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4Campus Bio-Medico, Fondazione Policlinico Universitario, Roma, Italy, 5Adrology and
Urogynecological Clinic, Santa Maria Terni Hospital, University of Perugia, Terni, Italy
Introduction: Prostate cancer (PCa) is one of the prevailing forms of cancer

among men. At present, multiparametric MRI is the imaging method for

localizing tumors and staging cancer. Radiomics plays a key role and hold

potential for PCa detection, reducing the need for unnecessary biopsies,

characterizing tumor aggression, and overseeing PCa recurrence

post-treatment.

Methods: Furthermore, the integration of radiomics data with clinical and

histopathological data can further enhance the understanding and

management of PCa and decrease unnecessary transfers to specialized care

for expensive and intrusive biopsies. Therefore, the aim of this study is to develop

a risk model score to automatically detect PCa patients by integrating non-

invasive diagnostic parameters (radiomics and Prostate-Specific Antigen levels)

along with patient’s age.

Results: The proposed approach was evaluated using a dataset of 189 PCa

patients who underwent bi-parametric MRI from two centers. Elastic-Net

Regularized Generalized Linear Model achieved 91% AUC to automatically

detect PCa patients. The model risk score was also used to assess doubt cases

of PCa at biopsy and then compared to bi-parametric PI-RADS v2.

Discussion: This study explored the relative utility of a well-developed risk model

by combining radiomics, Prostate-Specific Antigen levels and age for objective

and accurate PCa risk stratification and supporting the process of making clinical

decisions during follow up.
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1 Introduction

Prostate cancer (PCa) is very common in elderly males

worldwide (1). The benchmark for diagnosing PCa involves the

histological examination of prostate tissue acquired through

transrectal ultrasound-guided needle biopsy. The Gleason score is

the prevalent scale utilized to assess the grade of PCa (2). Given that

prostate cancers frequently consist of various malignant cells with

differing grades, two grades are assigned for each case. The primary

grade pertains to the most expansive cancerous area, while the

secondary grade characterizes cells in the second largest area

following the primary one. A prostate cancer diagnosis can be

designated one of the following Gleason scores (based on its extent):

a) 3 + 3 = 6: Cells exhibit a resemblance to healthy cells, indicating a

well-differentiated state; b) 3 + 4 = 7: The cancer primarily

comprises well-formed glands, but may contain a small portion of

poorly formed, fused, or cribriform glands; c) 4 + 3 = 7: The cancer

predominantly features poorly formed, fused, and/or cribriform

glands with fewer well-formed glands; d) 4 + 4 = 8: Cancers falling

into this category typically consist solely of poorly formed, fused,

and/or cribriform glands. Accurately assigning the appropriate

Gleason score to a diagnosed prostate cancer is an essential

undertaking. Furthermore, a discussion persists among experts,

with some questioning the classification of Gleason 6 as a form of

cancer. Several urologists view Gleason 6 as a benign growth with

the capacity for invasiveness, yet unlikely to metastasize to other

organs (3).

Another important factors in diagnosing PCa are total prostate-

specific antigen (tPSA), free PSA (fPSA), PSA density (PSAD), and

the free-to-total PSA ratio (f/t PSA). They are well-established

clinical markers for detecting and grading PCa (4). Nonetheless,

there remains a lack of consensus concerning which indicators are

most suitable for the diagnosis and grading of PCa. The clinical

utility of these markers is hindered by certain limitations, including

the issue of overdiagnosis and subsequent overtreatment.

Consequently, there is an urgent requirement for a novel

approach to early and precise risk stratification of PCa to ensure

favorable prognoses for patients.

Over the past few years, there has been a growing utilization of

multi-parameter MRI (mp-MRI) in localizing, qualitatively

assessing, and diagnosing staging of PCa (5). The aim of PI-

RADS is to enhance the consistency of prostate MRI examination

and analysis. PI-RADS version 2.1 undertones the role of contrast

enhancements suggesting the implementation of biparametric MRI

(bp-MRI), which involves utilizing only T2WI and DWI sequences,

to streamline the process of prostate MRI (6). Radiomics, a

promising and trending field of research, utilizes MRI to assess

tumor heterogeneity and has demonstrated good diagnostic efficacy.

