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Introduction

Variations in mutation rates among acute myeloid leukemia (AML) patients with myeloid sarcoma (MS) underscore the need for a thorough examination. This meta-analysis was conducted to fill the information gap concerning mutation frequencies in AML patients presenting with MS.





Materials and methods

This study included retrospective and prospective cohorts. It examined genetic alterations in AML patients with and without MS across all age groups. The search strategy employed terms such as “acute myeloid leukemia,” “extramedullary,” “granulocytic sarcoma,” “myeloid sarcoma,” and “leukemic cutis” in the EMBASE, MEDLINE, and Scopus databases. Excluded from the study were reviews, case reports, and case series with fewer than 10 cases. Statistical analyses were performed with Review Manager 5.4 software.





Results

The primary analysis incorporated data from 37 cohorts involving 5646 diagnosed AML patients and revealed a 17.42% incidence of MS. The most prevalent mutation among AML patients with MS was FLT3-ITD, with a pooled prevalence of 17.50% (95% CI 12.60% to 22.50%; I2 82.48%). The dominant fusion gene was RUNX1::RUNX1T1, displaying a pooled prevalence of 28.10% (95% CI 15.10% to 41.20%; I2 96.39%). In comparison, no significant intergroup differences were observed for NPM1, FLT3-ITD, KIT, and IDH2 mutations. Interestingly, the CEBPA mutation exhibited protective effects for MS patients, with an odds ratio of 0.51 (95% CI 0.32 to 0.81; I2 0%). Conversely, the NRAS mutation was associated with an increased risk of MS development, with an odds ratio of 5.07 (95% CI 1.87 to 13.73; I2 0%).





Conclusion

This meta-analysis sheds light on the prevalence of genetic mutations in AML patients with MS, providing insights into the unique characteristics of the mutations and their frequencies. These discoveries are crucial in informing therapeutic and prognostic decisions for individuals with myeloid sarcoma.
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Highlights

	Data from 37 cohorts, consisting of 6475 acute myeloid leukemia (AML) patients, were analyzed to determine the genetic profile of AML patients with myeloid sarcoma (MS).

	FLT3-ITD is the most prevalent mutation, and RUNX1::RUNX1T1 is the most common fusion gene in AML patients with MS.

	The CEBPA mutation offers protective effects to MS patients, while the NRAS mutation heightens the risk of MS development.







Introduction

Acute myeloid leukemia (AML) is characterized by the uncontrolled proliferation of myeloid stem cells and impaired differentiation (1). In 2019, the United States observed an estimated total of more than 20 000 AML cases, with certain studies suggesting an age-adjusted incidence rate of 3.43 cases per 100 000 individuals annually (2). Extensive research into AML pathogenesis has identified numerous mutations and cytogenetic abnormalities as pivotal contributors to disease onset (3, 4). In 2016, the World Health Organization classified myeloid sarcoma (MS) as an AML subtype. This classification was retained in the World Health Organization’s updated 2022 classification and the 2022 International Consensus Classification, wherein MS remains a recognized entity (5–7).

MS is a tumor mass formed of myeloblasts outside the bone marrow (3). Predominantly, MS affects patients diagnosed with AML or chronic myeloid leukemia, constituting approximately 9% of these cases (8). Notably, the prevalence of MS is greater in males than females, and the condition predominantly affects individuals aged 46 to 59 years (3, 8, 9). The pathophysiology of MS, especially the migration of cells to extramedullary sites, remains elusive. Prevailing hypotheses suggest that the development of MS may be linked to leukemic cells expressing CD56 (neural cell adhesion molecule) (4). These cells possibly bind to tissues commonly associated with MS manifestations (3).

MS commonly manifests in extramedullary sites such as the skin, bones, soft tissues, and gall bladder (4). However, some studies also document its occurrence in rarer locations, including the pleura, penis, and vulva (10–12). The prognosis for MS patients tends to be unfavorable and can vary based on the location of the lesion and its molecular attributes (1, 8, 13). In modern diagnostic methodologies, next-generation sequencing (NGS) has emerged as a crucial tool for identifying mutations in AML patients, including those with MS (3). The NPM1 mutation is the most common mutation found in MS; other common mutations and fusion genes include KRAS, NRAS, KIT, CEBPA, IDH1, IDH2, RUNX1::RUNX1T1, and CBFB::MYH11 (3, 10, 14–16). However, variations persist in the reported incidence of each mutation in MS among studies (12, 14, 16). Moreover, a previous report indicated variations in the prevalence of chromosomal abnormalities and/or molecular mutations among different countries (17). However, there is currently no available data regarding these variations specifically within the subgroup of AML with MS.

Consequently, this systematic review and meta-analysis compiled and analyzed data on the incidence of each mutation from all pertinent sources. Our objective was to better understand the specific characteristics and precise prevalence of genetic mutations in AML patients presenting with MS.





