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Proteomic and metabolomic
signatures of rectal tumor
discriminate patients with
different responses to
preoperative radiotherapy
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Background: Neoadjuvant radiotherapy (neo-RT) is widely used in locally

advanced rectal cancer (LARC) as a component of radical treatment. Despite

the advantages of neo-RT, which typically improves outcomes in LARC patients,

the lack of reliable biomarkers that predict response and monitor the efficacy of

therapy, can result in the application of unnecessary aggressive therapy affecting

patients’ quality of life. Hence, the search for molecular biomarkers for assessing

the radio responsiveness of this cancer represents a relevant issue.

Methods: Here, we combined proteomic and metabolomic approaches to

identify molecular signatures, which could discriminate LARC tumors with

good and poor responses to neo-RT.

Results: The integration of data on differentially accumulated proteins and

metabolites made it possible to identify disrupted metabolic pathways and

signaling processes connected with response to irradiation, including ketone

bodies synthesis and degradation, purine metabolism, energy metabolism,

degradation of fatty acid, amino acid metabolism, and focal adhesion.

Moreover, we proposed multi-component panels of proteins and metabolites

which could serve as a solid base to develop biomarkers for monitoring and

predicting the efficacy of preoperative RT in rectal cancer patients.

Conclusion: We proved that an integrated multi-omic approach presents a valid

look at the analysis of the global response to cancer treatment from the

perspective of metabolomic reprogramming.
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1 Introduction

Locally advanced rectal cancer (LARC) patients with an

increased risk of metastasis or local recurrence (T3-4 or N+) are

eligible for neoadjuvant radiotherapy (neo-RT) before surgical

resection, which generally leads to a decrease in tumor mass and

improves treatment outcomes (1). However, despite the expected

benefits of neo-RT, such treatment may not be effective in

radioresistant tumors resulting in recurrence in some cases (2).

The effectiveness of preoperative RT can be assessed by

histopathological analysis of the resected tissue specimen

according to tumor regression grading (TRG) system (3). TRG

provides valuable prognostic information, yet the actual prediction

of tumor regression remains a challenge. Rectal cancer patients are

usually monitored using blood tests (e.g., CEA biomarker) and/or

imaging (MR, EUS, and CT) to ensure that they remain disease-free

and are treated promptly upon relapse. However, in some cases,

classical clinical assessment/monitoring tools are insufficient (4).

Therefore, the development of novel relevant biomarkers that could

be used to predict the effectiveness of neo-RT in LARC patients is

eagerly awaited (5). Moreover, there is still a lack of predictive

biomarkers of sensitivity/resistance of rectal cancer to RT, which

may result in the use of overly aggressive or ineffective therapy with

associated negative effects on the quality of life. Therefore, an

appropriate prognosis, based on specific predictors, should be the

basis for selecting patient groups that require a more aggressive

treatment strategy (6, 7).

An improved understanding of the cellular and molecular

signaling pathways involved in disease processes, as well as the

development of new therapeutic targets, may be made possible by

the omics-based methods used to identify molecular risk factors and

biomarkers, according to much of the evidence found (8). This

could lead to the development of a more potent treatment for LARC

patients. Proteomic and metabolomic approaches could be applied

to prediction of the response to selected therapeutic strategies and

monitoring the progression of disease (9–11). Although RT has

been used extensively for a variety of tumors, little progress has been

made in predicting and monitoring treatment outcomes after RT

(12). There are only a few studies concerning proteomic or

metabolomic profiling of tissue or serum/plasma from rectal

cancer patients with various RT outcomes (13–18). The majority

of these reports only cover neo-chemoradiotherapy’s effects.

Moreover, researchers mostly focus on a single protein or panel

of a few proteins associated with known radiation effects like DNA

repair, cell cycle, cell proliferation, apoptosis, altered metabolism, or

immune response. There is lack of a broader, systemic studies

combining proteomic and metabolomic approaches to reveal

molecular processes and discriminatory molecules correlated with

different patient responses to neo-RT in the LARC group. Recently

our group applied a multi-omics approach to identify several

differentially accumulated proteins and metabolites whose

abundances detected in whole serum and serum-derived

exosomes differentiated LARC patients with varying neo-RT

responses. These molecules were linked to common pathways

that are important for the reaction to RT, including energy
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metabolism, cancer-related signaling pathways, complement

activation cascade, platelet functions, and the immune system (19).

In this study, we combined proteomics and metabolomics MS-

based approach to identify molecules that could distinguish LARC

tumors with various neo-RT responses. We proposed the panel of

proteins and metabolites which could be a promising tool for the

estimation of radio-responsiveness in patients with rectal cancer.