It involves the extraction of a vast number of imaging features in a

high-throughput manner, which are subsequently transformed into

mineable high-dimensional data. Through quantitative analysis of

this data, radiomics presents an unparalleled occasion to enhance

clinical decision-making (7).

Machine Learning (ML) techniques are specifically crafted to

analyze vast quantities of high-dimensional data, without relying on

specific biomedical hypotheses, with the aim of directly uncovering
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actionable insights. As a result of these capabilities, ML methods,

particularly those focused on classification, are progressively being

integrated into radiomic investigations to enhance the assessment

of PCa and mitigate subjectivity in the process (8).

In particular, by using ML to develop a model risk score based

on MRI-directed pathway, clinical and demographic patient

information could potentially achieve a more favorable

equilibrium between the dangers associated with biopsy-related

complications and the possibility of over diagnosing PCa, while

also mitigating the risk of overlooking clinically significant prostate

cancer (9).

The selection of patients for prostate biopsy, who are suspected

of having clinically significant prostate cancer, continues to pose a

challenge, despite the increasing array of diagnostic resources (10).

The current diagnostic tools mainly rely on PSA, employing various

forms of PSA, alternative molecular markers, or combinations of

these markers (11). Numerous tools have been devised to anticipate

low-risk PCa by leveraging clinical parameters, including clinical T-

stage, PSA, PSAD, prostate volume, prostate, and patient age (10,

12, 13). However, their low specificity leads to over diagnosis. Only

a few studies as reported in a recent review (14) integrated an MRI

score to the model by achieving a higher accuracy.

Therefore, the main aim of this study is to 1) automatically

characterize PCa patients to avoid unnecessary biopsy; 2) identify a

risk score to help stratify clinically insignificant PCa.

The novelty of this proof-of-concept study is to investigate

multicentric bi-parametric MRI features (no contrast agents) along

with clinical and demographic information to inform on

unnecessary biopsy.

However, to the best of our knowledge, no attempts have been

made to utilize radiomics from bi-parametric MRI for developing a

risk score model. Although this is a piloting study and more

advanced analysis on a bigger cohort are necessary to overcome

some of the study limitations.
2 Materials and methods

2.1 Datasets

Data were acquired from two centers. Patient imaging and

histopathology records were collected from H.S. Maria delle

Grazie, Italy, and H.S. Maria di Terni, Italy. For the first center,

data from 135 patients were included in this study who

underwent prostate MRI between April 2013 and September

2018 due to elevated PSA levels and/or clinical suspicion of

PCa, subsequently followed by biopsy. In the case of the second

center, this retrospective study included 54 patients who had

undergone prostate MRI between July 2015 and October 2021

due to heightened PSA levels and/or clinical suspicion of PCa,

leading to subsequent biopsies. Biopsy outcomes were deemed

the benchmark in both centers, specifically categorizing lesions as

positive for PCa in instances where GS ≥ 4. Clinically

insignificant lesions were considered with GS=3 + 3. Further

information on the dataset can be found in Brancato et al. (15)

and Castaldo et al. (16).
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2.2 Image e acquisition and
biopsy protocol

In the case of center 1, the MRI acquisition protocol entailed the

capture of T2W, T1W, DCE-MRI, and DWI images (b values of 50,

400, and 1000 s/mm2), including an ADCmap generated during the

imaging procedure. Imaging was performed using a MAGNETOM-

Avanto scanner (Siemens Healthcare, Erlangen, Germany)

operating at 1.5 T. As for center 2, the MRI acquisition involved

the acquisition of T2W and T1W images, along with DWI (b value

ranging from 0 to 2000 s/mm2), including an ADC map. Patients

were examined using a MAGNETOM-Verio scanner (Siemens

Healthcare, Erlangen, Germany) operating at 3 T. The

comprehensive technical parameters of the MRI sequences can be

found in Castaldo et al. (16).

