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Yingjun Zhang1,2, Ge Zhang1,2, Yuefang Wang1,2, Lei Ye1,2,
Luyun Peng1,2, Rui Shi1,2, Siqi Guo1,2, Jiajing He1,2,
Hao Yang1,2 and Qingkai Dai1,2*

1Department of Laboratory Medicine, West China Second University Hospital, Sichuan University,
Chengdu, China, 2Key Laboratory of Birth Defects and Related Diseases of Women and Children,
Sichuan University, Ministry of Education, Chengdu, Sichuan, China
Acute lymphocytic leukemia is a hematological malignancy that primarily affects

children. Long-term chemotherapy is effective, but always causes different toxic

side effects. With the application of a chemotherapy-free treatment strategy, we

intend to demonstrate the most recent results of using one type of epigenetic

drug, histone deacetylase inhibitors, in ALL and to provide preclinical evidence

for further clinical trials. In this review, we found that panobinostat (LBH589)

showed positive outcomes as a monotherapy, whereas vorinostat (SAHA) was a

better choice for combinatorial use. Preclinical research has identified chidamide

as a potential agent for investigation in more clinical trials in the future. In

conclusion, histone deacetylase inhibitors play a significant role in the

chemotherapy-free landscape in cancer treatment, particularly in acute

lymphocytic leukemia.
KEYWORDS

acute lymphocytic leukemia (ALL), histone deacetylase inhibitors (HDACi),
chemotherapy, immunotherapy, targeted therapy
Abbreviations: ALL, acute lymphocytic leukemia; AML, acute myeloid leukemia; B-ALL, B cell lymphocytic

leukemia; BCP-ALL, B cell precursor acute lymphocytic leukemia; CLL, chronic lymphocytic leukemia;

CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats; CTCL, cutaneous T-cell lymphoma;

DNMTi, DNA methyltransferase inhibitor; ETP, Early T-cell precursor; FDA, Food and Drug

Administration; FK-228, romidepsin; HATs, histone acetyltransferases; HDACi, histone deacetylase

inhibitors; HDACs, histone deacetylases; IFN-g, interferon-g; ITF2357, givinostat; LBH589, panobinostat;

MM, multiple myeloma; MTX, methotrexate; NF-kB, nuclear factor-kappa B; ORR, overall response rate; OS,

overall survival; PD-L1, programmed death-ligand 1; PFS, progression free survival; Ph, Philadelphia

chromosome; PTCL, peripheral T-cell lymphoma; PXD101, belinostat; ROS, reactive oxygen species;

SAHA, vorinostat; T-ALL, T-cell acute lymphocytic leukemia; Th, T helper; TKI, tyrosine kinase

inhibitors; T-LBL, T-cell acute lymphoblastic lymphoma; TNF, tumour necrosis factor; VPA, valproic acida.
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GRAPHICAL ABSTRACT
1 Background

Leukemia is the leading cause of pediatric malignancies, with

acute lymphocytic leukemia (ALL) accounting for over 70% of

cases. ALL is a rapidly invasive disease that originates from B- or T-

lymphocyte progenitors. Accumulation of blast lymphocytes and

suppression of normal cells are the main characteristics of the

disease course. ALL predominantly affects children, with an

incidence of 3–4/100,000 in patients under 14 years of age. The

five-year survival rate is approximately 90% in children and 65% in

adults (1). Long-term chemotherapy is the standard treatment for

ALL. Common regimens include vincristine, dexamethasone,

prednisone, and doxorubicin, as recommended by the American

Cancer Society. However, almost all chemotherapeutic drugs cause

side effects that are significant factors in clinical trials and basic

research. In the last decades, other anti-cancer agents like targeted

therapy and immunotherapy play a crucial role in hematological

diseases. Epigenetic drugs and its various biology functions are

leading topics in the treatment strategies.
1.1 Acetylation and deacetylation

Histone deacetylase inhibitors (HDACi) are epigenetic drugs

that target the regulation of histone modifications. Histone

acetylation and deacetylation are essential processes that regulate

the chromosomal integrity. These processes are controlled by two

enzymes: histone acetyltransferases (HATs) and histone

deacetylases (HDACs), respectively. Acetylation can cause a loose

state by neutralizing the positive charge on the surface of histones,

whereas deacetylation has the opposite effect. An imbalance in this

process can mediate gene expression, thereby contributing to the

occurrence of diseases, where HDACi inhibit histone deacetylation

and reverse the aberrant expression of specific genes (2). (Figure 1)
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Further, acetylation or acetylation on non-histone proteins has been