Moreover, we associated differentially accumulated proteins and

metabolites with molecular pathways and processes occurring in

tumor tissue in response to radiation. Thus, our work provides a

holistic view of the rectal cancer tissue response to irradiation from

the perspective of metabolic reprogramming.
2 Materials and methods

2.1 Clinical samples

Tissue samples were taken from 24 LARC patients diagnosed

with adenocarcinoma and treated at Maria Skłodowska-Curie

National Research Institute of Oncology, Gliwice Branch. All

patients were given neo-RT in a total dose of 39-54Gy. Tissue

samples were collected between 2012 and 2014, directly during a

standard surgical treatment; resected tissue samples were

immediately frozen and kept at -80°C until analysis performed in

2020. The histology of three tissue slices (from the edges and center

of the studied tissue sample) was assessed by an experienced

pathologist for the percentage of tumor cells in each case. TRG

assessed routinely in resected tumors reflected the area of residual

tumor cells compared to the fibrotic area: TRG0 - complete

response/no residual tumor, TRG1 - 10% of residual tumor,

TRG2 - 10-50% of residual tumor, and TRG3 - >50% of residual

tumor. Depending on the response to the treatment and the

presence of tumor cells, collected samples were classified into two

groups: good responders (GR) – 12 patients with RT-sensitive

tumors (TRG 0-1), and poor responders (PR) - 12 patients with

RT-resistant tumors (TRG 2-3). Table 1 contains the

clinicopathological details and disease status for all included

patients. Using post-operative material for research purposes was

under local Ethics Committee approval no. KB/430-50/12. All tissue

donors signed an informed consent form attesting to their

voluntarily and consciously taking part.
2.2 Sample preparation for
proteomic studies

The ball mill MM400 (Retsch, Germany) was used to grind the

whole frozen tissue samples in liquid nitrogen for 45 seconds at 30

Hz. Tissue was lysed in 100 mL of 1% sodium deoxycholate (SDC) in

a buffer containing 50mM NH4HCO3. Following homogenization

with a Precellys 24 homogenizer (Bertin Technologies, France),

samples were sonicated for 10 minutes in a bath on ice. Then,

samples were centrifuged for 10 minutes at 11,000 x g at 4°C and the

supernatant was moved to fresh tubes. The amount of isolated
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protein was measured using Pierce BCA protein assay kit (Thermo

Scientific, Rockford, lL, USA) according to the guidelines provided

with the product. For in-solution digestion, 10 µl of the sample

containing 10 µg of proteins was diluted by adding 15 µl of 50 mM

NH4HCO3 buffer and then reduced with 5.6 mM DTT at 95°C for 5

min. Then, proteins’ thiol groups were alkylated with 5 mM

iodoacetamide (IAA) for 20 min at room temperature and in the

dark. For digestion, 0.2 µg of sequencing-grade trypsin (Promega)

was added to each sample and left overnight at 37°C. Next, 1.5 µg of

10% trifluoroacetic acid (TFA) was added, mixed for 10 minutes,

and twice centrifuged for 7 min. at 11,000 x g at 20°C. The purified

tryptic peptides were then analyzed by LC–MS/MS.
2.3 Mass spectrometry analysis of proteins

A Dionex UltiMate 3000 RSLC nanoLC system combined with

a QExactive Orbitrap mass spectrometer (Thermo Fisher Scientific)

was used to conduct the proteome analysis. The peptides were

separated on an Acclaim PepMap RSLC nanoViper C18 reverse

phase column (75 µm x 25 cm, 2 µm particle size) with temperature
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kept at 30°C and a flow rate of 300 nl/min. The acetonitrile gradient

from 4 to 60% in 0.1% formic acid was used in the 190-minute

chromatographic program. Mass spectrometry data were acquired

using the top 10 DDA approach, MS scans were registered at the

resolution of 70,000 (m/z 200) while MS/MS spectra were registered

at 17,500 resolution (also at m/z 200) in a positive mode in mass

range of 300-2000 m/z. Ten most abundant peaks (2 or more

charges) were subjected to fragmentation in HCD collision chamber

and the collision energy was set for a constant value of 28%. Protein

Discoverer 2.2 software (Thermo Fisher Scientific) was used to

process the raw data collected during the study. Using the

UniProt human database, proteins were identified with an

accuracy of 10 ppm for peptide masses and 0.08 Da for fragment

ion masses. Methionine oxidation as a dynamic modification and

carbamidomethylation of cysteines as a constant modification were

set for all searches, and two missed digestion sites per peptide were

allowed. Proteins were considered to be identified if the search

engine noticed at least two peptides for each protein and a peptide

score reached the significance threshold FDR = 0.01 (as determined

by the Percolator algorithm). The total ion current (TIC) was used

to normalize the identified proteins’ abundance.
TABLE 1 Clinical features of study participants with rectal cancer.

Total
n (%)

Good Responders n (%) Poor Responders n (%) Difference p-Value (test)

Sex
Females 11 (45.8) 5 (41.7) 6 (50)

1.0 (Chi2)
Males 13 (54.2) 7 (58.3) 6 (50)

Age (years)
mean (S.D.)
median

66.0 (10.9)
68.5

64 (13.1)
65.0

69 (7.9)
70.5

0.23 (t-test)

BMI mean (SD) 26.2 (4.2) 25.1 (4.0) 27.3 (4.2) 0.19 (t-test)

Clinical Stage

II 9 (37.5) 4 (33.3) 5 (41.7)

0.50 (Chi2)III 14 (58.3) 8 (66.7) 6 (50.0)

IV 1 (4.2) 0 (0.0) 1 (8.3)

RT scheme

39 Gy 11 (45.8) 4 (33.3) 7 (58.3)

0.04 (Chi2)42 Gy 8 (33.3) 3 (25.0) 5 (41.7)

54 Gy 5 (20.8) 5 (41.7) 0 (13.0)

RT
RT/CT

12 (50.0)
12 (50.0)

4 (33.3)
8 (66.7)

8 (66.7)
4 (33.3)

0.22 (Chi2)