All biopsies of the prostate were guided by TRUS and

conducted with anesthesia, utilizing an 18-gauge Tru-Cut needle

subsequent to an imaging procedure. A highly experienced senior

pathologist, unaware of the MRI findings and with more than 10

years of expertise in analyzing prostate samples, assessed the

pathological sections. Tumor categorization was based on the 4th

WHO classification, with additional grading determined by the

Gleason score (GS) and the cancer group grade. Further details are

reported in Castaldo et al. (16).
2.3 Image processing and radiomics
feature extraction

Two skilled radiologists collaborated in outlining 3D regions of

interest (ROIs) in the suspected lesions through consensus, while

inspecting the b = 1000 (for center 1) and b = 1500 (for center 2)

DWI volume. Two experienced radiologists were asked to draw 3D
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regions of interest (ROIs) in the suspected lesions in consensus while

also looking at the b = 1000 (for center 1) and b = 1500 (for center 2)

DWI volume. In particular, radiologists A and B focused on drawing

ROIs in the suspected lesions according to the previous criteria, while

radiologist B provided support by cross-verifying the ROIs and

ensuring consensus was reached. Any discrepancies or uncertainties

were discussed, and consensus was reached through mutual

agreement. During the segmentation process, the radiologists

remained unaware of the histology results and any clinical

information associated with the retrospective prostate MR images.

Prior to the extraction of radiomic features, the normalization of

T2W image intensities was implemented. B-spline interpolation was

employed to rectify variances stemming from parameters related to

voxel size and to standardize the voxel size throughout the cohort.

Following recommendations from the PyRadiomics community,

each image was discretized by resampling the grayscale values

utilizing a fixed bin width, enabling the acquisition of an optimal

bin count within the range of 16–128. A total of 196 radiomics

features were extracted using the open-source Python package

PyRadiomics (https://pyradiomics.readthedocs.io/en/latest/,

accessed on 1 July 2022) for T2W and ADC sequences. The first

order and multidimensional texture features were amalgamated and

denoted as “original features.” Further particulars are outlined in

Castaldo et al. (16).
2.4 Framework of analysis and
statistical analysis

The framework for the proposed analysis is illustrated in

Figure 1. MRI images were obtained using distinct acquisition

protocols from centers 1 and 2. Specifically, the exploration

encompassed T2W and ADC images, with the extraction of
FIGURE 1

Framework of analysis. MRI, Magnetic Resonance Imaging; T2W, T2-weighted.
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radiomic features aiming to investigate the variability of radiomics

and pinpoint the sources of variability in the multicenter study.

To minimize any potential radiomics variability, image post-

processing techniques were employed, and batch effects were

scrutinized. Initially, the extracted radiomic features were scaled.

Each radiomic feature underwent centering and scaling utilizing the

generic function in R: scale. This process aimed to reduce inherent

discrepancies in their scale and range (16, 17). Subsequently, the

scaled radiomic features underwent further normalization through

a quantile normalization method. The technique of quantile

normalization transforms the initial data, eliminating undesired

technical variation by enforcing the observed distributions to align

with the average distribution, derived from averaging each quantile

across the samples (18). Batch effects were investigated for both

T2W and ADC radiomic features and across modalities, but batch

effects were not visible and therefore, none of the methods described

in Castaldo et al. (16) were applied.
2.5 Risk model approach

The proposed framework used to develop a risk model score is

shown in Figure 2. The final dataset was split into clinically

significant PCa (GS≥4), non-clinically Significant PCa (GS ≤ 3)

and clinically insignificant PCa (GS=3 + 3). For the first part of the

analysis, the patients with GS=3 + 3 were kept aside, and a binary

classifier was developed. The data were stratified split in training

(70%) and testing (30%). The patients with GS=3 + 3 were used to

assess the risk score according to their bi-parametric PI-RADS.

2.5.1 Feature selection
Due to the extensive quantity of features, the process of feature

selection was deemed a crucial stage in constructing a resilient

model. Indeed, the final classifier’s feature count and dimensionality

needed to be constrained in accordance with the number of subjects
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manifesting the event being detected, thus mitigating the risk of

overfitting in the machine learning model. Additionally, a concise

selection of clinical features significantly streamlines the clinical

interpretation of the results, directing focus solely on the most

informative and pertinent radiomic and clinical features (19).

