki-67

index (25).

Despite the considerable accuracy of existing models, their

limitations in specificity underscore the ongoing critical need for

research focused on determining pCR status following NAC in

breast cancer. Our study is directed towards developing an

integrated predictive model that combines clinical (ultrasound),

pathological (Ki-67 expression, molecular subtype), and novel

biomarkers (sTIL levels, CTCs). We expect this comprehensive

model to outperform individual indicators in predicting pCR with

greater accuracy, thus providing a foundation for personalized

breast cancer treatment strategies.
Materials and methods

Study participants

Between April 2011 and June 2021, our study, adhering to

rigorous clinical, ultrasonic, and pathological criteria, enrolled 279

female patients from the breast cancer database of Zhejiang

Provincial People’s Hospital (ZJPPH-BCDB). These patients, all

pathologically confirmed with breast cancer, had undergone

neoadjuvant chemotherapy (NAC) prior to surgery. This cohort

was refined from an initial pool of 347 patients, as depicted in

Figure 1. To validate our model, we further gathered an external

dataset comprising 50 patients from Lanxi People’s Hospital (Jinhua,

China) and the Second Affiliated Hospital, Zhejiang University

School of Medicine (Hangzhou, China) between March 2022 and

June 2023. We ensured that all participants had no prior malignant

disease or contraindications to chemotherapy. A subset of 71
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participants was assessed for CTCs both pre- and post-NAC. This

study received approval from the ethics committees of all the

institutions involved, with informed consent obtained from

participants with CTC detection, and adherence to all relevant

guidelines and regulations was strictly maintained throughout the

research process.
Data collection

Clinical, hematological, and ultrasonic data were systematically

collected. Clinical parameters included age, body mass index (BMI),

menopausal status, red cell distribution width (RDW), platelet

distribution width (PDW), mean platelet volume (MPV),

carcinoembryonic antigen (CEA), cancer-associated antigen (CA)

125, and CA153. Metrics derived from ultrasound (US) encompass

tumor dimensions, geometric form, internal echogenicity, and the

ratio of width to height. Pathological data, sourced from pre-NAC

core-needle biopsy specimens, encompassed Ki-67, estrogen

receptor (ER), progesterone receptor (PR), and human epidermal

growth factor receptor 2 (HER2) expression. These were assessed

using the American Society of Clinical Oncology and the American

College of Pathologist guidelines, employing immunohistochemical

methods (26, 27). sTIL levels, classified as low, intermediate, or high

(0-10%, 11-39%, and ≥40%, respectively), were determined based

on recommendations from previous research (16, 17). For the CTC

detection subgroup, CTC data was collected pre- and post-NAC in

71 patients. Metrics from magnetic resonance imaging (MRI)

capture tumor dimensions, structural configuration, signal

intensity variations, and patterns of contrast enhancement in the

CTC detection subgroup. Patients with ≥1 CTC per 7.5 mL of blood

were categorized as CTC-positive (28). Pathological response was

assessed using the Miller-Payne system, with a grade of 5 indicating

pCR (29). Follow-up was conducted through phone checks and
Frontiers in Oncology 03
outpatient visits, with overall survival (OS) and disease-free survival

(DFS) being defined according to standard clinical endpoints (30).
Statistical analysis

Analyses were conducted using SPSS (IBM SPSS 26.0, SPSS

Inc.). Categorical data, represented as percentages, were assessed

using appropriate chi-square tests. Continuous data were presented

either as means ± SD or as medians with interquartile ranges (P50

[P25, P75]), depending on their distribution, and analyzed using the

t-test or Mann-Whitney U test, respectively. Significant variables

from univariate analyses (p < 0.05) were advanced to multivariate

logistic regression. Stepwise logistic regression was employed, with

the Hosmer-Lemeshow test evaluating model fit. The ROC and

AUC were used to appraise model calibration and discrimination.

Survival analyses were conducted using Kaplan-Meier curves, with

significance ascertained via the log rank (Mantel–Cox) test. A

threshold of p < 0.05 was set for statistical significance.
Results

Clinical features and pCR achievement

Of the 279 breast cancer patients, 27.96% (78/279) achieved a pCR

after NAC, with the clinical, hematological, ultrasonic, and pathological

data (Table 1). No significant differences were noted between pCR and

non-pCR patients in terms of age, BMI, and menopausal status (p >

0.05). However, CEA levels significantly varied between the groups (p =

0.011), while no significant associations were observed for RDW, PDW,

MPV, CA125, or CA153 (p > 0.05). In the context of ultrasonic

findings, tumor size and tumor posterior echo were significantly

associated with pCR status (p = 0.017 and p = 0.013, respectively).
FIGURE 1

Study profile of 347 patients who received NAC and subsequently underwent surgery between April 2011 and June 2021. 279 patients met the
eligibility criteria and were enrolled in this study. Additionally, a validation set comprising 50 patients was included. Subgroup analysis was performed
in 71 patients with CTC data. NAC, Neoadjuvant chemotherapy; CTC, circulating tumor cell.
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TABLE 1 Patient characteristics of pCR and non-pCR.