Time RT/S (days)
mean (SD)
median

57.0 (22.0)
54.5

56.0 (22.2)
55.0

57.0 (22.6)
44.0

0.88 (t-test)

Surgery mode
AR 15 (62.5) 7 (58.3) 8 (66.7)

1.0 (Chi2)
APR 9 (37.5) 5 (41.7) 4 (33.3)

ypT
0–2 6 (25.0) 4 (33.3) 2 (16.7)

0.64 (Chi2)
3 18 (75.0) 8 (66.7) 10 (83.3)

ypN
negative 16 (66.7) 9 (75) 7 (58.3)

0.67 (Chi2)
positive 8 (33.3) 3 (25) 5 (41.7)

LNY mean (SD) 11.2 (5.1) 10.2 (4.1) 12.0 (4.8) 0.12 (t-test)
BMI, body mass index; RT, neoadjuvant radiotherapy; CT, chemotherapy; Time RT/S, the time from completion of RT to surgery; LNY, node yield; S.D., standard deviation.
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2.4 Sample preparation for
metabolomic studies

50 mg of pulverized tissue was extracted using 200 ul each of

hexane, chloroform, methylene chloride, and methanol. The

mixture was sonicated for 10 minutes each time after adding

organic solvent, then centrifuged for 10 min at 11,000 x g at 4°C,

and dried in a vacuum centrifuge. The dried extract was then

subjected to derivatization by adding 40 ml of methoxyamine

hydrochloride in pyridine (20 mg/ml) and incubated for 1.5h at

37°C. Next, in the second derivatization step, 90 ml of

N-Trimethylsilyl-N-methyl trifluoroacetamide was added,

and samples were incubated at 37°C for another 30 min.

After derivatization, samples were immediately subjected to a

GC/MS analysis.
2.5 Mass spectrometry analysis
of metabolites

The GC-MS system (TRACE 1310 GC oven with TSQ8000

triple quad MS from Thermo Scientific, USA) with a DB-5MS

column (30 m 0.25 mm 0.25 m) (J & W Scientific, Agilent

Technologies, Palo Alto, California, USA) was used to separate

and analyze metabolites. The following conditions were maintained

for the gradient during chromatographic separation: 2 minutes at

70°C, followed by 10 minutes at 300°C, at 300°C. The source

temperature was set to 250°C, the column interface was

maintained at 250°C, and the PTV injector was used to inject the

sample with a temperature gradient from 40 to 250°C. The electron

ionization energy of the ion source, which operated in the range of

50-850 m/z, was set at 70 eV. The mixture of retention indexes (RI)

containing alkanes was run before relevant analyses. Raw data files

were analyzed using MSDial software (v. 4.92). The correction

against the alkane series mixture (C-10-36) was implemented

directly in MS Dial to generate the RI for each compound. The

28,220 records in the MSP database from the CompMS site were

used to identify small molecules. Metabolite was considered as

identified if the similarity index (SI) was above 80%. The following

analyses did not include the identified artifacts (alkanes, column

bleed, plasticizers, MSTFA, and reagents). Results that had been

normalized (by applying the TIC approach) were exported and used

in statistical analyses.
2.6 Statistical and chemometric analyses

The continuous clinical metadata was compared between GR and

PR groups with the T-test, after assessing both groups’ normality

(with the Shapiro-Wilk test) and homoscedasticity (with the Levene

test). The categorical clinical metadata was compared between groups

with the chi-square test of independence. Depending on the

normality and homoscedasticity of the data (assessed via

the Shapiro-Wilk test and Levene test, respectively), differences in
Frontiers in Oncology 04
the abundances of proteins and metabolites between independent

samples were evaluated using the T-test, Welch test, or U-Mann-

Whitney test. Identified compounds were considered as differentially

accumulated proteins (DAPs) or differentially accumulated

metabolites (DAMs) when the p-value was lower than 0.05. For the

false discovery rate correction, the Benjamini-Hochberg protocol was

applied in each case. The effect size of 0.5 and 0.8 or 0.3 and 0.5 was

considered to be medium and high, respectively, in the effect size

analysis using the Hedges’ g or the rank-biserial coefficient of

correlation (an effect size equivalent of the U-Mann-Whitney test)

(20). The evaluation of pairwise ratios between the specific

compounds in the two groups was conducted using the traditional

fold change estimator or the Hedges-Lehmann type fold change

estimator. All statistical calculations were performed in Python.

Normalized data were log-transformed, scaled with a mean-

centered factor, and divided by the standard deviation of each

variable for chemometric analyses. To show the general sample

distribution, Principal Component Analysis (PCA) and

Hierarchical Cluster Analysis (HCA) were used. For each

compound, a single-feature logistic regression classifier was created.

In addition to computing several quality control metrics, leave-one-

out validation was carried out. The accuracy was computed as the

mean of the TNR (true negative rate—specificity) and TPR (true

positive rate—sensitivity) and to be independent of group size. The

univariate ROC curve was generated using all of the feature’s data.

MetaboAnalyst 5.0 - https://www.metaboanalyst.ca/- was used to

carry out the multivariate ROC curve-based exploratory analysis

for the prediction of the biomarker panel. ROC curves were created

using balanced sub-sampling and Monte Carlo cross-validation

(MCCV). The Linear Support Vector Machine (SVM) was used for

the analyses, and its built-in algorithm was used to rank the features.
2.7 Functional bioinformatics

String ver. 11.5, available at https://string-db.org, was used to

analyze proteomic data (21). Hypergeometric testing with

Benjamini-Hochberg multiple corrections was used to search for

enriched GO terms and Reactome pathways using a list of genes

corresponding to DAPs. For protein class annotation, Panther 17.0

Classification System - http://www.pantherdb.org was used.