highlighted as well in recent years, which play a role in controlling

not just cancer- related transcriptional factors, but also tumor

suppressor genes and oncogenes. For instance, HDAC1 directly

causes deacetylation of p53 while HDAC2 regulates p53 expression

via deacetylating the C-terminal lysine on p53. HDAC6 can also

bind to the C-terminal region of p53 and deacetylates it (3, 4).

Similarly, STAT3-phosphorylation was prevented by inhibiting the

function of HDAC3 (5). HDAC6 regulates STAT3 in the same way

was also proved in 2014, indicating it can be served as a novel

molecular target and also a prognostic marker in B-cell lymphoma

(6). In previous research targeting the aberrantly expressions of

HDAC in hematologic malignancies, expression level of HDAC1-11

were detected in primary ALL patients, in which HDAC1, HDAC2

and HDAC8 were higher expressed in investigated samples and

HDAC4 can be used as a therapeutic target (7).Upregulation of

HDAC1-3 were found in Hodgkin’s lymphoma, whereas HDAC1-2

and HDAC6 were overexpressed in diffuse large B-cell lymphoma

as well (8).
1.2 Classification of HDACi

Despite the irreplaceable role of chemotherapeutic drugs in

cancer treatment, HDACi have been demonstrated to be effective

against many cancer types when used alone or in combination with

other drugs (Figure 2) (9–14). Currently there are over twenty

HDACi which can be divided into pan-HDACi and specific HDACi

based on their target on different classes of HDACs. HDACs was

categorized as Class I (HDAC 1, 2, 3, and 8), ClassIIa (HDAC4,5,7

and 9), ClassIIb (HDAC6 and 10), Class IV (HDAC11) and Sirtuins

III (SIRT 1, 2, 3, 4, 5, 6 and 7) by Zn2+ dependent and NAD+

dependent for deacetylation activity. The majority of HDACi are

pan-HDACi which block more than one class of HDACs, while
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specific-HDACi only focus one class HDAC (15). Starting from

2006, the first HDACi was approved by Food and Drug

Administration (FDA) for cutaneous T-cell lymphoma (CTCL),

currently four HDACi have been approved for cancer treatment

(Table 1), but none of them can be applied to leukemia.

Given the potential effects of HDACi in the treatment of

hematological malignancies and the promising effects observed in

acute myeloid leukemia (AML) cases, we aimed to discuss the latest

outcomes, starting from ongoing clinical trials to preclinical

research on the use of HDACi in ALL, with the goal of

identifying further directions for optimizing strategies for

ALL treatment.
Frontiers in Oncology 03
2 Materials and methods

A comprehensive literature search was conducted via PubMed

for suitable studies published until July 31, 2023. The keywords for

searches include HDACi, ALL, chemotherapy, synergy effects and

targeted therapy.
3 Results

3.1 Outcomes from clinical trials in ALL
involved in HDACi

In 2009, a phase I study conducted by DeAngelo et al. successfully

demonstrated the positive effects of the HDACi panobinostat

(LBH589) when used in combination with chemotherapy for AML

treatment, achieving the overall response rate (ORR) being 60.9% and

one year survival rate being 78.3% (16). However, the role of HDACi

in ALL remains unclear. Currently, there are approximately ten trials

investigating HDACi in ALL that provide basic information on the

clinical treatment of ALL (Table 2).

A phase I study focused on LBH589 in children with relapsed

and refractory hematological malignancies, including ALL. The

results showed that LBH589 was well tolerated in pretreated

pediatric leukemia patients, with no cardiac side effects, but the

response to LBH589 was modest (17). Notably, a pilot study

investigating the combination of SAHA and decitabine with

chemotherapy in relapsed ALL was terminated due to toxicity

firstly. Further, a subsequent pre-reductive study conducted by

the same team demonstrated the effectiveness of this combination

strategy by adjusting the doses of drugs. The study achieved an ORR

of 46.2% and got the positive correlation between the methylation

level and bone marrow response (18, 19).