Materials and methods




Data sources and searches

Six researchers (S.U., K.K., S.P., T.K., W.O., and T.R.) independently searched for articles published within the EMBASE, MEDLINE, and Scopus databases from their inception up to August 1, 2023. The search terms included “acute myeloid leukemia,” “extramedullary,” “granulocytic sarcoma,” “myeloid sarcoma,” and “leukemic cutis.” A comprehensive description of the search strategy is provided in Supplementary Data 1. Our systematic review and meta-analysis strictly followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, as elaborated in Supplementary Data 2.





Selection criteria and data extraction

Studies included in the meta-analysis were retrospective or prospective cohort studies on AML with MS and with a primary outcome aligned with our research objective. We excluded reviews, case reports, and case series with fewer than 10 cases. The primary objective of this analysis was to determine the incidence of each mutation in AML patients with MS, while the secondary aim was to compare the mutational statuses of AML patients with and without MS. To ascertain study eligibility, four researchers (S.U., K.K., S.P., and T.K.) independently assessed the titles and abstracts of the retrieved studies. They also reviewed the references in the selected studies to identify any additional pertinent research. In instances of disagreement about the inclusion of specific studies, consensus was reached through mediation with two other investigators (W.O. and T.R.).





Quality assessment

The quality assessment of the included studies was independently conducted by two researchers (S.U. and K.K.) using the Newcastle–Ottawa quality assessment scale (18).





Statistical analysis

We analyzed the data with Review Manager 5.4 software provided by the Cochrane Collaboration (London, United Kingdom). The inverse variance method was employed to compute pooled odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) for each gene across the studies (19). The prevalence of the genetic alterations was meta-analyzed and pooled using the binary random-effects model using the DerSimonian–Laird method (Open Meta–Analyst for Windows 8) (20). Given the anticipated variability among the incorporated studies, a random-effects model was favored over a fixed-effects model for our meta-analysis. We evaluated statistical heterogeneity with Cochran’s Q test and quantified its extent using the I2 statistic. Depending on the I2 values, heterogeneity was classified as either insignificant (0%–25%), low (25%–50%), moderate (50%–75%), or high (75%–100%) (19). For transparency and procedural clarity, we registered our study protocol with the International Platform of Registered Systematic Review and Meta-Analysis Protocols (INPLASY) network (registration number INPLASY202380091).






Results




Search results

A total of 11 145 articles were identified in the search process, with 1934 articles from MEDLINE, 2514 from EMBASE, 6696 from Scopus, and 1 from other sources. Initially, 4876 duplicated articles were removed, and another 6269 were excluded after reviewing the titles and abstracts. The remaining 153 articles underwent a thorough full-text reading. This resulted in a further 116 articles being excluded because they did not meet the inclusion criteria. The remaining 37 articles that met the inclusion criteria were included in our analysis. The data gathering and screening process is depicted in Figure 1.




Figure 1 | Flowchart depicting the literature review and article selection process.







Baseline patient characteristics

The analysis included 37 cohorts that collectively comprised 6475 diagnosed AML patients. Among these patients, 907 out of 5206 (17.42%) were identified as having AML with MS, resulting in 2199 MS cases. Table 1 details the characteristics and quality assessments of the analyzed cohorts. There was a slight male predominance, accounting for approximately 58.26%, with females comprising 41.74%. When analyzing age demographics across cohorts, 71.87% of the patient population was over 18 years old, while the remaining 28.13% was under 18. Further analysis indicated that the most common sites of MS manifestation were the skin, orbit, central nervous system, and lymph nodes.


Table 1 | Summary of baseline patient characteristics of each included article.







Pool prevalence of DNA mutations in AML patients with MS

Our detailed analysis of the included articles provided comprehensive insights into the pooled prevalence of molecular mutations among patients diagnosed with MS. Figure 2 presents the significant molecular mutations extracted from this extensive dataset. Among them, the FLT3-ITD mutation was the most prevalent, with a pooled prevalence of 17.50% (95% CI 12.60% to 22.50%; I² 82.48%; Figure 2A) (12, 16, 21, 26, 27, 29–34, 36–38, 42, 44–46, 48, 50). Similarly, the MLL and NPM1 mutations stood out with a prevalence of 17.30% (95% CI -7.40% to 42.0%; I² 98.06%; Figure 2C) (9, 22, 46) and 17.10% (95% CI 11.60% to 22.60%; I² 93.64%; Figure 2B) (9, 12, 15, 16, 23, 24, 26, 27, 29, 31–37, 39–42, 46), respectively. Additionally, the DNMT3A mutation was observed at a prevalence of 16.10% (95% CI 7.80% to 24.30%; I² 80.7%; Figure 2D) (12, 27, 28, 32, 36, 40, 42, 50), while the TET2 mutation had a prevalence of 15.40% (95% CI 12.30% to 18.50%; I² 0%; Figure 2E) (12, 15, 27, 36, 40, 43, 47, 49, 50). Furthermore, the STAG2 and NRAS mutations exhibited a prevalence of 12.80% (95% CI 0.70% to 24.80%; I² 0%; Figure 2F) (11, 15, 36) and 11.9% (95% CI 8.10% to 15.70%; I² 39.18%), respectively. For a more detailed exploration of the pooled prevalence of DNA mutations in MS, please refer to Table 2.