MetaboAnalyst 5.0, available at https://www.metaboanalyst.ca,

was used to analyze metabolomic data. The Quantitative

Enrichment Analysis (QEA) algorithm was used to identify the

metabolic pathways connected to DAMs. The Joint Pathway

Analysis tool in MetaboAnalyst 5.0 and Pathview (https://

pathview.uncc.edu/) was used to combine and visualize multi-

omic data. Integrated pathway analysis, based on the KEGG

database, was implemented to carry out this by uploading a list of

genes corresponding to DAPs and a list of DAMs with their fold

changes. Additionally, the Pearson coefficients were applied to

define the correlations between the differentially expressed

variables found at both omic levels; p-values 0.05 were

considered significant.
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3 Results

3.1 Proteomic and metabolomic profiling
of tissue samples

The mass spectrometry-based methods were applied for

profiling proteins and metabolites in the tumor tissue of LARC

patients who responded differentially to neo-RT. LC-MS/MS label-

free approach made it possible to identify 2741 proteins in tissue

specimens. The complete list of identified and quantified proteins is

presented in Supplementary Table S1A, and the major classes of

identified proteins are presented in Supplementary Figure S1A.

Among the most numerous classes of proteins in tumor tissue were

RNA metabolism proteins, cytoskeletal proteins, protein modifying

enzymes, metabolite interconversion enzymes, and translational

proteins. An untargeted GC–MS-based profiling allowed the

annotation and relative quantification of 119 metabolites, which

are listed in Supplementary Table S2A. The most numerous classes

of metabolites in tissue samples were amino acids, sugars and

derivatives, fatty acids and lipids, carboxylic and hydroxy acids,

purines, pyrimidines, and their derivatives (Supplementary Figure

S1B). Unsupervised clustering of the samples was carried out using

the abundances of all identified proteins and metabolites. PCA and

HCA performed based on both proteome and metabolome

composition of tumor tissue allowed good separation of two

groups of samples representing tumors with good and poor

responses to neo-RT (Supplementary Figures S2A–D).
3.2 Proteomic signature of rectal tumor
responses to preoperative RT

Among all identified proteins, 1710 showed significantly

different (FDR<0.05) abundance between GR and PR, respectively

(Supplementary Table S1A). Among the most numerous classes of

DAPs were RNA metabolism proteins, cytoskeletal proteins,

protein modifying enzymes, metabolite interconversion enzymes,

and translational proteins (Supplementary Figure S1C). Identified

DAPs were used to perform supervised clustering of samples

(Supplementary Figure S2E). Most DAPs were upregulated in the

PR group, while only 210 DAPs were upregulated in the GR group.

Moreover, 19 DAPs were identified only in the PR group (namely:

PROM1, HTATSF1, ND4, IVL, CKMT2, LIG1, BUD31, PTK2,

CPSF1, RPS6KA1, ACSM3, ATAD3B, GALNT7, GFM1, COPS8,

GTPBP, TRIM2, SPON1, NOX1), while one DAP (INA) was

identified only in the GR group.

To further describe the potential of proteins identified in tumor

tissues to discriminate patients with different responses to RT,

univariate and multivariate classifiers were tested. Based on

classical univariate ROC curve analysis, there were 245 proteins

(8.9% of all detected proteins) for which a binary classification

model (GR vs. PR) was performed with the receiver operating

characteristics AUC equal 1 (Supplementary Table S1B). Finally,

multivariate ROC curve analysis was performed to obtain a panel of

potential proteomic biomarkers of response to neo-RT. Proteomic-

based biomarker prediction was performed by multivariate ROC
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curve-based exploratory analysis. The classification models based

on the top 5, 10, 15, 25, 50, and 100 important proteomic features

with their corresponding AUC values are presented in Figure 1A. A

model built on 50 features reached a predictive accuracy of 100%

(Supplementary Figures 3A, B). The predicted class probabilities

(average of the cross-validation of 50-mer models) for each sample

(GR vs. PR) are presented in Supplementary Figure 3C. The top 20

predicted proteomic biomarkers based on how frequently they were

selected during cross-validation are shown in Supplementary

Figure 3D, while the complete list of proposed predictors can be

found in Supplementary Table S1C. The normalized abundances of

the top ten potential proteomic biomarkers with the highest

frequency rank and importance based on the 50-mer classification

models are presented in Figure 1B.

Furthermore, a functional enrichment analysis of DAPs was

carried out, which showed a number of significantly overrepresented

GO terms linked to them, including 1070 biological processes, 69

molecular functions, and 304 cellular components. Moreover, the

KEGG, Reactome, and WikiPathways databases were used to analyze

the functional interactions between DAPs (Supplementary Table S3).

The TOP20 enriched processes (WikiPath) and functions (Reactome)

associated with DAPs are presented in Figures 1C, D. DAPs’

overrepresented functions and processes were generally connected

with focal adhesion, VEGFA-VEGFR2 signaling pathway,

metabolism of amino acids and proteins, metabolism of RNA,

ribosomal proteins, translation factors, cellular responses to stress,

proteasome degradation, ketone bodies, peroxisomal beta-oxidation,

energy metabolism (glycolysis and TCA cycle), and metabolic

reprogramming in colon cancer. Moreover, significantly

overrepresented pathways involved in the immune response (T-cell

receptor signaling pathway, antigen processing and presentation,

leukocyte, and neutrophil-mediated immunity) were connected with

DAPs upregulated in the PR group (Supplementary Figure S4). Chosen

the most enriched KEGG pathways connected with DAPs, including

ribosomal and proteasomal proteins, ECM matrix interaction,

proteoglycans in cancer, complement, and coagulation cascades, focal

adhesion, and signaling pathways connected with colorectal cancer

(VEGF, PI3K-Akt, RAS, WNT, MAPK, NF-KAPPA B) are presented

in detail in Supplementary Figure S5.
3.3 Metabolomic signature of rectal tumor
responses to preoperative RT

Among 119 metabolites annotated in rectal tumor tissue, there

were 28 DAMs, whose abundances were noticeably (p<0.05)

different in PR and GR, respectively (Supplementary Table S2A);

7 DAMs after the FDR correction remained significant (namely:

ribose 5-phosphate, cytosine, L-carnitine, 4-hydroxybutyric acid,

phosphoenolpyruvic acid, inosine, and citric acid). The most

numerous classes of DAMs were amino acids, sugars, and their

derivatives, carboxylic and hydroxy acids, fatty acids and lipids, and

purines/pyrimidines and their derivatives (Supplementary Figure

S1D). DAMs were used to perform supervised clustering

(Supplementary Figure S2F). 15 DAMs were upregulated in the

GR group, while 13 DAMs were upregulated in the PR group.
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Univariate classification models tested to classify PR vs. GR

samples revealed 24 metabolites with AUC higher or equal to 0.8

(Supplementary Table S2B). Multivariate classification models

tested based on the top 5, 10, 15, 25, 50, and 100 metabolites with

their corresponding AUC values (0.81-0.91) are presented in

Figure 2A. A model built on 50 features showed the highest

predictive accuracy (84.8%) and was selected for further testing

(Supplementary Figures 6A, B). The class probabilities predicted

using this model for each sample are presented in Supplementary

Figure S6C. The top 20 predicted biomarkers predicted based on

how frequently they were chosen for cross-validation are shown in

Supplementary Figure S6D, while the complete list of proposed

predictors can be found in Supplementary Table S2C. The

normalized abundances of the top 10 potential biomarkers with

the highest frequency rank and importance based on the 50-mer

classification model are presented in Figure 2B.

The Quantitative Enrichment Analysis (QEA) algorithm and

the Small Molecule Pathway Database (SMPDB) were used to

analyze the functional enrichment of DAMs. (Supplementary

Table S4). Network view of all significantly enriched pathways

(FDR < 0.05) associated with DAMs is shown in Supplementary
Frontiers in Oncology 06
Figure S7, while an overview of the TOP 25 enriched metabolic

pathways is presented in Figure 2C. The most significant processes

associated with DAMs were connected mainly with energy

metabolism (e.g., Warburg effect, gluconeogenesis, transfer of

acetyl groups into mitochondria, mitochondrial electron transport

chain, citric acid cycle, glycolysis), sphingolipid and glycerolipid

metabolism, beta-oxidation of fatty acids, carnitine synthesis,

inositol metabolism, and amino acids metabolism.
3.4 Integration of proteomic and
metabolomic features that discriminate
between good and poor responders to
neo-RT

Joint Pathway Analysis in MataboAnalyst 5.0 was used to

identify common pathways for DAPs and DAMs found in tumors

of patients who responded differently to neo-RT. KEGG pathways

with the largest pathway significance (p <0.05) connected with

DAPs and DAMs are presented in Figure 3A. Additionally, the top

20 significant enriched KEGG pathways, including the top 10 with
A B

DC

FIGURE 1

Characterization of proteomic signatures of rectal tumors responses to RT. (A) Proteomic-based biomarker prediction by multivariate ROC curve
analysis: the classification models based on the top 5, 10, 15, 25, 50, and 100 important proteomic features with their corresponding AUC value;
(B) The normalized abundances of potential proteomic biomarkers with the highest frequency rank and importance based on the selected
classification model, p-values and fold change (FC) values are shown, significance after FDR correction are marked with asterisks according
p-adjusted values (p-valadj<0.05*, p-valadj<0.005**, p-valadj<0.0005***, p-valadj<0.00005****); (C, D) Functional enrichment analysis of DAPs: bubble
plots of the TOP20 enriched processes and functions revealed using the Wikipath (C) and Reactome (D) database, including the top 10 with the
largest pathway significance (FDR) (marked in red) and enrichment strength (marked in blue), bolded for both. The highest enriched pathway based
on both the significance and pathway impact are bold. The color of the dots represents the p-adjusted values (Benjamini-Hochberg correction), and
the size of the dots represents the number of DAPs associated with the GO terms/Reactome pathways.
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the largest pathway significance (FDR) (marked in red) and

pathway impact (marked in blue) are shown in Figure 3B. The

most significant pathways based on FDR (<4.25E-09) were

connected with the ribosome, splicesome, proteasome, oxidative

phosphorylation, RNA transport, and bacterial infection. The most

enriched pathways based on pathway impact (>2) were synthesis

and degradation of ketone bodies, purine metabolism, energy

metabolism (TCA cycle, glycolysis, gluconeogenesis, PPP,

pyruvate metabolism), fatty acid degradation, and metabolism of
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amino acids (alanine, aspartate, glutamate, valine, leucine,

isoleucine). Focal adhesion was the highest enriched pathway

based on both the significance and pathway impact (for details

see Supplementary Table S5). Components of the most enriched

KEGG pathways connected with DAPs and DAMs are presented in

detail in Supplementary Figure S8.