Moreover, a phase IIb trial investigating chidamide showed

significant clinical effects in relapsed or refractory adult T-cell
FIGURE 2

Appliance of HDACi in different cancer types.
FIGURE 1

Histone acetylation and deacetylation.
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leukemia, the ORR was 51.18% and the median progression free

survival (PFS) rate was 152 days when combined with

chemotherapy (20). Two phase II/III studies focusing on

chidamide showed interest in subgroups such as Philadelphia
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chromosome (Ph)-like ALL and Early T-cell precursor (ETP)-

ALL, the latest results indicate that chidamide is highly effective

and well tolerated in these two subtypes, with the complete

remission rate of 87% and 77% in ETP-ALL and Ph-like ALL

respectively (21). Some other trials are underway currently which

need further investigations. Nevertheless, there are encouraging

data from preclinical research on several aspects (Table 3).
3.2 Outcomes of preclinical stage
investigations of HDACi in ALL
as monotherapy

3.2.1 Panobinostat (LBH589)
LBH589 is a pan-HDAC inhibitor of class I, II and IV HDACs.

In the preclinical stage, LBH589 has shown positive effects on ALL

both in vitro and in vivo. Gastro et al. demonstrated that LBH589

inhibited cell growth in T-ALL cell lines and effectively reduced

tumor size in human ALL xenografts, providing further evidence of

the clinical value of combination treatment (33).

Previous studies indicated that oncogene Notch1-driven

transcription is the main target of LBH589 in ALL therapy (25).

More than 70% of T-ALL cases present Notch1-activating

mutations (gain-of-function), which can increase the regulation of

cell cycle-related proteins by Notch1 and thereby facilitate the

proliferation of leukemia cells (34–36). Exposure to LBH589 in

ALL cell lines has been shown to induce cell cycle progression, cell

apoptosis, and DNA damage (32). The connection between HDACi

and the Notch pathway was analyzed in detail. HDAC3 is

recognized as a regulator of Notch1 signaling response, and

HDAC6 is another target closely related to the expression levels

of Notch3 in T-ALL (37, 38). HDACi including trichostatin A

downregulate the NAML3 pathway (39, 40).

Furthermore, LBH589 increased the survival of adult ALL

xenograft models with t (4;11). LBH589 alone, as well as the

combination of methotrexate (MTX) and 6MP, were investigated,

but the combination groups did not show better effects than

monotherapy (41). The latest results of genome-wide Clustered

Regularly Interspaced Short Palindromic Repeats (CRISPR)/

CRISPR-associated (Cas)9 (CRISPR/Cas9) loss-of-function

screening in B-ALL cells also indicate that patients with higher

SIRT1 expression in cancer cells may benefit more from LBH589

treatment (42). These are all good hints that investigations of

LBH589 are positive at the current stage, which can be further

applied in clinical trials.
TABLE 2 Clinical trials of HDACi involved in ALL treatment.

Year Trial no.
Treatment
strategy

Number
of

patients

2022 NCT03564470
A phase II/III study of
Chidamide + dasatinib in
adult Ph-like ALL

120

2021 NCT05075681
A phase I/II study of
Chidamide + Ruxolitinib
in T-ALL

50

2020 NCT01483690

A pilot study of SAHA
and decitabine with
chemotherapy in
relapsed ALL

23

2019 NCT02518750

A phase II study of re-
induction therapy in
relapsed pediatric T-Cell
acute lymphoblastic
leukemia or lymphoma

3

2018 NCT03553238
A phase II/III study of
Chidamide targeted
therapy in adult ETP-ALL

70

2018 NCT03564704

A phase II/III study of
Chidamide targeted
therapy in adult T-
LBL/ALL

80

2017 NCT00882206

A phase II study of
Decitabine and SAHA in
Relapsed Lymphoblastic
Lymphoma or Acute
Lymphoblastic Leukemia

15

2015 NCT01321346

A phase I study of
Panobinostat in Children
With refractory
hematologic malignancies

30

2014 NCT01016990

A phase II study of VPA
in previously treated
patients with
Lymphocytic Leukemia

52

2013 NCT00331513

A phase I study of SAHA
in relapsed or refractory
leukemia or
myelodysplastic
syndromes