Clinicopathological Characteristics
Non-pCR
(n=201)

pCR (n=78) T/Z/c2 p

MP Grade

1 6 –

2 62 –

3 85 –

4 48 –

5 – 78

Age (years) 50.02 ± 10.26 48.26 ± 10.02 1.3 0.195

BMI 23.68 ± 3.51 24.41 ± 5.06 -1.377 0.17

BI (US,n=105/39) 0.75 ± 0.11 0.76 ± 0.11 -0.476 0.635

RDW 13.11 ± 1.34 13.26 ± 2.11 -0.695 0.488

PDW(fl) 13.66 ± 2.84 13.75 ± 2.75 -0.228 0.820

MPV(fl) 11.00 ± 1.23 11.03 ± 1.22 -0.169 0.866

CEA 2.2 (1.4,3.5) 1.8 (1.1,2.3) 2.541 0.011

CA125 13.8 (9.6,20.5) 14.95 (11,21.5) -0.891 0.373

CA153 18.1 (12.9,26.9) 16.7 (11.9,24.4) 1.025 0.305

Ki-67 expression(%) 25 (15,40) 33 (25,60) -3.362 0.001

sTILs (%) 15 (5,20) 30 (20,40) -8.562 <0.001

Menopausal status
Premenopausal 104 (51.7%) 48 (61.5%)

2.175 0.140
Postmenopausal 97 (48.3%) 30 (38.5%)

Tumor size (US)
≤5cm 155 (77.1%) 70 (89.7%)

5.742 0.017
>5cm 46 (22.9%) 8 (10.3%)

Tumor shape (US)
Regular 7 (3.5%) 2 (2.6%)

0.000 0.990a

Irregular 194 (96.5%) 76 (97.4%)

Tumor internal echo (US)
Uniform 17 (8.5%) 4 (5.1%)

0.481 0.488a

Uneven 184 (91.5%) 74 (94.9%)

Tumor aspect ratio (US)
≤1 191 (95.0%) 69 (88.5%)

3.814 0.051
>1 10 (5.0%) 9 (11.5%)

Calcification (US)
Negative 85 (42.3%) 33 (42.3%)

0.000 0.998
Positive 116 (57.7%) 45 (57.7%)

Tumor posterior echo (US)

Attenuation 63 (31.3%) 12 (15.4%)

7.836 0.013bUnchanged 136 (67.7%) 65 (83.3%)

Enhancement 2 (1.0%) 1 (1.3%)

Abnormal blood flow signal (US)
Negative 31 (15.4%) 14 (17.9%)

0.265 0.607
Positive 170 (84.6%) 64 (82.1%)

Lymphatic metastasis (US)
Negative 82 (40.8%) 25 (32.1%)

1.818 0.178
Positive 119 (59.2%) 53 (67.9%)

ER status

Negative 75 (37.3%) 47 (60.3%)

16.303 <0.001Weakly positive 24 (11.9%) 12 (15.4%)

Strongly positive 102 (50.7%) 19 (24.4%)

(Continued)
F
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Patients who achieved pCR predominantly presented with ER-

negative (p < 0.001), PR-negative (p = 0.004), and HER2-positive

(p < 0.001) phenotypes. Disparities in pCR rates were evident

among molecular subtypes (p < 0.001), with the highest pCR rate

in the HER2-enriched (ER- PR- HER2+) subgroup (45.83%, 22/48)

and the lowest in the ER/PR+ HER2- subgroup (7.8%, 8/102)

(Table 2). There were also significant differences in Ki-67

expression and sTIL levels between patients who realized pCR

and those who did not (Ki-67: p < 0.05, sTIL levels: p < 0.001).
Overall predictive model of pCR

Multivariate analysis utilizing the significant factors from

Table 1 identified sTIL levels, Ki-67 expression, tumor posterior
Frontiers in Oncology 05
echo, and molecular subtypes as independent predictors of pCR (all

p < 0.05) (Table 3). The predictive logistic model based on these

factors achieved a good fit (Hosmer–Lemeshow test, p = 0.962).