Hence, the feature selection procedure was built on two primary

steps: redundancy analysis (20) and Elastic Net based Feature

Ranking (21). The redundancy analysis selected only one feature

from each cluster of features mutually correlated using Spearman’s

rank correlation to reduce multicollinearity in the model by using a

threshold of │0.8│ and a p-value less of 0.05. The degree of

association between the two variables is deemed highly robust

when the coefficient falls within the range of 0.8 to 1, moderately

strong between 0.6 to 0.7, weak between 0.3 to 0.5, and very feeble

when below 0.2. When the correlation coefficient equals 0, it

indicates that the two variables are entirely independent of each

other (22–24).

Elastic Net based Feature Ranking, a method of regularized

regression, introduces an L2 penalty in addition to circumvent the

drawbacks associated with the least absolute shrinkage and selection

operator (LASSO) (21). This technique estimates the feature

weights and conducts feature selection concurrently, effectively

assigning a weight of zero to most irrelevant features. The penalty

parameters were tuned on the training set through a K-fold cross-

validation. Features were ranked in a decreasing order based on

their importance score.

2.5.2 Training, validation and testing
The selected features were used to train and validate Elastic-Net

Regularized Generalized Linear Model and develop a risk score (25).

We implemented the EN model utilizing the glmnet method

within the “caret” package (26) in R (http://www.r-project.org/;

release 3.6.0). The data underwent scaling and centring to zero (pre-

process option in caret). During each iteration of the EN model

training, a grid search was employed to fine-tune both a and l.
FIGURE 2

Model Risk Score.
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Consequently, feature selection and the training of the

machine-learning model (including the tuning of classifier

parameters) were conducted using 70% of the total patient

cohort. The training data was also utilized to validate the classifier

through the implementation of a k-fold cross-validation technique.

The model validation involved employing a 5-fold person-

independent cross-validation approach. Subsequently, the model’s

efficacy in automatically identifying clinically significant PCa

patients was tested on an independent set of data (comprising

approximately 30% of the total patient cohort). Binary classification

performance metrics were adopted based on standard

formulas (27).

2.5.3 Model risk score
The “risk score” model was generated via the regression analysis

and is expressed as a cut-off indicating the risk of significant PCa. The

cut-off for the risk probability scores was established based on the test

characteristics. Specifically, the cut-off was established as the median of

the probability distribution plots within the test set. Moreover, the risk

model score was also assessed against the bi-parametric PI-RADS v2.
3 Results

3.1 Study population

For this study, a total of 189 PCa patients were investigated (59

patients with positive biopsies, 73 patients with negative biopsies and

57 patients with GS=3 + 3). At H.S. Maria delle Grazie, Italy, 135 PCa

patients were investigated (47 patients with positive biopsies, 50

patients with negative biopsies and 38 patients with GS 3 + 3); at

H.S. Maria di Terni, Italy 54 PCa patients were investigated (12 patients

with positive biopsies, 23 patients with negative biopsies and 19

patients with GS 3 + 3). The demographics and clinical

characteristics of the study population are reported in Table 1.
3.2 Classification risk model

The data were stratified split in 70% training (n=94) and 30%

testing (n=38). The patients with GS=3 + 3 (N=57) were then
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assessed against the bi-parametric PI-RADS as external validation

of the risk score.
3.2.1 Feature selection
By using the training set, we started our feature significance

analysis utilizing redundancy analysis and Elastic Net based

Feature Ranking.

As first step, we performed redundancy analysis based on

absolute values of Spearman correlation among statistically

significant radiomic features. The features which were having

lower correlation (with Spearman correlation below 0.8) have

been labeled as redundant and removed from the final radiomic

feature list. Figure 3 showed that 26 radiomic features were

not redundant.

In the next step, Elastic Net based Feature Ranking was

employed to further minimize the number of radiomic features.