40
TABLE 1 FDA approved HDACi in cancer treatment.

Year HDACi approved by FDA disease targets
HDACi approved by FDA
for ALL

2006 Vorinostat (SAHA) CTCL class I, II and IV HDACs

None
2009 Romidepsin (FK-228) CTCL specific class I HDACs

2014 Belinostat (PXD101) PTCL class I, II, and IV HDACs

2015 Panobinostat (LBH589) MM class I, II, and IV HDACs
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3.2.2 Vorinostat (SAHA)
Vorinostat (SAHA) is the first FDA-approved pan-HDACi used

for CTCL, targeting class I, II, and IV HDACs. SAHA has shown

predominate effects in AML (43), whereas related publications on

ALL conclude that SAHA is unsatisfactory as a monotherapy. The

latest preclinical research suggests that acetylation of H3 and H4 is

related to the drug resistance mechanism in T-ALL, and SAHA can

reverse this resistance (44). SAHA also exhibits antileukemia effects

in TYK2-rearranged ALL mice models (45). In general, most studies

have focused on the synergistic effects of SAHA in combination

with chemotherapy, which are discussed in the next section.

3.2.3 Belinostat (PXD101)
Belinostat (PXD101) was approved by FDA in 2014 for the

treatment of peripheral T-cell lymphoma (PTCL). Targeting class 1

and 2 HDACs increases the acetylation of H3 and H4 proteins,

thereby inhibiting tumor cell growth in various cancer types such as

T-cell lymphoma and breast cancer (46, 47). In the field of

hematology, previous reports have demonstrated the potential

effects of PDX101 on AML earlier (48, 49). The role of PDX101

in ALL has been reported as well. Interestingly, primary childhood

ALL samples and several chemo-resistant ALL cell lines are

sensitive to PDX101 through the apoptotic pathway, with even

better cytotoxic effects than dexamethasone (50).
Frontiers in Oncology 05
3.2.4 Romidepsin
Romidepsin is another HDACi currently available for CTCL. A

case study on the clinical use of romidepsin described that it was

useful for an adult patient with T-ALL refractory to hyper-CVAD,

providing a valuable indication for further research in hematology

(51). Mechanistically, romidepsin is associated with DNA

hypermethylation, thereby increasing reactive oxygen species

(ROS) and decreasing the mitochondrial membrane. These

changes may trigger T cell apoptosis and DNA damage (29). In

infants, romidepsin was also found to have strong efficacy in

KMT2A-r ALL through the DNA damage pathway, and

rearrangement of this gene is a specific characteristic in more than

80% of cases (24). Similar effects can also be seen in LBH589 (33).

3.2.5 Givinostat (ITF2357)
Several reports have investigated givinostat (ITF2357) in

preclinical stages. Previous studies have shown that ITF2357

reduces the number of blasts in target organs through cell cycle

regulation and DNA repair. It has also been found to have an

antileukemic effect in xenografts (52). Moreover, ITF2357 is

potential to be a treatment strategy for Ph-like ALL patients. These

patients typically do not respond well to targeted agents, such as

tyrosine kinase inhibitors (TKI) like imatinib, but ITF2357 has been

found to induce potent apoptotic effects in Ph-like ALL cell lines (27).
TABLE 3 Pre-clinical research of HDACi involved in ALL treatment.