ROC analysis demonstrated a C-statistics/AUC of 0.874 (95%

CI: 0.829-0.918) for the multivariate model. Individual predictors’

performances were: sTIL levels C-statistics/AUC = 0.822, molecular

subtypes C-statistics/AUC = 0.705, Ki-67 expression C-statistics/

AUC = 0.629, and tumor posterior echo C-statistics/AUC = 0.580

(Table 4, Figure 2A). Notably, the model’s predictive accuracy was

highest for the HER2-enriched and triple negative breast cancer

(TNBC, ER- PR- HER2-) subtypes (C-statistics/AUC of 0.878 and

0.870 respectively) (Supplementary Figure S1). To validate this

predictive model, an external validation set comprising 50

patients was utilized. The comparison between the primary set

and the external validation dataset revealed no significant
TABLE 1 Continued

Clinicopathological Characteristics
Non-pCR
(n=201)

pCR (n=78) T/Z/c2 p

PR status

Negative 81(40.3%) 48 (61.5%)

10.970 0.004Weakly positive 64 (31.8%) 19 (24.4%)

Strongly positive 56 (27.9%) 11 (14.1%)

HER2 status

Negative 42 (20.9%) 17 (21.8%)

24.881 <0.001Weakly positive 91 (45.3%) 12 (15.4%)

Strongly positive 68 (33.8%) 49 (62.8%)

Four molecular subtypes

ER- PR- HER2- 39 (19.4%) 21 (26.9%)

33.859 <0.001
ER/PR+ HER2- 94 (46.8%) 8 (10.3%)

ER/PR- HER2+ 26 (12.9%) 22 (28.2%)

ER/PR+ HER2+ 42 (20.9%) 27 (34.6%)

Ki-67 expression(%)
<14% 47 (23.7%) 8 (10.3%)

6.373 0.012
≥14% 151 (76.3%) 70 (89.7%)

Chemotherapy
Non-E 30 (14.9%) 24 (30.8%)

9.037 0.003
E 171 (85.1%) 54 (69.2%)

sTILs

Low 92 (45.8%) 5 (6.4%)

67.553 <0.001Intermediate 100 (49.8%) 45 (57.7%)

High 9 (4.5%) 28 (35.9%)
MP: Miller-Payne grade, BI: Blood flow resistance index of US, US: ultrasound, RDW: red blood cells distribution width, PDW: platelet distribution width, MPV: mean platelet volume, sTILs:
stromal tumor infiltrating lymphocytes, Low (sTILs ≤ 10%), Intermediate (10<sTILs<40%), High (sTILs≥40%); ER: estrogen receptor, PR: progesterone receptor, HER2: human epidermal
growth factor receptor-2; Data format: x ± s, P50 (P25, P75), (n,%); a: Continuity Correction of Pearson Chi-Square; b: Fisher’s Exact Test.
TABLE 2 Molecular subtypes and pCR rate.

Molecular subtypes n non-pCR pCR c2 p

ER- PR- HER2- 60 39 (65.0%) 21 (35.0%)

33.859 <0.001
ER/PR+ HER2- 102 94 (92.2%) 8 (7.8%)

ER/PR- HER2+ 48 26 (54.2%) 22 (45.8%)

ER/PR+ HER2+ 69 42 (60.9%) 27 (39.1%)
ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor-2.
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differences in terms of sTIL levels, Ki-67 expression, tumor

posterior echo, and molecular subtypes (p > 0.05) (Table 5). The

model exhibited robust performance in this external validation

cohort (C-statistics/AUC =0.836, 95% CI: 0.724-0.948) (Figure 2B).
Predictive model of pCR with
CTC detection

CTCs were detected pre- and post-NAC in the subgroup of 71

patients (Table 6). CTC-positivity decreased from 52.1% (37/71) at

baseline to 23.9% (17/71) post-NAC (p < 0.05). Although no initial

association between CTCs and pCR was observed (p = 0.173), a

significant post-NAC difference emerged between CTC-positive

and -negative patients in pCR rates (p = 0.002). Remarkably,

patients converting from CTC-positive to CTC-negative after

NAC had a significantly increased pCR rate (p = 0.001).

In the CTC detection subgroup, the multivariate logistic model

considering CTC changes, tumor size changes under US, and sTIL

levels achieved a C-statistics/AUC of 0.942 (95% CI: 0.889-0.995)

for pCR prediction. Similarly, incorporating changes in tumor size

as measured by MRI into the model yielded a comparable predictive

performance with a C-statistics/AUC of 0.945 (95% CI: 0.894-

0.997) (Figure 3, Table 7). The C-statistics/AUC values for CTC

changes, tumor size changes under US, tumor size changes under
Frontiers in Oncology 06
MRI, and sTIL levels were 0.775, 0.7,0.798, and 0.838, respectively.

The marginal increase in predictive accuracy offered by

incorporating MRI-assessed tumor size changes, as evidenced by

the comparable C-statistics/AUC values, suggests a limited

additional value and cost-effectiveness in utilizing MRI.
Survival-related data analysis in the cohort

Over an average follow-up of 46.6 months (ranging from 4 to 143

months), a recurrence rate of 20.8% (58/279) was observed by

December 2022. Kaplan-Meier curves indicated that larger tumor

sizes (>5cm) and presence of lymphatic metastasis were associated

with poorer DFS (p < 0.001 and p = 0.041 respectively) (Figures 4A,

B). Higher sTIL levels were linked with a reduced recurrence risk (p <

0.001) (Figure 4C). Interestingly, premenopausal patients had a

slightly longer DFS (p = 0.051) (Figure 4D). A clear association

between pCR and better DFS emerged (p = 0.001) (Figures 4E, F), but

molecular subtypes didn’t significantly affect recurrence (Figure 5).

ER status had a significant impact on recurrence (p = 0.003).

Analyzing DFS against CTC data (Figure 6) revealed that post-NAC

CTC positivity correlated significantly with poorer DFS (p < 0.001).

Finally, Kaplan-Meier plots for overall survival exhibited similar

patterns regarding baseline tumor size, sTIL levels, and

pCR (Figure 7).
TABLE 4 ROC analysis for pCR(n=279).

Characteristics C-statistics/AUC 95%CI Sensitivity Specificity p

Ki67 expression 0.629 0.557-0.701 0.718 0.507 0.001

sTILs 0.822 0.772-0.873 0.923 0.547 <0.001

Posterior echo of US 0.58 0.508-0.652 0.846 0.313 0.038

Molecular subtypes 0.705 0.641-0.769 0.897 0.468 <0.001

Logistic model 0.874 0.829-0.918 0.859 0.781 <0.001
ROC analysis of the Logistic model and 4 consisting factors for prediction of pCR. US: ultrasound; sTILs: stromal tumor infiltrating lymphocytes.
TABLE 3 Multivariate regression analysis for pCR (n=279).

B Wald OR 95%CI p

Molecular subtypes

ER/PR+ HER2+ 16.614 REF 0.001

ER- PR- HER2- -2.185 13.799 0.112 0.035-0.356 <0.001

ER/PR+ HER2- -1.144 5.506 0.319 0.123-0.828 0.019

ER/PR- HER2+ -0.99 4.082 0.372 0.142-0.971 0.043

sTILs 0.145 40.29 1.156 1.105-1.209 <0.001

Ki-67 expression 0.019 5.372 1.019 1.003-1.036 0.02

Posterior echo of US 0.91 5.335 2.484 1.148-5.374 0.021

Constant -3.668 35.04 0.026 <0.001
sTILs, stromal tumor infiltrating lymphocytes; US, ultrasound; Logistic model, Hosmer–Lemeshow test validity, P = 0.962.
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Discussion

The prediction and understanding of the pCR and subsequent

prognosis after NAC in breast cancer remains a significant

challenge in clinical practice. The pursuit of an optimal predictive

model for both pCR and prognosis is paramount, as it holds the

potential to guide therapeutic decisions and enhance personalized

patient care.

In this study, we integrated an array of clinical, pathological, and

biomarker features to devise a comprehensive predictive model for

pCR following NAC in breast cancer patients. Our integrated model,

combining sTIL levels, Ki-67 expression, molecular subtypes, and

ultrasound echo characteristics, demonstrated significant predictive

power with an impressive C-statistics/AUC of 0.874. Its robust

performance was further affirmed in the external validation set,

achieving a C-statistics/AUC of 0.836, thereby underscoring the

model’s efficacy. Among the predictors, sTIL levels stood out as the

most influential factor. While previous research has indeed

underscored the correlation of sTIL levels with prognosis in tumor

tissues (31–33), their relationship and prognostic value across

different molecular breast cancer subtypes remain nuanced (34, 35).
TABLE 5 Characteristics of 279 patients and external validation data set.