Furthermore, Pearson’s correlation was used to address any

possible relationships between DAPs and DAMs. The investigation

turned up several strong correlations (r>0.8) between the variables,
A B

FIGURE 3

KEGG pathways commonly associated with DAPs and DAMs based on Joint Pathway Analysis. (A) all significantly overrepresented pathways
(p <0.05); (B) The top 20 significantly enriched KEGG pathways, including the top 10 with the largest pathway significance (FDR) (marked in red) and
pathway impact (marked in blue). The highest enriched pathway based on both the significance and pathway impact is bold.
A B

C

FIGURE 2

Characterization of metabolomic signatures of rectal tumors responses to RT. (A) Metabolomic-based biomarker prediction by multivariate ROC
curve analysis: the classification models based on the top 5, 10, 15, 25, 50, and 100 important metabolomic features with their corresponding AUC
value; (B) The normalized abundances of potential metabolomic biomarkers with the highest frequency rank and importance based on the selected
classification model, p-values and fold change (FC) values are shown, significance after FDR correction are marked with asterisks according
p-adjusted values (p-valadj<0.05) (C) Metabolic pathways associated with DAMs based on quantitative enrichment analysis using KEGG database:
bubble plot of the TOP 25 enriched metabolite sets.
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which are detailed in Supplementary Table S6). For example,

CEACAM5 revealed a high positive correlation with a panel of

proteins including SLC25A, KHSRP, PNPT1, and MUC 13. On the

other hand, there was observed a high negative correlation of

CEACAM5 with linoleic acid, oleic acid, phosphoethanolamine,

cadaverine, and N-acetyl-aspartic acid. The TOP 25 compounds

correlated with CEACAM5 are presented in Supplementary Figure

S9. Furthermore, known clinical parameters were subjected to the

same correlation analysis, which revealed negative correlations of

disease stage with linoleic and arachidonic acids as well as positive

correlations of the lymph node yield (LNY) with stearic acid and

phosphoethanolamine (Supplementary Table S6). Because the

contribution of the applied RT scheme differed between GR and PR

groups (Table 1), a putative correlation between the type of RT and the

abundance of proteome and metabolome components was also

addressed (Supplementary Table S7). When the abundance of the

Top-10 DAPs (Figure 1B) and Top-10 DAMs (Figure 2B) in all

patients was taken into consideration, components upregulated in

the PR group (except alanine) showed a negative correlation while

components upregulated in the GR group had a positive correlation

with radiation dose, which suggested a potential link between the

abundance of differentiating components and response to radiation

dose (Supplementary Figure S10). Hence, to verify this possibility, the

putative associations between the correlation with radiation dose and

components’ abundance were analyzed in the PR and GR groups

separately to exclude the influence of a hypothetical prognosis factor

discriminating between both groups.We found that for themajority of

differentiating components, either DAPs or DAMs, the correlations

with radiation doses were not statistically significant. Moreover, when

significant correlations were found for either PR-upregulated or GR-

upregulated components, these correlations observed in each group

separately were rather randomly distributed (i.e., either negative or

positive) (Supplementary Table S7), which further reduced the

prognostic significance of radiation dose.
4 Discussion

Preoperative (neoadjuvant) RT is a valid strategy for the treatment

of LARC. However, the major challenge in this therapeutic approach is

cancer radioresistance, which may result in recurrence and metastasis.

Therefore, there is a lot of interest in understanding the mechanisms of

cancer radio-responsiveness and investigating RT-related biomarkers

for the improvement of treatment strategies. Here, for the first time, a

combined proteomic and metabolomic approach has been used to

reveal a set of molecular components associated with different

responses of rectal tumors to neo-RT. DAPs and DAMs were linked

to metabolic pathways and signaling processes known to be involved in

response to radiation. We observed that the proteome components of

tumor tissue have a strong capacity to distinguish between patient

samples with different neo-RT responses. A few of the Top 10 potential

proteomic biomarkers revealed in our study have been previously

identified as compounds associated with colorectal cancer’s response to

RT, including CEACAM5, KHSRP, RALA, and TSPAN8. Proteins that

regulate glycolysis (PGK1, PGAM1, ENO1, PKM, TKT), ammonia

detoxification (GLUD1), and other metabolic pathways (LDHA,
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GAPDH, MDH2) were reported to be differentially expressed in

mouse xenograft colorectal tumor models with different radio-

responsiveness (22). In our study, all these proteins (except PGAM1)

were elevated in PR. Other DAPs upregulated in PR (CAD, RALB,

FAM120A, PSMC2, LRPPRC, PARP1, PSMB5, ANP32B, IMPDH2,

XRCC5, TPD52L2, EIFA5A, DDT, GNB1, HDGF, and MYO1C) were

associated with metabolic activity in rectal tumor tissue (18). Similarly,

a fewDAMs upregulated in PR have been previously presented as small

molecules associated with radioresistance, including succinic acid and

arachidonic acid (23). Succinic acid is an oncometabolite that alters

DNA repair through epigenetic regulation and impacts cancer cells’

responses to chemo- and radio-therapy. (24). In our study,we detected

significantly elevated levels of both succinic acid and two subunits of

succinate dehydrogenase SDHA and SDHB. Furthermore, we

observed a significantly elevated accumulation of carnitine

(correlated with mitochondrial membrane transporter SLC25A20 -

mitochondrial carnitine/acylcarnitine carrier) in PR. Carnitine is

essential for shuttling acyl groups through intracellular membranes

for fatty acid oxidation (FAO). FAO is essential for the growth and

development of many cancers into malignancies. Carnitine is also

essential for controlling the acyl-CoA/CoA balance, which controls

how carbohydrates and lipids are metabolized. (25). Importantly, we

detected a significantly reduced abundance of glutamine in PR and

elevated level of proteins connected with glutamine transport and

metabolism (SLC1A5 and GLS). In addition to being a crucial

component of DNA repair, epigenetic modification, and the

reduction of oxidative stress, glutamine metabolism in cancer cells

also boosts radioresistance and reduces the effectiveness of

radiotherapy and immunotherapy (26). It has been demonstrated

that a lack of glutamine increases the epithelial-mesenchymal

transition, which in turn promotes the recurrence and metastasis of

colorectal cancer (27). Interestingly, different groups of cells present in

the tumor may have various nutrient uptake from TME, with glucose

being preferentially delivered to immune cells while glutamine and

fatty acids are primarily distributed to cancer cells (28). As a result,

targeting a single metabolite alone is insufficient to overcome

radioresistance because tumor cells and other cells in the TME

(including immune system cells) exhibit metabolic heterogeneity

(29). Moreover, although the analysis of clinical data revealed

statistically significant differences between groups of PR and GR

with respect to radiation dose delivered during neo-RT (the

contribution of radiation schemes involving higher doses was higher

in the GR’ group), radiation dose was barely associated with the

abundance of differentiating proteins and metabolites (particularly

when the correlationswith radiation dosewere analyzed in each group

separately). Therefore, obtained data suggested that molecular profiles

characteristic forGRandPRwerenot associateddirectlywith response

to radiation doses.

Obtained proteomic and metabolomic data provided a

combination of information on the accumulation of metabolic

enzymes and specific metabolites, which enabled to address

metabolic reprogramming of rectal cancer. Several identified DAPs

andDAMswere functionally linked to alterations in themetabolismof

glucose, amino acids, and fatty acids. Tumor cells respond to RT by

increasing glucose flux through the upregulation of glycolytic

transporters and enzymes, facilitating glucose metabolism including
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glycolysis, oxidative phosphorylation, and pentose phosphate pathway

(PPP) (28). InPR,weobserved significantly elevated levels of glycolytic

enzymes GLUT1, HK2, GAPDH, PKM2, and LDHA, combined with

decreased levels of glucose and increased levels of lactate, which is

considered to contribute to radioresistance (30). Metabolic enzymes

involved in oxidative phosphorylation (e.g., MPC elevated in poor

responders) and the integrity of mitochondrial function are crucial for

cancer radioresistance, while the activity of 6PGD (a component of

PPP) enhances the production of NAPDH and nucleotides that

promote tumor growth and radioresistance (31). Additionally,

tumor cells respond to RT by increasing the metabolism of amino

acids like glutamine, serine, and glycine, which provide the

biomacromolecules and other materials needed for the production of

nucleotides and energy, extending the survival of cancer cells.

Glutamine is transported into the cell by SLC1A5 and converted to

glutamate bymitochondrial glutaminase (GLS). It has been shown that

radiation increases the GLS activity contributing to radioresistance

(32). In our study, we detected significantly elevated levels of SLC1A5

and GLS in PR, while the abundance of glutamine was decreased.

Moreover, aberrantly activated glycolysis permits tumor cells to

indirectly enhance serine/glycine metabolism, increasing one-carbon

metabolic flux and facilitating the proliferation of tumor cells and

radioresistance (33). Here we detected in PR elevated levels of proteins

involved in serine/glycine and one-carbon metabolism (PHGDH,

PASAT1, SHMT). Moreover, enhanced accumulation of glycine and

serine was also observed. Furthermore, cancer cells may develop

radioresistance via reprogramming of lipid metabolism. We detected

in PR elevated levels of enzymes (COX-2, ACSS2, FDPS, FASN,

ACAT2, ACLY, SLC12A2) and metabolites (arachidonic acid and

carnitine) involved in lipid metabolism, which have been linked to
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radioresistance of cancer cells (29). Themajormechanism that enables

the development of tumor radioresistance is DNA damage repair,

which needs a significant nucleotide accumulation. Hence, activated

glucose and amino acid metabolism that provide sufficient substrates

and energy for the synthesis of pyrimidines and purines are linked to

the survival of irradiated tumor cells. On the other hand, enzymes

involved in the de novo nucleotide synthesis pathway (e.g. IMPDH)

have emergedas targets for radiosensitization (29).Herewedetected in

PR elevated levels of inosine monophosphate dehydrogenase, while

the abundance of inosine was reduced. In general, we concluded

that molecular profiles characteristic of PR fit the metabolic

reprogramming state that enhances tumor radioresistance, which

involves the increased metabolic flux of glucose, fatty acids, lipids,

and amino acids (especially glutamine), thus supplying sufficient

energy and substrates for DNA damage repair. These metabolic

pathways likely involved in the development of tumor

radioresistance in the group of PR are illustrated schematically

in Figure 4.

In conclusion, here we applied a combined MS-based proteomic

and metabolomic approach for the identification in tumor tissue of

molecules that discriminate LARCs differentially responded to

neo-RT. This revealed molecular pathways and processes associated

withDAPs andDAMs,whichwere linked to favorable andunfavorable

responses to the treatment. These included several pathways involved

in cellular metabolism and metabolic reprogramming, including

energy metabolism, ketone bodies metabolism, fatty acid

degradation, metabolism of amino acids and purines, which

appeared to play a vital role in the radioresistance of tumors. Hence,

our study revealed that multi-component panels of proteins and

metabolites may serve as a solid base to develop biomarkers for
FIGURE 4

Metabolic pathways involved in rectal cancer radioresistance, including significantly upregulated (marked in red) and downregulated (marked in
green) abundances of proteins and metabolites in poor responders tumor tissues. *high effect size.
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monitoringandpredicting the efficacyofpreoperativeRT in this group

of patients as well as serve as therapeutic targets acting in combination

with RT. However, our study has some limitations that could be

addressed in future research. First, to confirm that the observed

signatures were specific for cancer cells not to “normal” cells present

in the tumor stroma, additional analyses using isolated cancer cells

(e.g., by microdissection) might be instructive. Moreover, to validate

the actual predictive potential of proposed signatures, their

components should be analyzed in tissue material (e.g., in biopsies)

before preoperative RT. Nevertheless, this explorative study provides

proof of concept that molecular components of tumors that are

associated with differentiated radio-responsiveness of rectal cancer

could identified by the metabolomics and proteomics approaches.
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SUPPLEMENTARY FIGURE 1

Contribution of identified proteins (A), annotated metabolites (B), DAPs (C),
and DAMs (D) to different classes.

SUPPLEMENTARY FIGURE 2

Clustering of RC patients based on levels of proteins and metabolites

detected in tissue samples. Showed are PCA score plots (A, B) and
dendrograms resulting from HCA (C, D); a number of samples that were

used only for proteomic or metabolomic profiling are marked in asterisk). The

colors navy blue and pink, respectively, indicate GR and PR samples.
Hierarchical supervised clustering was performed based on levels of DAPs

(E ) and DAMs (F ) . *sample appear ing only in proteomic or
metabolomic analysis.

SUPPLEMENTARY FIGURE 3

Biomarker prediction by multivariate ROC curve analysis based on proteomic

features. (A) - The predictive accuracies of 6 different biomarker models; For
the 50-feature panel, the red dot indicates the highest accuracy.; (B) - ROC

curve for a chosen biomarker model with the highest accuracy; (C) -The
predicted class probabilities for each sample (GR vs. PR); (D) - The top 20

potential proteomic biomarkers predicted based on how frequently they
were chosen for cross-validation.

SUPPLEMENTARY FIGURE 4

Overrepresented pathways involved in the immune response connected with

DAPs upregulated in PR. (A) - bubble plots of the TOP12 enriched
immunological processes and functions revealed using the GO terms; (B) -
chosen significantly overrepresented pathways involved in the
immune response.

SUPPLEMENTARY FIGURE 5

Chosen the most enriched KEGG pathways connected with DAPs. (A) -

Ribosome; (B) - Proteasome; (C) - ECM-receptor interaction; (D) -
Proteoglycans in cancer; (E) - Focal adhesion; (F) - Complement and

coagulation cascade; (G) - Colorectal cancer; (H) - PI3K-AKT signaling
pathway; (I) - WNT signaling pathway; (J) - MAPK signaling pathway; (K) -
RAS signaling pathway; (L) - VEGF signaling pathway; (M) - NF-KAPPA B

signaling pathway.
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SUPPLEMENTARY FIGURE 6

Biomarker prediction by multivariate ROC curve analysis based on
metabolomic features. (A) - The predictive accuracies of 6 different

biomarker models; For the 50-feature panel, the red dot indicates the

highest accuracy.; (B) - ROC curve for a chosen biomarker model with the
highest accuracy; (C) - The predicted class probabilities for each sample (GR

vs. PR); (D) - The top 20 potential proteomic biomarkers predicted based on
how frequently they were chosen for cross-validation.

SUPPLEMENTARY FIGURE 7

Network view of significantly enriched metabolic pathways (FDR < 0.05)

associated with DAMs based on quantitative enrichment analysis using
KEGG database.
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SUPPLEMENTARY FIGURE 8

Chosen the most enriched KEGG pathways connected with DAPs and DAMs.
(A) - Glycolysis/gluconeogenesis; (B) - Pyruvate metabolism; (C) - Pentose

phosphate pathway; (D) - Citrate cycle; (E) - Purine metabolism; (F) -

Pyrimidine metabolism; (G) - Fatty acid degradation.

SUPPLEMENTARY FIGURE 9

The TOP 25 compounds correlated with CEACAM5 based on Pearson’s

correlation analysis.

SUPPLEMENTARY FIGURE 10

The results of Pearson’s correlation analysis of the Top-10 DAPs and DAMs
correlated with radiation dose in all patient groups.
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