Year disease treatment
Type of
cell lines

Type
of xenograft

pathway regulation

enhancement inhibition Others

(22) ALL
Chidamid
+ Celecoxib

Nalm-6 – PARP cleavage -
G2M phase arrest,

cell apoptosis

(23) ALL
LBH589

+ bortezomib
Nalm-6, REH, NB4 – – NF-kB

G1 phase arrest,
cell apoptosis

(24) ALL
Romidepsin
+ cytarabine

– NOD/SCID mice DNA damage – –

(25) T-ALL LBH589
Notch-1 T

cell leukemias
– –

Notch-1
c-MYC

(26) BCP-ALL ITF2357
MHH-

CALL4, MUTZ5
mice –

STAT5
phosphorylation

cell apoptosis

(27) B-ALL ITF2357 SUP-B15 – – BCR-ABL signal cell apoptosis

(28) T-ALL SAHA+ vincristine MOLT4 SCID mice – HDAC6
G2M phase arrest,

cell apoptosis

(29) T-ALL Romidepsin PEER, SUPT1 –

DNA
hypomethylating,

ROS,
DNA damage,
SAPK/JNK

MMP,
PI3K-AKT-mTOR,
Wnt/b-catenin

cell apoptosis

(30) BCP-ALL
SAHA/

VPA +Bortezomib
Reh, Nalm6, SD-1,
697, and SEM

NOD/SCID mice
p53, PI3K/AKT,
and NF-kB

– G0-G1 phase arrest

(31) T-ALL LBH589
ST1, KOB, LM-Y1,

LM-Y2, KK1
and SO4

SCID mice
Acetylation of H3,

H4,
Caspase 2

AKT
phosphorylation,

Caspase 9
cell apoptosis

(32) T-ALL LBH589 MOLT-4 –

Acetylation of H3,
H4,

DNA damage
–

G2M phase arrest,
cell apoptosis
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3.2.6 Chidamide
Chidamide is a HDACi that inhibits HDAC1, HDAC2,

HDAC3, and HDAC10. It has been approved by the Chinese

FDA for PTCL treatment and can be used in adult patients with

T-ALL in Japan (53, 54). The role of chidamide in leukemia has

been extensively studied in recent years. Chidamide has shown

promising effects on IKZF1 deletion in high-risk ALL, both in vitro

and in vivo (55). The antitumor effects of chidamide on ALL cells

are also correlated with Notch1-MYC gene downregulation and this

mechanism gives a support to the reduction of minimal residual

disease in ALL patients (56). Recent studies have shown that

chidamide can regulate CD8 + cells in T-ALL by increasing the

expression of CXCL9, which promotes tumor growth in many

cancer types (57–60). Moreover, chidamide promoted CAR-T cell

therapy by upregulating CD22 in B-ALL (61). Chidamide

demonstrated promising effects and good safety in a preliminary

study in children, with an overall survival (OS) of 94.1% and event-

free survival rate of 95.2% (62).

Overall, the preclinical research of several HDACi in ALL

treatment provides directions for further investigations in specific

target like Notch signaling pathway. Correlations between agents

show a closed cycle in regulations of cancers. (Figure 3) Moreover,

some other HDACi are potential candidates for ALL based on their

good effects in treating other hematological diseases (53, 63).
3.3 Synergistic effects of HDACi and other
antileukemic agents

3.3.1 HDACi in combination with other
epigenetic drugs

LBH589 and azacitidine are epigenetic drugs, with LBH589

being an HDACi and azacitidine being a DNA methyltransferase
Frontiers in Oncology 06
inhibitor (DNMTi). The combination of these two drugs can

generate synergistic effects by inducing chemoprotection in

several ALL samples (64). This combination has been shown to

be more efficient than using cytarabine or other drugs as

monotherapy, as it can overcome the protective effects of

osteoblasts on ALL cells. However, it is important to note that

this specific combination has not yet been investigated in any

clinical trials. Furthermore, similar strategies involving SAHA and

decitabine have been tested in clinical trials and have shown

promising effects in patients with relapsed ALL (18, 19, 65). Low

doses of decitabine and SAHA caused cell death in leukemic cells

and reduced p21 levels without significant changes in normal

peripheral blood lymphocytes (66). Additionally, pretreatment

with SAHA and decitabine can enhance the cytotoxicity of

chemotherapy in relapsed childhood B-ALL, suggesting that

epigenetic mechanisms play a role in the acquisition of

chemoresistance during ALL recurrence (67). Connective map

analysis, validated by RT-PCR and gene expression arrays,

identified SAHA as the most effective agent for reversing the

expression of chemoresistance genes (BIRC5, FOXM1, TYMS,

FANCD2 , NR3C1 , HRK , and SMEK2) in ALL relapse.

Furthermore, a study reported that the combination of low-dose

decitabine and chidamide enhanced apoptosis activation in adult

ALL cases, particularly in patients with p16 deletion. This

enhancement was achieved by regulating checkpoint kinase 1

phosphorylation and gH2A.X expression (68).