Model
Characteristics

Modeling
data

(n=279)

Validation
data

(n=50)
p

Ki-67 expression(%) 30 (16, 45) 33 (20, 50) >0.1

sTILs (%) 20 (10, 30) 20 (15, 30) >0.05

Tumor
posterior
echo (US)

Attenuation 75 (27%) 18 (36%)

>0.05bUnchanged 201 (72%) 30 (60%)

Enhancement 3 (1.1%) 2 (4.0%)

Molecular
subtypes

ER/PR-
HER2-

60 (22%) 11 (22%)

>0.1a

ER/PR
+ HER2-

102 (37%) 15 (30%)

ER/PR-
HER2+

48 (17%) 11 (22%)

ER/PR+
HER2+

69 (25%) 13 (26%)
Data format: P50 (P25, P75), (n,%); a: Pearson’s Chi-squared test, b: Fisher’s Exact Test.
A B

FIGURE 2

(A) ROC curve for pCR prediction for all included patients (n = 279). Logistic prediction model (AUC/C-statistics = 0.874) and the 4 components
factors: sTIL levels (AUC/C-statistics =0.822); Ki67 expression (AUC/C-statistics = 0.629); Molecular subtypes (AUC/C-statistics = 0.705); Tumor
posterior echo (AUC/C-statistics = 0.58). (B) ROC curve for pCR prediction of external validation data set in Lanxi People’s Hospital and Second
Affiliated Hospital (n = 50). Logistic prediction model (AUC/C-statistics = 0.836).
TABLE 6 The relationship between CTCs and pCR rate.

CTCs
N
(71)

Non-pCR
(n,%)

pCR
(n,%)

c2 p

Before NAC
Negative 34 27(79.4%) 7(20.6%)

1.853 0.173
Positive 37 24(64.9%) 13(35.1%)

After NAC
Negative 54 34(63.0%) 20(37.0%)

/ 0.002b

Positive 17 17(100.0%) 0(0.0%)

The changes of CTC
before and after NAC

Negative/negative 30 23(76.7%) 7(23.3%)

14.412 0.001b
Negative/positive 4 4(100.0%) 0(0.0%)

Positive/negative 24 11(45.8%) 13(54.2%)

Positive/positive 13 13(100.0%) 0(0.0%)
CTC, circulating tumor cell; NAC, Neoadjuvant chemotherapy; b, Fisher’s Exact Test.
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For instance, while elevated sTIL levels have shown favorable

prognosis in TNBC (36, 37), their significance in other molecular

subtypes, especially ER/PR+ HER2-, is less consistent (34, 38). Our

findings further highlight this molecular subtype-specific

relationship, emphasizing the nuanced role of sTILs in predicting

outcomes. The relationship between sTIL levels and prognosis across

different molecular subtypes in breast cancer, and its value in

prediction and evaluating treatment warrant further clarification.

In addition to incorporating pre- and post-NAC dynamics of

CTCs, our model highlighted the significant predictive capacity of

combining CTC changes with US-assessed tumor size alterations

and sTIL levels, achieving a C-statistics/AUC of 0.942. The model

incorporating MRI for tumor size changes showed a similar

predictive performance. The C-statistics/AUC of the model with

US and the model with MRI were closely comparable, being 0.942

and 0.945 respectively. Considering the complexity and higher

cost associated with MRI, ultrasound emerges as the more

practical and cost-effective evaluation method in this predictive

model. The observed strong correlation between post-NAC CTC

positivity with both non-pCR and decreased DFS highlights the

utility of CTCs as a prognostic marker. Often referred to as ‘liquid

biopsies’ , CTCs are rapidly gaining recognition as vital
Frontiers in Oncology 08
components in cancer management, known for their roles in

early detection, prognostic evaluation, and monitoring for

recurrence (39–41). Our study reinforces their significance in

breast cancer, underscoring their potential as key predictors for

both pCR and overall prognosis.

In addition to the above features, our data accentuated

traditional clinical features, such as large tumor sizes (> 5 cm)

and lymph node metastasis, remain crucial in prognosis.

Furthermore, low sTIL levels and negative ER expression were all

linked with poor DFS, indicating their potential as prognostic

markers, and providing a holistic view of the complex prognostic

landscape of breast cancer.

One intriguing observation was the differential pCR rates across

molecular subtypes. While the ER-PR- HER2+ subtype exhibited a

higher rate of pCR, the ER/PR+ HER2- group showed a lower rate.

However, when assessing DFS post-NAC, no significant differences

were observed between these molecular subtypes. This raises

pertinent questions about the interplay between short-term

treatment responses and long-term survival outcomes, suggesting

that achieving pCR does not always equate to improved long-

term prognosis.

Our study contributes to the broader understanding of pCR and

prognosis in breast cancer; however, it is not without its limitations.

The sample size, especially within the CTC subgroup, may limit the

generalizability of our findings, and the retrospective design of our

analysis could potentially influence the results. These constraints

underscore the necessity for larger, prospective studies to confirm

and expand upon our findings. Looking ahead, we envision a

comprehensive future trial that would not only validate our

current results but also enhance the predictive model for broader

clinical utility.
Conclusions

Our study has developed a sophisticated model adeptly

predicting pCR post-NAC in breast cancer, integrating sTILs, Ki-

67 expression, molecular subtypes, and ultrasound features with a

C-statistics/AUC of 0.874. Particularly in the CTC-detected

subgroup, the model combining CTC changes, tumor size

changes, and sTILs achieved an impressive C-statistics/AUC of

0.945. Key determinants like tumor > 5 cm, presence of lymph node
FIGURE 3

ROC curve for pCR prediction in the CTC subgroup (n = 71). Logistic
predictive model 1 (AUC/C-statistics = 0.942), Logistic predictive
model 2 (AUC/C-statistics = 0.945) and the components factors:
CTC changes (AUC/C-statistics = 0.775), tumor size changes under
ultrasound (AUC/C-statistics = 0.7), tumor size changes under MRI
(AUC/C-statistics = 0.798), sTIL levels (AUC/C-statistics = 0.838).
TABLE 7 ROC analysis of the Logistic model and 4 factors for prediction of pCR(n=71).

Characteristics C-statistics/AUC 95%CI Sensitivity Specificity p

CTC changes 0.775 0.665-0.886 0.65 0.784 <0.001

Tumor size changes (US) 0.7 0.571-0.830 0.8 0.569 0.009

Tumor size changes (MRI) 0.798 0.694-0.902 0.9 0.608 <0.001

sTILs 0.838 0.741-0.935 0.5 0.961 <0.001

Logistic model 1 (sTILs + CTC changes + size changes under US) 0.942 0.889-0.995 0.85 0.941 <0.001

Logistic model 2 (sTILs + CTC changes + size changes under MRI) 0.945 0.894-0.997 0.95 0.804 <0.001
CTC, circulating tumor cell; sTILs, stromal tumor infiltrating lymphocytes: Low (sTILs ≤ 10%), Intermediate (10<sTILs<40%), High (sTILs≥40%); US, ultrasound; MRI. magnetic
resonance imaging.
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FIGURE 4

Kaplan-Meier estimates of DFS according to baseline ultrasound, sTIL levels, menopausal status, and Miller-Payne grade after surgery (n = 279).
(A) DFS rate of tumor size under ultrasound, p < 0.001; (B) DFS rate of lymphatic metastasis (ultrasound), p = 0.041; (C) DFS rate of sTIL levels,
p < 0.001; (D) DFS rate of menopausal status, p = 0.051; (E) DFS rate of pCR, p = 0.001; (F) DFS rate of MP grade, p = 0.001.
A B

DC

FIGURE 5

Kaplan-Meier estimates of DFS according to molecular subtypes (n=279). (A) DFS rate of ER status, p = 0.003; (B) DFS rate of PR status, p = 0.080;
(C) DFS rate of HER2 status, p = 0.937; (D) DFS rate of four molecular subtypes, p = 0.208.
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metastasis, reduced sTILs, and negative ER expression were

identified as pivotal to diminished DFS. Essentially, our findings

offer an enriched pCR prediction model, highlight salient factors

affecting prognosis, and underscore the potential for individualized

breast cancer treatments.
Frontiers in Oncology 10
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FIGURE 6

Kaplan-Meier estimates of DFS according to circulating tumor cells (n = 71). (A) DFS rate of baseline CTC, p < 0.001; (B) DFS rate of CTC after NAC,
p < 0.001; (C) DFS rate of CTC changes before and after NAC, p < 0.001.
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FIGURE 7

Kaplan-Meier estimates of overall survival (OS) (n = 279). (A) OS rate of baseline tumor size under ultrasound, p < 0.001; (B) OS rate of sTIL levels, p
= 0.033; (C) OS rate of molecular subtypes, p = 0.813; (D) OS rate of pCR, p = 0.033.
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