Figure 2 | Forest plots illustrating the prevalence of gene mutations in AML patients with myeloid sarcoma. (A) FLT3-ITD; (B) NPM1; (C) MLL; (D) DNMT3A; (E) TET2; and (F) STAG2.




Table 2 | Pooled prevalence of gene mutations in AML patients with myeloid sarcoma.







Pool prevalence of fusion genes in AML patients with MS

Figure 3 presents a detailed analysis of the pooled prevalence of fusion genes in patients with MS, highlighting the frequency of various fusion genes within this group. The most predominant fusion gene observed was RUNX1::RUNX1T1, with a remarkable pooled prevalence of 28.10% (95% CI 15.10% to 41.20%; I² 96.39%; Figure 3A) (9, 14, 25, 28, 34, 35, 38, 41, 42, 45, 48–50). The KMT2A::MLLT3 fusion gene was also identified at a pooled prevalence of 19.20% (95% CI -14.60% to 53.00%; I² 79.63%; Figure 3B) (14, 43). Furthermore, the CBFB::MYH11 fusion gene was observed at a pooled prevalence of 10.30% (95% CI 5.40% to 15.10%; I² 84.93%; Figure 3C) (9, 14, 16, 24, 28, 35, 38, 39, 42, 45, 46, 49, 50).




Figure 3 | Forest plots displaying the prevalence of fusion genes in AML patients with myeloid sarcoma. (A) RUNX1::RUNX1T1; (B) KMT2A::MLLT3; (C) CBFB::MYH11; and (D) BCR::ABL.







Subgroup analysis

When categorizing patients into two age groups (<40 years and ≥40 years), we observed distinct patterns of mutations. Among patients under 40 years of age, KRAS mutation emerged as the most prevalent, occurring in 50.00% of cases (95% CI 10.00% to 90.00%; I² 0%). Conversely, in individuals aged 40 years and above, SRSF2 mutation was the most commonly observed, with a pooled prevalence of 21.90% (95% CI -0.30% to 44.20%; I² 0%). Supplementary Data 3 provides a detailed breakdown of the prevalence of molecular mutations and fusion genes within these age groups.

Furthermore, we calculated the overall pooled prevalence of AML patients with MS harboring recurrent genetic abnormalities, as per the 2022 World Health Organization classification, to be 36.80% (95% CI: 26.00% to 47.60%; I² 96.85%; Supplementary Data 4) (9, 12, 14–16, 23–29, 31–43, 45–50).

The prevalence of genetic mutations, stratified by geographical distribution, was investigated. Among Western patients, the third most frequently observed mutations were NPM1 (27.50%; 95% CI: 17.80 to 37.30; I² 87.18%), FLT3-ITD (20.50%; 95% CI: 13.90 to 27.10; I² 77.52%), and KMT2A (19.90%; 95% CI: -15.00 to 54.90; I² 72.89%). Conversely, in Eastern patients, the most common mutations were KRAS (20.10%; 95% CI: 8.90 to 31.30; I² 7.93%), FLT3-ITD (18.10%; 95% CI: 5.90 to 27.20; and I² 82.73%), and KIT (15.20%; 95% CI: 9.40 to 21.00; I² 0%) mutations. CBFB::MYH11 emerged as the predominant fusion gene in the Western population, while RUNX1::RUNX1T1 predominated in the Eastern population, with rates of 20.40% (95% CI: 7.20 to 33.50; I² 88.31%) and 21.50% (95% CI: 10.10 to 32.90; I² 95.69%), respectively. The genetic profiling of AML patients with MS in both Western and Eastern countries is presented in Supplementary Data 5, 6.





Comparison of mutational profiles between the AML with and without MS groups

Several noteworthy findings emerged after analyzing gene mutations in patients with MS and non-MS (Figure 4). Specifically, the prevalence of the CEBPA mutation was significantly higher in non-MS patients than in those with MS, with an OR of 0.51 (95% CI 0.32 to 0.81; I² 0%; Figure 4C) (10, 35, 37, 46, 50). Conversely, the NRAS mutation was notably more prevalent in the MS group, with an OR of 5.07 (95% CI 1.87 to 13.73; I² 0%; Figure 4G) (31, 50). However, no significant differences were observed in the prevalence of the NPM1, FLT3-ITD, KIT, and IDH2 mutations between MS and non-MS patients.




Figure 4 | Forest plots indicating the prevalence of gene mutations in AML patients with myeloid sarcoma in comparison to those without myeloid sarcoma. (A) NPM1; (B) FLT3-ITD; (C) CEBPA; (D) KIT; (E) IDH2; (F) KRAS; and (G) NRAS.



Additionally, we assessed the incidence of the RUNX1::RUNX1T1 and CBFB::MYH11 fusion genes in four included studies. The meta-analysis revealed no significant differences in the incidence of these fusion genes between patients with MS and those without MS, with pooled ORs of 1.21 (95% CI 0.53 to 2.75; I² 78%; Figure 5A) (9, 10, 35, 46, 50) for RUNX1::RUNX1T1 and 1.26 (95% CI 0.54 to 2.95; I² 52%; Figure 5B) (9, 10, 35, 46, 50) for CBFB::MYH11. Furthermore, there was no significant correlation between AML patients harboring MS and the presence of recurrent genetic abnormalities (pooled OR 0.74; 95% CI 0.42 to 1.29; I² 82%; Supplementary Data 4) (9, 29, 31, 33, 34, 37, 46, 50).