3.3.2 HDACi in combination with chemotherapy
The synergistic effects of HDACi and conventional

antileukemic chemotherapy drugs have been reported in several

studies, in which LBH589 and SAHA have been widely discussed. In

a preclinical study, LBH589 was shown to amplify vincristine's

cytotoxicity in B-ALL cells (23). The study also highlighted
FIGURE 3

HDACi target the Notch-dependent ALL cells in different pathways.
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LBH589’s ability to prolong the cell cycle and suggested that

combining an autophagy inhibitor with HDACi could reverse the

negative effects on nuclear factor-kappa B (NF-kB) genes in ALL

treatment. Additionally, Agirre et al. demonstrated the synergistic

effects of LBH589 and vincristine in xenografts of human leukemia

in BALB/c-RAG2−/− gc −/− mice, and suggested that this

combinatorial strategy could also be applied with dexamethasone

(69). Another study by Leclerc found that SAHA enhanced the

cytotoxicity of MTX in childhood ALL (70). This combination

strategy has also been described for central nervous system

lymphoma (71). SAHA was also shown to increase the expression

of FPGS by 2-5-fold, while simultaneously reducing the level of

DHFR and reversing its inhibitory on chemotherapy. The

combination of SAHA and idarubicin is effective in pre-B-ALL,

with HDAC2 implicated as a possible effector of synergism with

SAHA (72). Chidamide plus chemotherapy is another strategy that

has achieved better CR and ORR in patients with T-cell acute

lymphoblast ic lymphoma/leukemia (T-LBL/ALL) than

chemotherapy alone (68). However, the underlying mechanism

for this improvement remains unclear.

3.3.3 HDACi in combination with
targeted therapy

The clinical benefits of targeted therapeutic strategies for ALL

have been observed in recent decades. According to the American

Cancer Society, ALL patients with Ph+ protein show sensitivity to

TKIs, such as imatinib, dasatinib, and nilotinib, particularly in B-

ALL (73). While the positive effects of combining HDACi and

targeted therapy have been extensively discussed in chronic

lymphocytic leukemia (CLL), they have been less studied in of

ALL. CLL is characterized by the aberrant accumulation of CD5+ B

cells that can be targeted by HDAC6 (74, 75). Preclinical research

on ALL has shown that the combination of HDACi and proteasome

inhibitors such as PXD101 and bortezomib, exhibits synergistic

effects through inhibiting NF-kB pathways and weakening

HDAC6- mediated a-tubulin acetylation, expressions of apoptosis

proteins like bim were found after the synergy use of two drugs (76).

Cotreatment with a low dose of bortezomib has been found to

increase apoptosis in hematological diseases (77).

3.3.4 HDACi in combination with immunotherapy
Immunotherapy is a trending topic in medical oncology

because it has fewer toxic side effects and is efficient. A reduction

in immune evasion was found with a combination of epigenetic

agents and immunotherapy, and the positive influence of HDACi

on immune cells has been demonstrated in other cases (78, 79). The

rationale behind the synergy between HDACi and immunotherapy

can be attributed to several key factors. First, epigenetic

modifications like HDACi and DNMTi can regulate T helper cells

(Th) Th1 and Th2 through interferon-g (IFN-g). This connection
was also supported by another study showing that the HDAC-

Sin3A complex inhibits the accumulation of H4 acetylation by

recruiting to IFNg-locus in Th0 cells, whereas the Th1 differential

causes the loss of HDAC-Sin3A (80). Moreover, HDACs play a

crucial role in regulating the functions of various immune cells such
Frontiers in Oncology 07
as neutrophils, eosinophils, and mast cells (81). Currently, most

studies have focused on the combination of HDACi and

programmed death-ligand 1(PD-L1). HDACi is a PD-L1

enhancer that inhibits tumor growth and helps overcome PD-L1

antibody resistance (82–84). In hematology, a combination of an

anti-PD-1 antibody called sintilimab and chidamide has shown

synergistic effects in newly diagnosed extranidal natural killer/T-cell

lymphoma with minimal toxicity (85). The same combination was

also mentioned by Chen et al. in a patient with relapsed/refractory

transformed diffuse large B-cell lymphoma who was primarily

refractory to R2-CHOP, R2-MTX, and Gemox regimens (86).