Elastic Net based Feature Ranking was applied to the training set

and 5-fold cross validation was also employed. According to Elastic

Net based Feature Ranking, we found that 17 radiomic features

were ranked as possible predictors. According to Foster et al. (19),

because of the limited number of patients in the study, no more

than one feature was utilized for every ten observations or subjects

manifesting the outcome of interest to construct the models,

therefore, we choose the first 5 radiomic features (Figure 4).

In addition to the radiomic features selected by redundancy and

elastic net, age and PSA were added as predictors to develop the

model. Therefore, a total of 7 predictors were selected as input to the

machine learning model.

3.2.2 Training validation and testing
The model, Elastic-Net Regularized Generalized Linear Model,

was trained and validated by using 5-fold cross validation

techniques by using 7 predictors: original first order Robust Mean

Absolute Deviation, original shape Maximum 2D Diameter Slice,

ADC first order Skewness, original first order Kurtosis, original

glcm Correlation, Age and PSA.

The hyperparameters of Elastic-Net Regularized Generalized

Linear Model were tuned during the training and validation. The

optimized parameters were alfa=0 and lambda=0.2.

The final model was then tested on a dependent set of data and

performance are reported in Figure 5. The model achieved an AUC

of 91% and an overall accuracy of 83% [95% CI 67%-94%].
3.2.3 Model risk score
The model risk score is presented in the following equation:

y∼2:61� 0:49 �  
original firstorder Robust Mean Absolute Deviation þ
0:35� original shape Maximum 2D Diameter Sliceþ0:19

� ADC firstorder Skewnessþ0:24�original firstorder Kurtosis
þ0:33� original glcm Correlationþ0:03�Ageþ0:02�PSA

The model risk score was plotted based on the testing data in

Figure 6. The cut-off was chosen as the median of the distribution.
TABLE 1 Study population.

Positive
Biopsy

Negative
Biopsy

GS
3 + 3

No. of patients (n (%)) 59 (31%) 73 (39%) 57 (30%)

Median AGE (mean SD) 69.362(6.809) 65.447(6.262)
66.280
(6.771)

Mean PSA (ng (SD)) 14.092(15.010) 8.703 (6.258)
8.036
(6.095)

Mean PSAD
(ng/ml (SD)) 1.307 (6.973) 0.123 (0.09)

0.158
(0.211)

Mean Prostate Volume
(cm (SD)) 43.671 (20.295) 77.656 (39.958)

57.105
(27.163)
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The cut-off to automatically detect PCa patients was 4.769 [95%CI

4.483-5.18].

The cases that were considered clinically insignificant PCa with

GS=3 + 3 were used to assess the model risk score as shown in

Figure 7. The proposed risk score was able to correctly identify

patients (GS 3 + 3) with PI-RADS 2, which are considered at low
Frontiers in Oncology 06
risk to present a clinically significant cancer, and PI-RADS 5, in

whose patients clinically significant cancer is highly likely to be

present. For patients with PI-RADS 3 e 4, where clinically

significant cancer is only likely to be present, the model risk score

could be used to provide useful information on follow-up plans.
4 Discussion

Our study, consisting of 189 men from two different cohorts,

shows that we can discriminate clinically significant PCa from other

prostate conditions with a high specificity of 94% and 72%

sensitivity. The model displays high NPV and PPV while limiting

the number of missed cancers. The high NPV of 77% is particularly

valuable, indicating that when the test predicts a negative result,

there is a high level of confidence that significant disease is indeed

absent. Similarly, the PPV of 93% provides useful insight into the

likelihood of true positive results, aiding in clinical decision-

making. Crucially, the model comprises solely of objectively

identifiable input parameters, making it impervious to

subjectively chosen parameters such a digital rectal exam (DRE),

MRI suspicious score or prostate volume.

Other studies have also investigated risk scores to detect PCa

patients by using molecular biomarkers and invasive measures.
FIGURE 4

Elastic Net based Feature Ranking analysis (first 5 ranked features).
FIGURE 3

Correlation Plot as result of redundancy analysis *: p-value<0.05.
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Strobl et al. (28) developed a static risk tool that predicts the

likelihood of detecting prostate cancer if a prostate biopsy were to

be performed. In fact, they used various factors associated with the

patient, such as age, family history, prostate-specific antigen (PSA)

levels, DRE results, and other relevant clinical information, which

can also be quite invasive. One study, by Pye et al. (29), evaluated a

novel diagnostic test, Proclarix, incorporating biomarkers like

thrombospondin-1, cathepsin D, total and free PSA, and age for

predicting clinically significant prostate cancer. They achieved a

lower specificity of 43% but a higher sensitivity of 90% for detecting

significant disease. This would mean that there might be some false

positives (lower specificity), making the algorithm ineffective to

reduce unnecessary prostate biopsies. Another study by Dutto et al.

(12) also attempted the development of a novel risk score (NRS)

incorporating various parameters such as PSA, prostate volume,

age, clinical T Stage, and biopsy core data. By outperforming pre-

existing predictive tools in both derivation and validation cohorts,

the NRS demonstrates its potential for improved accuracy and

reliability. However, Dutto et al. achieved a lower AUC value of 76%

in the validation cohorts, whereas we achieved a 90% AUC leading

to better patient stratification, facilitating more targeted and
Frontiers in Oncology 07
appropriate clinical interventions, thus potentially reducing both

unnecessary treatments and missed diagnoses.

Few studies have investigated a risk score using imaging

parameters and radiomics. A recent review (14) discusses the

potential of personalized risk-based algorithms in prostate cancer

diagnosis, utilizing predictive prebiopsy factors along with prostate-

specific antigen. They showed that mpMRI as a secondary tool

could enhance the detection of significant PCa. MRI risk models

show variable performance in detecting clinically significant PCa,

offering the ability to reduce biopsies and avoid detecting non-

significant PCa, depending on chosen risk threshold. However, the

studies used MRI suspicion scores, which are quantitative

assessments used to evaluate the likelihood of prostate cancer

based on the findings of a multi-parametric magnetic resonance

imaging (mpMRI) scan. The area under the receiver-operating

characteristic curve for detecting clinically significant PCa varies

between 0.64 and 0.91 in biopsy-naïve men, and between 0.78 and

0.93 in men with a previous negative biopsy. However, to assess

their wider applicability, in-depth analysis of mpMRI predictive

qualities should be further investigated. For instance, Peters et al. (9)

developed a risk score called Imperial RAPID risk score based on
A B

FIGURE 6

(A) Density Distribution of the Risk Score on the testing data. (B) Boxplot of the risk score with testing data.
A C

B

FIGURE 5

Performance of the binary model on testing set. (A) Confusion Matrix; (B) Binary Performance; (C) ROC curve.
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age, PSA density, prior negative biopsy, prostate volume, highest

MRI score, which had good predictive ability. Adding family

history, DRE, Black ethnicity to the eight-item score yielded

similar results. RAPID score reduced biopsies while capturing

significant cancers. However, they used an MRI score (PIRADS

or Likert) that combines multiple imaging findings which can be

subjective. Also, Sakaguchi et al. (13) retrospectively analyzed

clinical parameters and bpMRI findings from 773 biopsy-naïve

patients. They subsequently developed a risk model by employing a

Multivariate logistic regression analysis to predict significant

prostate cancer. The inclusion of parameters like age, log

prostate-specific antigen (PSA), prostate volume, and PI-RADS

scores in the risk model reinforced its comprehensiveness.

However, also in this study they achieved a lower AUC (86%) for

the risk model. In fact, our model indicates its superior

discriminatory ability, underscoring its potential as a more

reliable tool for ruling out cancer, while showing high sensitivity

in cases where further confirmation is needed for suspected cases of

prostate cancer. Hence, the existing risk stratification models,

designed to estimate oncological outcomes, lack the capability to

precisely outline the prognosis for individual patients across various

stages of the disease. This underscores the persistent requirement

for the development of personalized and precise detection tools

and treatments.

In this study, we also tested our model risk score on clinically

doubt patients that presented at biopsy a Gleason score of 3 + 3.

Those patients are often associated with low-risk, slow-growing

prostate cancer. Many men with this score opt for active

surveillance. This means regular monitoring through PSA tests,

digital rectal exams, and possibly repeat prostate biopsies. Our

proposed risk assessment system effectively distinguished between

patients with PI-RADS 2, indicating a low likelihood of clinically
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significant cancer, and PI-RADS 5, signifying a high likelihood of

clinically significant cancer. For patients falling into the PI-RADS 3

and 4 categories, where the likelihood of clinically significant cancer

is intermediate, the model’s risk score could offer valuable insights

for follow-up plans. For example, patients identified as “negative”

by the model’s risk score could be placed on a non-invasive and

proactive surveillance regimen. This might involve regular

monitoring, including periodic MRI scans and PSA tests, to track

any changes in the lesion or prostate health. This approach could be

pursued initially, eliminating the need for an immediate transrectal

ultrasound or transperineal biopsy. Notably, the model

demonstrated a high level of specificity in its overall performance.

Overall, the model under consideration in this study was

developed using data obtained from MRI scans from two centers

with various imaging protocols, including different settings or

techniques used during the imaging process. The key point to

note is that during these imaging procedures, no contrast agents

were administered to the patients, thus reducing the invasiveness of

the procedure. Furthermore, the effectiveness of the model’s risk

category assignment, particularly concerning PI-RADS

assessments, implies that it can accurately assess the risk category

of a patient without the need for the administration of contrast

medium. This is significant because the model’s performance is not

dependent on the use of contrast agents, which can sometimes have

associated risks or contraindications for certain patients.

However, there are some limitations. In our study, while we did

not explicitly perform a feature repeatability test, but we

implemented rigorous preprocessing steps to enhance the

reliability of the extracted radiomic features. Firstly, we scaled the

radiomic features to minimize differences in scale and range, which

is essential for ensuring comparability across features.

Subsequently, we further normalized the scaled features using
FIGURE 7

Risk Score on the clinically insignificant PCa with GS=3 + 3 against bi-parametric PIRADS.
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quantile normalization to remove unwanted technical variation and

ensure consistency across samples. Additionally, we investigated

batch effects for both T2-weighted and ADC radiomic features, as

well as across modalities, with no batch effects observed. This

suggests that the preprocessing steps implemented in our study

effectively mitigated potential sources of variability and ensured the

robustness of the extracted radiomic features. However,

incorporating a feature repeatability test in future studies could

further strengthen the validity of our radiomic analyses (30).

Another possible limitation is the use of a multi-step feature

selection process where potential errors or hurdles could have arose

in the model such as: a) overfitting, in fact by choosing features

solely based on the training set might result in overfitting, hence, we

validated the chosen features using an independent test set; b)

correlation challenges, in fact certain features may exhibit high

correlation, leading to redundancy, consequently, we managed

correlated features appropriately; and c) selection bias, in fact,

improper execution of feature selection may introduce bias into

the model, impacting its generalizability, therefore, we incorporated

K-fold cross-validation as well.

Moreover, at present no follow-up data of patients presenting

GS 3 + 3 and external validation set of data are available. There is, in

fact, the need to calibrate these results in future studies. While our

study included an internal validation in a multicenter context to

gauge its broader applicability, we aim to scrutinize the model’s

performance and make necessary adjustments based on newly

acquired data. We advocate for additional validation on external

cohorts comprising diverse patient populations with varying

baseline risks, ensuring the risk prediction tool’s effective

performance before its integration into clinical practice.
5 Conclusion

This study demonstrated that the integration of radiomic

features, PSA, and age can achieve a significant level of clinical

effectiveness in helping to determine the necessity of a prostate

biopsy for individuals with suspected clinically significant PCa. The

proposed methodology was scrutinized using a dataset

encompassing 189 PCa patients from two medical centers. The

Elastic-Net Regularized Generalized Linear Model achieved an

impressive 91% Area Under the Curve (AUC) in automatically

identifying PCa patients. This study explored the feasibility of a

robust risk model to provide objective and precise risk stratification

for PCa, which could inform personalized follow-up plans. Ongoing

multicenter clinical studies will expand on these results in

additional cohorts and assess how this test could support

the clinicians.
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