Figure 5 | Forest plots showing the prevalence of fusion genes in AML patients with myeloid sarcoma in comparison to those without myeloid sarcoma. (A) RUNX1::RUNX1T1; and (B) CBFB::MYH11.








Discussion

MS, commonly known as extramedullary AML, presents a wide range of clinical manifestations and often poses therapeutic challenges. A prior multicenter cohort study documented an MS incidence of 14.21% among newly diagnosed AML cases. Typically, pivotal therapeutic choices are guided by the genetic alteration profile. This current study marks the inaugural meta-analysis of MS prevalence and its associated genetic abnormalities.

Our study found a cumulative MS incidence of 17.42%, with a slight male predominance. This rate exceeds that reported in earlier research on newly diagnosed cases (10). Our finding aligns with the observations made by Fianchi et al. (51), who reported a decline in MS incidence from 11% to 7% when assessed at the time of AML diagnosis. In terms of molecular genetics, our meta-analysis identified FLT3-ITD mutations as the most frequently linked to MS, with a pooled prevalence of 17.5%. These figures align closely with prior research: Ansari-Lari et al. (21) found these mutations in 15% of MS cases. Pemmaraju et al. (16) and Shallis et al. (3) also reported the FLT3 mutation as the predominant mutation. The second most common mutations were MLL and NPM1, with a pooled prevalence of approximately 17%, as highlighted by the studies of Chang et al. (52) and Eckardt et al. (10). According to Chang et al. (1), the MLL gene mutation, especially the classic 11q23 abnormality but excluding t(9;11), has been associated with extramedullary involvement and remains a poor prognostic factor. Additionally, Falini et al. (3) recorded NPM1 mutations in 14% of 181 MS samples. In a larger cohort of 89 AML patients, Ovcharenko et al. (53) observed mutated NPM1 in 13 out of 15 MS patients. Another key finding from our study is that DNMT3A and TET2 mutations emerged as the third and fourth most common genetic aberrations, respectively.

AML with t(8;21)(q22;q22.1); RUNX1::RUNX1T1 represents a distinct subtype of AML. Classified as a core-binding factor leukemia, this form of AML is characterized by frequent genetic recurrence and generally has a favorable prognosis (54). Saia et al. delved into the RUNX1::RUNX1T1 rearrangement in mouse models, shedding light on its frequent association with extramedullary disease (55). Consistent with our data, the predominant fusion gene detected in MS was RUNX1::RUNX1T1, demonstrating a cumulative prevalence of 28.10%. This finding accords with the work of Hu et al. and Velagala et al., and it emphasizes the significance of the RUNX1::RUNX1T1 fusion gene (5, 7). In contrast, certain studies have underscored the sporadic nature of the RUNX1::RUNX1T1 fusion, noting its presence in just 2% to 3% of MS cases (56). It is noteworthy that significant statistical heterogeneity was observed throughout all fusion gene analyses, likely amplified by varying baseline characteristics among the considered studies.

Geographical variations also influence the genetic profiling in MS. The NPM1 mutation was prominently observed among patients in Western regions, whereas KRAS predominated in those from Eastern countries. Additionally, FLT3-ITD was identified as a commonly occurring mutation in both populations. Core-binding fusion genes were frequently observed in AML with MS across continents, albeit with differences in specific fusion genes (CBFB::MYH11 in the Western population and RUNX1::RUNX1T1 in the Eastern population).

When comparing genetic abnormalities between non-MS and MS cases, our analysis revealed no significant differences in the prevalence of the RUNX1::RUNX1T1 and CBFB::MYH11 fusion genes. However, we found that the NRAS mutation was significantly associated with the MS group. Our findings suggest that the CEBPA mutation might confer a protective effect against MS, supported by an OR of 0.51 (95% CI 0.32 to 0.81).

This study examined the prevalence of mutations and fusion genes in AML with multiple MS. The findings revealed variations in the incidence rates of certain mutations between the MS group and AML patients without MS. Furthermore, age and geographical disparities emerged as significant factors influencing the genetic profiling in MS cases. Consequently, a mutational workup should be conducted in all newly diagnosed AML patients with MS, as the results offer valuable insights for risk stratification, guiding treatment decisions, and potentially introducing novel therapeutic options targeting specific mutations.