Song et al. reported the first successful use of this combination

strategy in the maintenance therapy of T-ALL. Bone marrow

evaluation and minimal residual disease detection implied

complete remission after the two-year term therapy (68). HDACi

are also helpful in leukemia treatment after CAR-T cell therapy (87,

88). CD20 is a key factor in the interaction between HDACi and

CAR-T cells. Reports reveal that HDACi including VPA,

romidepsin could increase the expression levels of CD20 CAR-T

cells as well as CAR-NK cells in cancer cells, leading to increased

production of IFN-g and tumor necrosis factor (TNF)-a (89, 90)

The combination use of two types of drugs gives more chances

for increasing treatment efficiency as well as discovering binding

sites in two therapeutic strategies (Figure 4). Currently, HDACi is

mainly used as an adjuvant therapy together with other types of

agents, thereby promoting drug efficiency in antileukemic process.
4 Conclusions and prospects in
different strategies

Based on previous studies, LBH589 is more important as a

monotherapy than SAHA in the treatment of ALL. On the other

hand, SAHA has shown potential effects mainly in co-treatment

strategies. SAHA and MTX can synergize to promote ALL cell

apoptosis, but lacks efficiency when combined with LBH589 (41,

70). Another strategy involving SAHA and decitabine has proven to

be highly effective in both clinical trials and preclinical studies in

leukemia cells (65, 91), however, very few studies have reported

positive results when SAHA was used as a single agent (92). To date,

numerous studies have demonstrated the effects of LBH589 as a

monotherapy for ALL, providing different insights into the effects of

LBH589 and SAHA. Chidamide was the first approved HDACi for

T cell leukemia-lymphoma, although only in China and Japan (93).

Numerous studies have investigated chidamide in the field of

hematological diseases. Currently, there are 17 registered studies

on ClincialTrials.gov, including 4 trials on ALL. Positive results

have been widely reported in leukemia, including AML and ALL

(94–97), with more cases of AML than ALL. Moreover, the role of

chidamide has spread to include a maintenance effect after

chemotherapy or stem cell transplantation in ALL patients (62).

The efficiency of maintenance therapy after CAR-T for refractory

ALL was also observed in another study (98). Considering the

potential positive effects in treating ALL, further investigations on

the use of chidamide as an adjuvant therapy in ALL are warranted.
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In recent years, chemotherapy has led to curative outcomes but

with aggressive side effects. Small molecular regimens, such as

HDACi or targeted therapy, have been tried as a combinational

therapeutic strategy in order to enhance the sensitivity and reduce

the toxicity of chemotherapy alone. Regarding the detailed

combinatorial strategies, Dieter suggested when used in

combination, chemotherapy induction should be initiated in

adults, followed by adolescents and finally children, as survival

rates in children undergoing chemotherapy were the highest among

all age groups (90%) (99). Successful treatment has been achieved in

patients with aggressive non-Hodgkin lymphoma cases. Chidamide

and lenalidomide resulted in complete and durable remission.

Although the number of cases was limited (three patients),

further evaluation of this strategy is warranted (100). Moreover,

the combination of chidamide and the anti-PD-1 agent sintilimab is

suitable for early-stage non-Hodgkin lymphoma (85).

In addition, toxicity issues caused by HDACi are concerns in

clinics, although the side effects are less than chemo drugs. Relative

toxicities have been reported in other diseases, primarily affecting the

gastrointestinal, cardiac and hematology systems, in which

hematological toxicities in leukemia patients should be considered

carefully (101, 102). A phase I trial assessed the safety of HDACi found

that themost frequent hematological effects include thrombocytopenia

(28% grade 1-2; 10% grade 3-4) and neutropenia (20% grade 1-2; 16%

grade 3-4) (103). Safety and tolerability should be evaluated in further

clinical trials by adjusting dose of HDACi. Besides, long term toxicity

indicates the epigenic modifications may promote the oncogene

expression and a risk of second malignancy (104).

In conclusion, above results indicate that HDACi are promising

factors in combinatorial treatment for ALL patients. Furthermore,

individualized treatment should be tried in specific targets in

patients with different gene mutations. Only using appropriate
Frontiers in Oncology 08
strategies can maximize the treatment efficiency and thereby

increasing the life quality of ALL patients.
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