However, this study has several limitations. First, it drew upon published data, potentially introducing publication bias since studies with positive or novel outcomes are more likely to be published than those with negative or neutral findings. Second, numerous analyses indicated elevated I2 values, which signify substantial heterogeneity among studies. This heterogeneity might have undermined the reliability of our combined results. Third, some included studies lacked details of patients’ baseline characteristics, and there was evident statistical inconsistency in the genetic testing methods used. Additionally, the source of genetic data, whether derived from bone marrow or blood samples, was not always clearly specified, potentially leading to inaccurate representation of genetic variations. Fourth, the limited number of studies comparing gene mutations between MS and non-MS may have resulted in insufficient statistical power to establish significant differences. Fifth, the included studies utilized a range of techniques, such as conventional cytogenetics, Fluorescence In Situ Hybridization, polymerase chain reaction, and NGS, each with varying sensitivities in detecting mutations. This diversity in methods may have influenced the accurate assessment of mutation prevalence. Lastly, the potential relationship between MS and gene mutations is an intriguing area of study; however, we were unable to perform such an analysis in this study due to insufficient data.





Conclusion

This study underscores the importance of three gene mutations—FLT3-ITD, MLL, and NPM1—which were commonly observed in cases of MS. The fusion gene RUNX1::RUNX1T1 emerged as the principal genetic fusion associated with MS. Intriguingly, although the CEBPA mutation appeared to confer some protection against MS, the presence of the NRAS mutation was associated with an elevated risk of developing MS. In essence, this meta-analysis substantially augments our comprehension of the genetic mutation characteristics of MS.
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Yang 2023 0.381 (0.234, 0.528) 16742

Ye 2022 0.182 (0.000, 0.410) 2/11

Owattanapanich 2023 0,022 {0.000, 0.065) 1745

28.10%; 95%Cl 15.10-41.20; 1>96.39%; P<0.001

RUNXI1::RUNXITI

Studies Estimate (95% C.I.) KMT2A-MLLT3/Total
Claerhout 2018 0.049  (0.000, 0.115) 2/41
Khan 2021 0.400 (0.096, 0.704) 4/10

19.20%; 95%Cl -14.60-53.00; 12 79.63%; P=0.027

06 o8 1

KMT2A::MLLT3

C

Studies Estinate (95% C.I.) CBFB-MYHIL Inv (16)/Total
Pemmaraju 2012 0.114 (0,020, 0.207) 5/44
Tran 2012 0.333 (0,025, 0.641) 39
Goldberg 2017 0,857 (0,598, 1.000) o1
Claerhout 2018 0.049 (0.000, 0.115) 2781
Pramank, Tyagi 2018 0.004 (0,000, 0.015) o121
Hu 2020 0.114 (0.020, 0.207) 5744
Zhou 2020 0.030 (0.000, 0.089) 1/33
Abbas 2021 0.182 (0,021, 0.343) 22
Halahleh 2021 0.281 (0,125, 0.437) 932
Velagala 2021 0.045 (0,000, 0.107) 2/44
Kim 2022 0,114 ( 220) 4735
Yang 2023 0.023 (0.000, 0.068) 1743
Owattanapanich 2023 0,067 (0,000, 0.140) /45

10.30%; 95%Cl 5.40-15.10; 1284.93%; P<0.001

06 o8 1

CBFB::MYHI11

o o2 os o o '
D Proporton
Studies Estimate (95% C.I.) BCR-ABLL t(9,22)/Total
Pramank, Tyagi 2018 0.004  (0.000, 0.015) o/121
Yang 2023 0,070 (0.000, 0.146) 343
Owattanapanich 2023 0.022 (0.000, 0.065) 1745
1.60%; 95%Cl: -1.10-4.30; 1>40.05%; P=0.189
. : .
o 02 03
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N Geographical Numbers Te_chniques/ Locations of Treatment Stem cell Study Newcastle-
eferences distribution (case/ List genes extramedullary n) transplant e Type Ottawa
control) in the study AML of cases (n) (n) P scale
Ansari-Lari UsA 20/- 137 4lyr(4mo.- PCR/ skin(8), lymph node(s), breast(2), nasal NA NA NA R Selection:3
2004 (1) s4yr) FLT3-ITD, cavity(1),brain(1), leum(1), pericardium(1), Comparability:
FLT3-D835 testis(1), retroperitoneum(1) 0 Outcome:3
Creutzig 137/ NA (<18) Y Skin(39), orbit(36), kidney (42), tonsil(16), induction high NA 1998- R Selection3
2012 (2 CBF, Salivary gland(6), testis(7), multiple site(55) dose 2010 Comparability:
MLL cytarabine 0 Outcome:3
rearrangement (137)
Ohanian UsA 10/~ 64| 49(19-79) Cytogenetics, | orbit and ocular adnexae(10), CSF(1), breast  IC (O)RT(@), | allo-SCT (3) NA R Selection3
2012 (23) FISH, PCR/ (1)skin(3), lymph node(1), lung/ surgery(s) Comparability:
NPMI, NRAS ‘mediastinum(2).bone(1) 0 Outcomes3
Pemmaraju UsA 244/- 135/ 57(14-82) Cytogenetics, | skin(84),CNS(78),RS(43),GI(23) lymph node NA NA 2000- R Selection3
2012 (16) 109 PCR/ (21), soft/connective tissue(27), pelvis/ 2011 Comparability:
FLT3, NRAS, inguinal(15),naso-oropharynx(8), 0 Outcomes3
KRAS, NPMI, | musculoskeletal(7),CVS(4)urinary(4) eye(1),
CBFb:MYH11, thymus(1)
CEBPA, JAK2,

IDHI, IDH2, KIT

Tran 2012 (24) Usa 9- 36 45(28-69) Cytogenetics, ovary(2),uterus(2) fallopian tube (2), NA NA 2000- R Selectio
PCR/ 2011 Comparability:
FLT3, NPM1, ureter(1),parametrial soft tissue(1), breast 0 Outcome:3
JAK2, RAS, (1)lymph node(1)bladder (1)epididymis(1),

CBFB-MYH11 labia(2), pleural fluid (1), kidney(2),testicle
(1)spermatic cord(1), nasopharynx(1), skin
(1), chest soft tissue(1)

Gupta 2013 (25) India 9 63 (9mo-18yr) Cytogeneti orbit(4), maxillamandible, porta-hepatis, NA NA 2006- R Selection:
(s21) urinary bladder,spinal cord (1),paravertebral 2012 Comparability:
‘muscles(1), pre-sternal region(1), retro- 0 Outcome:2
sternal region(1), uterus(1), craniofacial
sinuses(1)
‘Wang 2013 (26) Usa 63/- 34/ 50 (1-80) PCR/ Iymph node,skin 1C (63) I 2002- R Selection3
2 FLT3, NRAS, 2012 Comparability:
KRAS, KIT, 0 Outcome:3
NPMI, CEBPA, ‘
JAK, IDHI, IDH2
Luskin 2015 (27) UsA 751769 160/ | 59(17-86) NGS, PCR/ skin(27) NA NA 2001- R Selection:
124 33 gene panel list 2014 Comparability:
1 Outcome:3
Goldberg UsA 171 107 56 (26-86) NGs/ Soft tissue(4) lymph node(3) bladder(1),GI NA NA NA P Selection3
2017 (28) 585 list genes (3)breast(2)testis(1) gingiva(1) fallopian Comparability:
tube(1),paratracheal/neck(1) 0 Outcome:1
Stove 2017 (29)  Denmark, Finland, 73/ 36/ | 26(01-179)  Cytogenetics, skin(16), orbita(11), lymph nodes(s), 1c(73) SCT (13) 2004- R Selection:d
Iceland, Norway, 37 PCR/ gingiva/mouth(3), abdomen(2), dura/ 2013 Comparability:
Sweden and FLT3ITD, FLT3- | epidural space(2), sinus(1), mandible(1), 2 Outcome:3
Hong Kong ALM, FLT3-wi mailla(1), the mastoid process(1), neck(1),
type, NPMI, humerus(1), mediastinum(1)Jung(1),
NPMI-wild type, | pericardium(1), pancreas(1), appendix(1),
CBFB:MYHLI, retroperitoneum(1), kidney(1), bilateral
RUNXL: adrenal glands(1), labia majora(1), bilateral
RUNXITI, testes(1),gluteal region(1), thigh(1)
MLLT3:KMT2A
Wu 2017 (30) China 18/- NA (8-61) PCR/ NA NA NA NA R Selection3
FLT3-ITD, Comparability:
RUNXI: 0 Outcome:3
RUNXITI
Choi 2018 (31) Korea 13/- S8 | 46 (18-83) NGs/ skin(2), lymph node(4), breast(2), NA NA 2003- R Selection3
83 gene panel list | nasopharynx (1)/leptomeningeal(1), Right 2016 Comparability:
ventricle(1), axilla(2),frank(1), inguinal area 0 Outcome:1
(1), stomach(1), right frontal lobe(1),scalp
(Wovary(1),
bone(s),mesentery(1),

anterior chest(4), paravertebral(1),
intramuscular nodule(1),
lung(1), gingiva(1),

scortum(1)
Claerhout Belgium a1 23/ 48(08-86) PCR/ skin & subcutancous tissue(14)lymph node | IC (10), IC then  AlloSCT(10) 1983- R Selection:3
2018 (14) 18 FLT3-ITD, JAK2 (10), allo SCT(10), 2016 Comparability:
V617F, RUNX1: Gltract(6) eyelorbita(3), other 0 Outcome:3
RUNXITI, breast(4), mediastinum(4), regimen (20)
CBEB:MYH1I, | retroperitoneum(1),ovary(2),lung(1).cervix/
uterus(1),
spinal cord(1)urinary tract(1) pericard(1),
brain(2),
thyroid(1) iver(1) bone(2)
Kaur 2018 (11) USA 23/- 16/7 58 (36-84) FISH, NGS/FLT3, | skin(12), scalp(2), lymph node, chest wall(1), 1C (19), alloHSCT(5) 2002- R Selection:3
ASXLL STAG2, | vulva(1), penis(1), axilla(2), gum(1), spleen  splencctomy(1), 2015 Comparability:
JAK2, TP53 (1), small intestine, humerus(1), NAQG) 0 Outcome:3

abdomen(1),leg(1)

Lee 2018 (32) Taiwan 25/- u| o a507-72) NGs/ NA CMT (20) alloSCT(9) 2005- R Selection:
n 54 gene panel list 2018 Comparability:
0 Outcome:3
Pramanik India 121/449 NA L 6(0318) Cytogenetics, orbit(107), CNS(5), skin(1), lung/pleura(1), cMT(121) NA 2003- R Selection:d
2018 (9) PCR/ jaw(1), mediastinum(1), testis(1), ear(1), 2016 Comparability:
FLT3, NPM, lung(1) 2 Outcome:3
RUNXI::
RUNXITI,
CBFB:MYHL1,
MLL
rearrangement,
DEK:NUP,
BCR:ABL
‘Wang 2019 (33) UsA 62186 3/ 582 Cytogenetic, skin(62) NA NA 2005- R Selection:d
2 PCR/ 2017 Comparability:
NPMI, FLT3- 2 Outcome:3
1D,
MLL
rearrangement
Andrew Canada 158/377 98/ | 5758(19-89) = Cytogenetics, | skin(57)lymphatic system(36).abdomen(19), 1C (125) NA 2000- R Selection:d
2020 (34) 60 PCR/ CNS(15),reproductive system(8) lung(6) 2019 Comparability:
FLT3-ITD, 2 Outcomes3
NPMI,
RUNXL:
RUNXITI
Hu 2020 (35) China 441170 33/ NA Cytogenetics, | orbit(22), CNS(15), bone(8), skin(?), lymph ic NA 2008- R Selection:d
n PCR/ nodes(4), mediastinum(3), lung/pleura(2), 2018 Comparability:
NPMI, CEBPA, abdominal cavity(2) 2 Outcome:3
GATAL c-KIT,
RUNXI:
RUNXITI,
CBEB:MYHI1
Karagounis UsA 1 NA | 66(26:82) NGS, PCR/ skin(11) NA NA 2007- R Selectio
2020 (36) 44 list gene 2017 Comparability:
panel, FLT3 0 Outcome:3
Xu 2020 (37) NA 109/775 60/ | 58(<1-18) Cytogenetics, CNs(15) 1C (109) SCT(16) 1996- R Selection:d
9 PCR/ 2010 Comparability:
FLT3ITD, 2 Outcome:3
CEBPA, NPM1
Zhou 2020 (38) UsA 33 249 | 28yr(lmo.- NGs/ skin(18),soft tissue(9), head andneck(s), NA NA 1984- R Selectio
18yr) 152 gene extremities(3),bone(3)ymph node(2).orbit 2016 Comparability:
panel list (2)breast(1),lung(1).bladder(1).testis(1), 0 Outcome:3
lacrimal gland(1),CNS (brain/spine)(1)
Abbas 2021 (39) UsA 56/- 36/ | 582179 NG, FISH/ 19)musculoskeletal(13), 1C (39, AlloSCT 10/53 2005 R | Selection:
2 NRAS, KRAS, Iymph node(12)GI(8), surgery(1), low 2020 Comparability:0
DNMT3A, GU(8).breast(3).head and neck(6),other(3) intensive Outcome:3
ASXLI, NPMI, treatment (10),
CEBPA, IDH2, no treatment
JAK2, PTPNIL, (3)wenetoclax
TET2, BCOR, based regimen
RAD21, FLT3, +/-RT(10),
EZH2, P53, CMT+RT(5)
KMT24, RUNXI
De Cap UsA 96/- 60/ 63(2086) NA/ Skinoropharyngeal mucosa(45), lymph NA NA NA R Selection3
2021 (40) 36 NPM1, RUNXI, node(17),bone &soft tissue(30) other(29) Comparability:
ETV6, FLT3, 0 Outcome:3
NRAS, JAK2,
DNMT34, TET2,
IDHI, IDH2,
ASXLL

SRSF2, U2AF1

Goyal 2021 (41) India 28/- 18| 2201876) Cytogenetics, Iymphatic system(8), CNS(7), 1c (26) NA 2012- R
10 PCR/ GIT(5), bonetksoft tissue(3), skin(2), 2021 Comparability:
NPMI, multiple sites(3) 0 Outcomes3
RUNXI:
RUNXITI
Greenland UsA 7 a3 48(19-84) NGS/ Kidney(2),Jung(1) Jiver(1), Allograft 5 2007- R Selection3
2021 (15) KMT24, SETD2, small intestine(1), transplant(s), 2017 Comparability:0
ASXLI, STAG2, cutaneous(2) bone(1), CMT (1) Outcome:3
SMC3, IDH2, testicle(1),lymph nodes(1),periaortictissue(1),
TET2, FLT3, gallbladder(1)
NRAS, BRAF,
SRSE2, CEBPA,
BCORLI, BCOR,
CUXI, TPS3,
wrl,
NFL NPMI
Halahleh Jordan 320 20 3350163 NGS, PCR/ NA IC(29), 16 2003- R | Selection
2021 (42) 10 52 list gene Surgical 2019 Comparability:
panel, FLT3 resection(2), 0 Outcome:3
RT(6)
Khan 2021 (43) UsA 10/ 70 179 NGS/KMT24:: skin(7), soft tissue(3) NA NA 2014- R Selection
MLL, ASXLI, 2021 Comparability:
TET2, NRAS, 0 Outcome:1
CEPBA, P53,
MLLTI:ENL,
MLLT3,
MLLTI0:AF10,
ASXLI, CEBPA,
PHF6, BRCA2,
DNMT3A,
NPM1, RAD2I,
CBL,
KMDGA, NFI
Tatarian Usa 25023 NA NA NGS/ CNS(25) intrathecal NA 2015- R | Selection
2021 (44) FLT3 CMT (10) 2020 Comparability:
0 Outcome:1
Velagala India 44 29/ | 95mo.(32mo.- FISH, PCR/ orbital(27), para-spinal(6) IC (44)RT (25) NA 2014 R Selection:
2021 (43) 15 178mo) RUNXI:: 2019 Comparability:
RUNXTI, CBFB:: 0 Outcomes3
MYH11, KMT2A-
£, ELT3-ITD
Eckardt NA 251358 | 19/ | 53(42:61) NGS, PCR/ CNS(10),tonsils(2),pleura(5) iver(2) testes allogeneic allogeneic NA R Selection:t
2022 (10) 106 NPML FLT3- | (1);skin(17)spleen(1).pericardium(2).lymph het(66) het(66) Comparability:
ITD, PTENIL, nodes(3) 2 Outcomes3
IDH2, CEBPA,
RUNXI:
RUNXITI,
CBFB:MYHI1
Kim 2022 (46) Korea 35186 23/ 787 Cytogenetics, Head and neck(22)trunk (12), NA NA 2009 R Selectio
2 PCR/ ‘musculoskeletal(35) 2018 Comparability:
Ckit, FLT3-ITD, 2 Outcome:3
NPMI, CEBPA,
CBEB:MYH11,

Zhao 2022 (12) China ns/- 7 44(1-81) NGs/ Iymph nodes(30), soft tissues(16),spinal local treatment | allo-SCT(9) 2010- R Selection3
5 18 gene panel list | canal(14),digestive tract(9), genitalsystem(8), ~ (30), CMT (60) 2021 Comparability:
pleura(7) skin(2).nasopharynx(7) Jung(s), 0 Outcome:3

bone(3),brain(1),breast(3) mediastinum(3),
orbit(3).gingiva(3) parotid(3).other(2)

Kuhlman USA 83/ 52/ 56(17-89) NGS/ NA Induction CMT NA 1996- R | Selection:
2022 (47) 31 RTK-RAS, NPM1, (70), 1C 2021 Comparability: 0
TET2, IDH2 +alloSCT, Outcome:3
IC+LT

Ye 2022 (48) China 1/- 8/3 7 FISH, PCR,NGS/ | Skin(3), orbital(3), LN(2), CNS(3), testis(1), Sx(9), CMT 3 2016- R Selection: 4
NA mediastinum(1) (10), HSCT(3), 2022 Comparability: 0
TKIR) Outcome: 3

Yang 2023 (49) China 61/- 36/ 37(8-87) LN(19), Soft tissue(15), Bone and joints(9), CMT(47), Sx 10 2015- R+P Selection:
25 C-kit, NPM1, Mediastinum(7), CNS(6), orbit(4), pleural (11), Targeted 2020 Comparability: 0
ETV6, TET2, and abdominal cavity(4), ovaries(3), Breast  therapy(7), Allo Outcome: 3
IDH2, RUNX1, (3), oral cavity(2), sinus(2), testis(2), GI(2), SCT(10), RT(8)
CEBPA, FLT3- kidney(2), liver(1)
1D,
TP53, KRAS,
CALR, RUNXI::
RUNXITI,
CBFB:MYHI1,
BCR:ABL, ETV6::
MECOM, FUS:
ERG,
PICALM-
MLLTI0

Owattanapanich Thailand 53/106 25/ 5432155 NGS, PCR/ Skin(53), Spleen(12), LN(10), Liver(9) 1C (104)HMA NA 2013 R Selection: 3
2023 (50) 3 ABLI, ANKRD26, a3), 2020 Comparability: 1
ASXLI, CALR, transfusion Outcome: 3
CBL, support,
CEBPA, CSF3R, HU, cytarabine
DDX41,
DNMT3A, EZH?2,
FLT3, GATA2,
IDHL, IDH2,
JAK2, KIT, KRAS,
MECOM, MPL,
NPMI, NRAS,
PTPNII
(RPL6), RUNXI,
SAMDS,
SAMDSL
SETBPI,
SF3BI, SH2B3,
SRSF2, TET2,
TPS3, U2AFL,
WT1,ZRSR2

allo-SCT, allogeneic stem cell transplant; AML, acute myeloid leukemia; CMT, chemotherapy: F, female; FISH, fluorescence in situ hybrid
webiabls NIGS: nextigeneration sequencing: P; prospectivelys POR. polymersse chiin reuction) B retrospectively; SCT, sturn cell transgdant

jon; HSCT, hematopoietic stem el transplantation; IC, intensive chemotherapy: LT, localized therapy: M, males NA, not
TKL, tyrosine Kinase inhibitors:






