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Osteosarcoma stem cells (OSCs) contribute to the pathogenesis of osteosarcoma

(OS), which is the most common malignant primary bone tumor. The significance

and underlying mechanisms of action of proteoglycans (PGs) and

glycosaminoglycans (GAGs) in OSC phenotypes and OS malignancy are largely

unknown. This study aimed to investigate the role of PG/GAG biosynthesis and the

corresponding candidate genes in OSCs and poor clinical outcomes in OS using

scRNA-seq and bulk RNA-seq datasets of clinical OS specimens, accompanied by

biological validation by in vitro genetic and pharmacological analyses. The

expression of b-1,3-glucuronyltransferase 3 (B3GAT3), one of the genes

responsible for the biosynthesis of the common core tetrasaccharide linker

region of PGs, was significantly upregulated in both OSC populations and OS

tissues andwas associatedwith poor survival in patientswithOSwith high stemcell

properties. Moreover, the genetic inactivation of B3GAT3 by RNA interference and

pharmacological inhibition of PGbiosynthesis abrogated the self-renewal potential

of OSCs. Collectively, these findings suggest a pivotal role for B3GAT3 and PG/

GAG biosynthesis in the regulation of OSC phenotypes and OS malignancy,

thereby providing a potential target for OSC-directed therapy.
KEYWORDS

osteosarcoma, osteosarcoma stem cell, proteoglycan, glycosaminoglycan, b-1,
3glucuronyltransferase 3
1 Introduction

Osteosarcoma (OS) is the most common primary malignant bone tumor with a high

risk of bone and lung metastases (1–4). The incidence of OS shows a bimodal age

distribution, peaking in adolescents and young adults, and adults older than 65 years,

and is slightly more common in men than in women (5, 6). OS is characterized by marked
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malignancy, strong invasiveness, rapid disease progression, and a

high mortality rate (7, 8). OS commonly occurs in the knee joint

(the metaphysis of the long tubular bones: the distal femur and the

proximal tibia) (9, 10). The 5-year survival rate of OS stands at

approximately 70% in the absence of metastases and decreases to

30% in patients with metastatic disease (11, 12). The exact cell

origin of OS remains to be defined; however, it is believed to be cells

of the osteoblast lineage, ranging from mesenchymal stem cells

(MSCs) to osteoblast progenitors (13, 14). Osteosarcoma stem cells

(OSCs) are functionally delineated based on their intrinsic

properties, including self-renewal potential and multilineage

differentiation capacity (15). OSCs also play a pivotal role in

tumor initiation, recurrence, metastasis, and chemoresistance

(16). Accumulating evidence suggests that targeting OSCs is an

efficacious strategy for improving OS treatment (17, 18). Therefore,

understanding the underlying molecular mechanisms governing the

function of OSCs is necessary for developing novel therapeutic

strategies for OS.

All mammalian glycosaminoglycans (GAGs), except

hyaluronan (HA), attach to core proteins to form proteoglycans

(PGs) (19–21). PGs/GAGs are abundantly distributed on the cell

surface and in the extracellular matrix (22). GAGs have various

biological functions and play important roles in numerous

physiological and pathological conditions (23–25). Among them,

the biosynthesis of chondroitin sulfate (CS); dermatan sulfate (DS),

which is derived from CS by C5-epimerization of the b-D-

glucuronic acid residue; and heparan sulfate (HS) begins with the

formation of a common tetrasaccharide linker region to the core

protein, followed by repeated addition of disaccharide units (26–

28). The biosynthesis of the tetrasaccharide linker region in CS, DS,

and HS is initiated by the enzymatic transfer of xylose to specific

serine residues located in the core proteins of PGs within the

endoplasmic reticulum by xylosyltransferase-I (XylT-I) and -II

(XylT-II), encoded by xylosyltransferase 1 (XYLT1) and XYLT2,

respectively (29–31). Subsequently, two galactoses and a glucuronic

acid are successively added to the xylose residues within the Golgi

apparatus through the concerted actions of galactosyltransferase-I

(G a lT - I ) , g a l a c t o s y l t r a n s f e r a s e - I I (Ga l T - I I ) , a n d

glucuronyltransferase-I (GlcAT-I), which are encoded by b-1,4-
galactosyltransferase 7 (B4GALT7), b-1,3-galactosyltransferase 6

(B3GALT6), and b-1,3-glucuronyltransferase 3 (B3GAT3),

respectively (32, 33).

PGs/GAGs not only play fundamental and diverse roles in the

progression, malignancy, metastasis, and refractoriness of various

types of cancer, but are also implicated in the cellular properties of

cancer stem cells (CSCs) in some cancers, including glioblastoma,

triple-negative breast cancer, and colorectal cancer (34, 35). Although

some studies have been conducted to understand the role of PGs/

GAGs in the pathogenesis of OS, limited data are available on the

significance of enzymes related to PG/GAG biosynthesis in OSCs and

OS malignancy. This study aimed to investigate the role of PG/GAG

biosynthesis and corresponding candidate genes in OSCs and poor

clinical outcomes in OS by combining bioinformatics analysis of

clinical OS specimens with independent cohorts and in vitro genetic

and pharmacological analyses.
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2 Materials and methods

2.1 scRNA-seq data analysis

We analyzed two scRNA-seq datasets (GSE152048 and

GSE162454) (36, 37). The GSE152048 dataset included 11

patients (five men and six women, 11–38 years). The data of five

patients with primary osteoblastic OS lesions were used in

subsequent analyses. The GSE162454 dataset included six primary

OS patients (four men and two women, 13–45 years). The data of all

six patients were used in subsequent analyses.

Data were analyzed using the “Seurat” package (version 4.3.0.1)

in R (version 4.3.0) (38–40). First, the data were read using the

Read10X function. In the preprocessing of each dataset, cells with >

6,000 and < 300 expressed genes with more than 10%mitochondrial

RNA counts were considered low-quality and filtered out. The gene

expression levels of the remained cells were normalized by

regressing mitochondrial mapping rates on glmGamPoi using the

SCTransform function. To remove batch effects, integration of the

five sample datasets in GSE152048, and the six sample datasets in

GSE152048, was performed using the SelectIntegrationFeatures,

PrepSCTIntegration, RunPCA, FindIntegrationAnchors, and

IntegrateData functions. Accordingly, 59,738 cells in GSE152048

and 32,681 cells in GSE162454 were used for downstream analysis,

respectively. For dimensional reduction, principal component

analysis (PCA) and t-distributed stochastic neighbor embedding

(t-SNE) were performed using the RunPCA and RunTSNE

functions. To cluster cell populations, k.param nearest neighbors

were calculated using the FindNeighbors function using the first 50

principal components . Clusters were identified using

theFindClusters function at a resolution of 0.2. Each cluster was

manually annotated based on violin plots of the expression of

established cell-specific marker genes. Detailed information on

these marker genes is provided in Figure 1C and Supplementary

Figure 1B. Osteoblasts, proliferating cells, and MSCs were extracted

as OS cells from the identified clusters (n = 26,249 in GSE152048,

n = 7,650 in GSE162454).

OS cells were divided into two groups, OSCs and non-OSCs, for

downstream analysis. In GSE152048, ABCG1, KLF4, and MYC co-

expressing cells were defined as OSCs (n = 58) and others as non-

OSCs (n = 26,191). Similarly, ABCG1, KLF4, and MYC co-

expressing cells were defined as OSCs (n = 10) and others as

non-OSCs (n = 26,239). In GSE162454, SOX2, NES, and MYC co-

expressing cells were defined as OSCs (n = 150) and others as non-

OSCs (n = 7,500).

Sixty-three human PG/GAG biosynthesis-related genes were

o b t a i n e d b y i n t e g r a t i n g f o u r g e n e s e t s (KEGG_

GLYCOSAMINOGLYCAN_BIOSYNTHESIS_CHONDROITIN

_ S U L F A T E , K E G G _ G L Y C O S AM I N O G L Y C A N _

B I O S YNTH E S I S _ H E P A RAN _ S U L F A T E , K E GG _

G L Y C O S A M I N O G L Y C A N _ B I O S Y N T H E S I S

_KERATAN_SULFATE, and WP_PROTEOGLYCAN_

BIOSYNTHESIS) registered in the MSigDB database (http://gsea-

msigdb.org/gsea/msigdb/index.jsp). Differentially expressed genes

(DEGs) were identified among these 63 genes using Wilcoxon’s
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rank-sum test (P < 0.05) using the wilcoxauc function in the

“presto” package (version 1.0.0). Gene Set Enrichment Analysis

(GSEA) was performed using the GSEA function (minGSsize, 5;

maxGSsize, 500; eps, 0; pvalueCutoff, 0.05) in the “clusterProfiler”

package (version 4.8.3). The gene sets used in GSEA were obtained

from the C2 and C5 collections in the MSigDB database using the

msigdbr function in the “msigdbr” package (version 7.5.1). Gene

sets with NES > 0 and P < 0.05 were considered significantly
Frontiers in Oncology 03
enriched. Visualization was performed using the gseaplot2

function in the “enrichplot” package (version 1.20.1).
2.2 Bulk RNA-seq data analysis

We analyzed the RNA-seq dataset (PRJNA539828) obtained

from OS (n = 16) and non-tumor (n = 4) tissues from patients with
A

B

C

D E F G

H I J

a

b

FIGURE 1

B3GAT3 is upregulated in the OSC population of patients with OS. (A) Schematic of the identification of the OSC population in GSE152048. (a)
ABCG1, KLF4, and MYC co-expressing cells or (b) ABCG1, KLF4, and KIT co-expressing cells were defined as OSCs, respectively. (B) t-SNE plot of cell
clusters classified in OS tissues. (C) Violin plots showing the normalized expression levels of 27 representative marker genes across 8 clusters.
(D, E) Enrichment plot for a gene set related to “stemness” between OSCs ([D] ABCG1, KLF4, and MYC or [E] ABCG1, KLF4, and KIT co-expressing
cells) and non-OSCs. (F, G) Barplot showing the expression levels of PG/GAG biosynthesis genes between OSCs ([F] ABCG1, KLF4, and MYC or [G]
ABCG1, KLF4, and KIT co-expressing cells) and non-OSCs. (*P < 0.05, **P < 0.01, ***P < 0.001). (H) Schematic of the identification of the OSC
population in GSE162454. SOX2, NES, and MYC co-expressing cells were defined as OSCs. (I) Enrichment plot for a gene set related to “stemness”
between OSCs and non-OSCs. (J) Barplot showing the expression levels of PG/GAG biosynthesis genes between OSCs and non-OSCs. The top five
most highly expressed genes in OSCs are shown (***P < 0.001).
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OS (41). Fastq files were downloaded using “SRA Toolkit” (version

3.0.1). Trimming was performed using “Trim_Galore” (version

0.6.7). Quality control after trimming was performed using

“FASTQC” (version 0.12.1). Mapping to the hg38 human genome

assembly was performed using “STAR” (version 2.7.10b).

Expression levels were calculated from the bam files generated by

mapping using “RSEM” (version 1.3.3). GSEA was performed using

the “clusterProfiler” package (version 4.8.3) in R (version 4.3.0).

Visualization of the GSEA results was performed using the

“enrichplot” package (version 1.20.3).
2.3 Survival analysis

Clinical data from patients with OS were downloaded from the

TARGET-OS database. Patients were divided into high and low

expression groups based on median gene expression values. Survival

analysis was conducted with the log-rank test using the “survival”

package (version 4.8.3). Kaplan–Meier curves were plotted using

the “survminer” package (version 0.4.9).
2.4 Cell culture

HEK293T cells were obtained from the RIKEN Cell Bank

(Saitama, Japan) and cultured in DMEM (FUJIFILM Wako Pure

Chemical) supplemented with 10% FBS (Hyclone) and 1% penicillin/

streptomycin (Thermo Fisher Scientific) at 37°C in 5% CO2 (42). The

patient-derived OS cell line 143B was obtained from the ATCC

(Manassas, USA) and cultured in adherent medium containing

DMEM supplemented with 10% FBS, 110 mg/mL sodium pyruvate

(FUJIFILM Wako Pure Chemical), and 1% penicillin/streptomycin.

Both cell types were cultured in tissue culture dishes (SARSTEDT) to

ensure optimal adherence and expansion. To enrich stem-like cells,

143B cells were harvested using trypsin (BD Bioscience) and EDTA

(FUJIFILM Wako Pure Chemical), then cultured in osteosphere

medium containing DMEM/F12 (FUJIFILM Wako Pure Chemical)

supplemented with 20 ng/mL recombinant human EGF (FUJIFILM

Wako Pure Chemical), 20 ng/mL recombinant human basic FGF

(FUJIFILM Wako Pure Chemical), B27 supplement without vitamin

A (Gibco), GlutaMAX (Thermo Fisher Scientific), and 1% penicillin/

streptomycin. Under these conditions, the cells were incubated in

Ultra-Low Attachment Surface culture dishes (Corning). To assess

the differentiation potential of OSCs, the cells were transferred from

osteosphere to adherent medium, and from Ultra-Low Attachment

Surface to tissue culture dishes, to promote adherence

and differentiation.
2.5 Lentiviral transfection

To introduce vectors into HEK293T cells, the calcium phosphate

method was employed (43). Lentiviral vectors containing expression

constructs, pRRE and pREV packaging plasmids, and VSVG envelope

plasmids were transfected into HEK293T cells for packaging. After 48
Frontiers in Oncology 04
h of transfection, viral supernatants were harvested and subsequently

incubated with 143B cells for 24 h. Following this, 143B cells were

selected by culturing them for 4 days in the presence of 0.5 mg/mL

puromycin prior to their use in experiments. Plasmid pLKO.1-

shB3GAT3 (TRCN0000035610) was purchased from Sigma-

Aldrich; pLKO.1 puro plasmid (#8453) was purchased fromAddgene.
2.6 Sphere formation and limiting
dilution assay

For sphere formation assay, 143B cells (1,000 cells) were seeded

in ultra-low attachment 96-well plates (Corning) and cultured in

osteosphere medium supplemented with 1% methylcellulose

(FUJIFILM Wako Pure Chemical). The number of spheres was

calculated on the fifth day using a BZ-X800 microscope

(KEYENCE). Sphere formation ability was assessed by

enumerating the quantity of spheres with a diameter > 30 mm
(44). For limiting dilution assay, cells were seeded in 96-well plates

at a density of 1, 5, 10, 20, 40, or 80 cells/well with five replicates per

density. The presence of spheres in each well was determined after 5

days. Wells containing spheres with a diameter > 50 mm were

considered positive, while those without spheres were considered

negative. The frequency of sphere formation was assessed using an

extreme limiting dilution algorithm (ELDA software; http://

bioinf.wehi.edu.au/software/elda/).
2.7 Reverse transcription quantitative PCR

Total cellular RNA was isolated. cDNA was synthesized using

reverse transcriptase and oligo-dT primers (45). RT-qPCR analysis

was performed using gene-specific primers and THUNDERBIRD

SYBR qPCR Mix (TOYOBO) on an MX3000P instrument (Agilent

Technologies). mRNA expression levels were standardized using

GAPDH as an internal control (46). The primer sequences used in

this study are listed in the Supplementary Table.
2.8 Flow cytometry

143B cells (1,000,000 cells) were incubated with Fixable

Viability Stain 780 (1:1000, #565388, BD) for 10 minutes at room

temperature in the dark, followed by incubation with APC-CD133

(1:50, #566597, BD) for 30 minutes at 4°C in the dark. Samples were

analyzed using a CytoFLEX S (Beckman).
2.9 Xenograft model of OS

Animal experiments were performed in accordance with the

Guidelines for the Care and Use of Laboratory Animals of Gifu

Pharmaceutical University. Four-week-old female BALB/c nu/nu

mice were obtained from Japan SLC (Hamamatsu, Japan). Mice

were injected subcutaneously with 5 × 106 143B cells. Tumor length
frontiersin.org
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and width were measured with calipers. Tumor volume was

calculated as (length × width2)/2. Mice were euthanized before

the tumor length exceeded 20 mm.
2.10 Statistical analysis

Unless otherwise specified, data are expressed as mean ± SE.

Statistical significance was assessed using Student’s t-test. A P < 0.05

was considered statistically significant.
3 Results

3.1 B3GAT3 is upregulated in the OSC
population of OS patient specimens

First, we analyzed a scRNA-seq dataset of clinical OS specimens

deposited in the GEO database (GSE152048), to profile the

properties of OSCs (Figure 1A). Eight clusters were identified

through t-SNE analysis based on the genetic profiles of the cells

(Figure 1B). Canonical markers were used to annotate the different

cell types: osteoblasts (RUNX2+,COL1A1+,CDH11+,IBSP+),

proliferating cells (TOP2A+,MKI67+), MSCs (SFRP2+,MME+,

THY1+,CXCL12+), osteoclasts (ACP5+,CTSK+), myeloid cells

(CD14+,CD74+,FCGR3A+), endothelial cells (PECAM1+,VWF+),

tumor infiltrating lymphocytes (TILs; CD3D+,NKG7+), and

pericytes (RGS5+,ACTA2+) (Figure 1C). Malignant cells were

distinguished from non-malignant cells using CNV inference

(data not shown). The OS cell population was further divided

into two groups, OSCs and non-OSCs, based on the co-

expression of three stem cell markers, ABCG1, KLF4, and MYC

(Figure 1Aa). The enrichment of the gene set involved in “stemness”

in OSCs was confirmed by GSEA (Figure 1D). Consistent results

were obtained when another cell population with co-expression of

stem cell markers (ABCG1, KLF4, and KIT) was defined as OSCs

(Figures 1Ab, E), allowing us to define these cells as the OSC

population. Under these experimental conditions, we identified

DEGs related to the biosynthesis of PGs/GAGs between OSCs

and non-OSCs. Sixty-three DEGs related to the biosynthesis of

PGs/GAGs were screened, with four and six significantly

upregulated genes in OSCs defined by co-expression of ABCG1/

KLF4/MYC, and ABCG1/KLF4/KIT, respectively (Figures 1F, G).

Among the significantly upregulated genes, B3GAT3, one of the

genes responsible for the biosynthesis of the common core

tetrasaccharide linker region of PGs (47), was the most highly

expressed gene in both ABCG1/KLF4/MYC and ABCG1/KLF4/KIT

OSC populations (Figures 1F, G).

To confirm the results obtained from GSE152048, we analyzed a

different scRNA-seq dataset (GSE162454) (Supplementary

Figures 1A, B). The OS cell population was divided into two

groups, OSCs and non-OSCs, based on the co-expression of three

stem cell markers, SOX2, NES, and MYC (Figure 1H). The

enrichment of the gene set involved in “stemness” in OSCs was

confirmed by GSEA (Figure 1I). Among the 63 genes related to the

biosynthesis of PGs/GAGs, B3GAT3 was significantly upregulated
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in OSCs defined by co-expression of SOX2/NES/MYC (Figure 1J,

Supplementary Figure 1C), with consistent results from two

independent cohorts of clinical specimens.
3.2 B3GAT3 is associated with poor
prognosis in patients with OS with high
stem cell properties

Next, we determined the expression levels of genes related to the

biosynthesis of the common core tetrasaccharide linker region of

PGs in clinical OS tissues. The expression levels of B3GAT3, XYLT1,

XYLT2, B4GALT7, and B3GALT6 were significantly upregulated in

OS tissues compared to those in non-tumor tissues, according to the

analysis of the bulk RNA-seq dataset (PRJNA539828) (Figure 2A).

GSEA revealed significant enrichment of gene sets related to the

“PG metabolic process”, “PG biosynthetic process”, and “GAG

biosynthesis (HS)” (Figure 2B), which contain the above five PG

biosynthesis genes. Contrary to the significant upregulation of

B3GAT3 in OSC populations (Figures 1F, G, J), the expression

levels of XYLT1, XYLT2, B4GALT7, and B3GALT6 did not differ

significantly between OSCs and non-OSCs, even when OSC

po p u l a t i o n s w e r e d efin e d u n d e r t h r e e d i f f e r e n t

conditions (Figure 2C).

Next, we assessed whether the expression levels of B3GAT3,

XYLT1, XYLT2, B4GALT7, and B3GALT6 affected the survival of

patients with OS using the TARGET-OS database. Kaplan–Meier

analysis revealed that patients with OS with higher B3GAT3

expression had significantly shorter survival than those with

lower B3GAT3 expression (Figure 2D). In contrast, the expression

levels of XYLT1, XYLT2, B4GALT7, and B3GALT6 were not

significantly correlated with the prognosis of patients with OS

(Figure 2D). Given that only B3GAT3 expression was correlated

with poor prognosis in patients with OS, we next assessed whether

B3GAT3 expression was associated with poor prognosis in patients

with OS harboring higher stem cell properties. Kaplan–Meier

analysis demonstrated that high B3GAT3 expression was

significantly associated with poor prognosis in patients with high

expression of stemness markers, such as PROM1, POU5F1, KLF4,

BMI1, NGFR, ABCG1, and ABCG2 (Figure 2E).
3.3 Targeting B3GAT3 impairs the self-
renewal potential of 143B OS cells in vitro

To validate the results of the bioinformatics analysis, 143B cells

were cultured under floating or adherent conditions, followed by

determination of B3GAT3 expression (Figure 3A). First, we confirmed

the stemness and tumorigenicity of 143B cells in vitro and in vivo as

previously demonstrated (48, 49). Under floating condition, 143B cells

formed tumorspheres and exhibited self-renewal potential in the

sphere formation and limited dilution assays, respectively

(Supplementary Figures 2A, B), along with higher expression levels

of the stem cell markers, KLF4, ABCG1, SOX2, and BMI1 (Figure 3B).

The proportion of CD133+ cells were markedly increased in 143B

tumorspheres (Supplementary Figure 2C). 143B tumorspheres
frontiersin.org
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differentiated into 143B cells under adherent conditions

(Supplementary Figure 2D). The tumorigenicity of 143B cells was

confirmed in an orthotopic xenograft mouse model (Supplementary

Figure 2E). Under these conditions, B3GAT3 expression was

significantly upregulated in 143B tumorspheres compared to

differentiated 143B cells (Figure 3C).

Next, we elucidated the functional significance of GlcAT-I/

B3GAT3 in 143B cells in vitro by targeting B3GAT3 expression

using lentiviral shRNA. B3GAT3 mRNA levels were markedly
Frontiers in Oncology 06
reduced by shB3GAT3 in 143B cells (Figure 3D). Disruption of

B3GAT3 with shRNA significantly decreased tumorsphere

formation ability of 143B cells (Figure 3E). Furthermore, B3GAT3

knockdown resulted in a significant downregulation of the stem cell

markers, KLF4, ABCG1, SOX2, and BMI1 in 143B tumorspheres

(Figure 3F). Next, we determined whether the pharmacological

inhibition of PG biosynthesis by 4-nitrophenyl b-D-xylopyranoside
(b-D-xyloside), an inhibitor of GAG chain attachment to the core

protein (50), could confirm the genetic inhibition of B3GAT3 in
A B

C

D

E

FIGURE 2

B3GAT3 is associated with poor prognosis in OS patients with high stemness. (A) The expression levels of B3GAT3, XYLT1, XYLT2, B4GALT7, and
B3GALT6 in OS (n = 16) and non-tumor (n = 4) tissues using bulk RNA-seq dataset (PRJNA539828) (**P < 0.01, ***P < 0.001). (B) The enrichment
plots for gene sets related to “PG metabolic process”, “PG biosynthetic process”, and “GAG biosynthesis” in OS (n = 16) and non-tumor (n = 4)
tissues. (C) The expression levels of XYLT1, XYLT2, B4GALT7, and B3GALT6 in OSCs and non-OSCs using scRNA-seq datasets (GSE152048 and
GSE162454). (D) Kaplan–Meier curves comparing patients with OS with high (n = 43) and low (n = 43) expression levels of B3GAT3, XYLT1, XYLT2,
B4GALT7, and B3GALT6 respectively. (E) Kaplan–Meier curves comparing high (n = 22) and low (n = 21) B3GAT3 expression levels in patients with
OS with high stemness. n.s., not significant.
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143B cells. b-D-xyloside significantly decreased the tumorsphere

formation ability of 143B cells at concentrations > 2 mM in a

concentration-dependent manner (Figure 3G). Although further

studies should be performed to demonstrate the pivotal role of

B3GAT3 on OSC properties by purifying stem cells from 143B

tumorspheres because of their heterogeneous population including

a subset exhibiting OSCmarkers, these genetic and pharmacological

analyses indicate that B3GAT3 and PG/GAG biosynthesis could be

implicated in the regulation of stem cell properties of 143B in vitro.
4 Discussion

PGs/GAGs are widely recognized as important regulators of

stem cell function in embryonic development and tissue

regeneration (51, 52). Moreover, the aberrant functions of PGs/

GAGs have recently been shown to contribute to CSC phenotypes,

tumor initiation, recurrence, metastasis, and chemoresistance (35).

The assembly of HS, CS, and DS is initiated by the formation of a
Frontiers in Oncology 07
common tetrasaccharide structure (Xyl-Gal-Gal-GlcA), catalyzed by

XylT-I, XylT-II, GalT-I, GalT-II, and GlcAT-I, encoded by XYLT1,

XYLT2, B4GALT7, B3GALT6, and B3GAT3, respectively (26–28).

Mutations in these genes can cause inherited diseases that result in

various bone, skin, and connective tissue abnormalities (53, 54). For

instance, mutations in B3GAT3 have been implicated in multiple

joint dislocations, short stature, and craniofacial dysmorphism, with

or without congenital heart defects (47). However, the importance of

PG/GAG biosynthesis and the functional roles of the corresponding

genes (XYLT1, XYLT2, B4GALT7, B3GALT6, and B3GAT3) in OSC

properties and OS pathogenesis are largely unknown. Although

further in vivo analyses should be performed to validate our

findings, to our knowledge, this is the first study to reveal, using

integrated bioinformatics analysis and in vitro genetic and

pharmacological studies, that the PG/GAG biosynthesis pathway

and corresponding enzyme, GlcAT-I/B3GAT3, may be associated

with the maintenance of OSC characteristics and OS malignancy.

Notably, the expression analysis of DEGs related to the

biosynthesis of PGs/GAGs revealed the potential involvement of
A B

C D E

F G

FIGURE 3

Inhibition of B3GAT3 suppresses the self-renewal ability of 143B OS cells in vitro. (A) 143B cells were cultured under sphere or adherent conditions.
(B) The mRNA expression levels of KLF4, ABCG1, SOX2, and BMI1 were determined in sphere and adherent cells using RT-qPCR (n= 4. *P < 0.05,
***P < 0.001). (C) The mRNA expression level of B3GAT3 was determined in sphere and adherent cells using RT-qPCR (n= 4. *P < 0.05). (D) B3GAT3
knockdown was verified via RT-qPCR (n= 5. **P < 0.01). (E) The sphere formation ability of 143B cells was assessed following B3GAT3 knockdown.
Representative images are presented (left, scale bar = 30 mm). The number of spheres was counted (right, n= 8. **P < 0.01). (F) The mRNA
expression levels of KLF4, ABCG1, SOX2, and BMI1 were determined in B3GAT3 knockdown 143B cells (n= 4. *P < 0.05, **P < 0.01). (G) 143B cells
were treated with b-D-xyloside (0, 1, 2, 4, 6 mM), and sphere formation ability was assessed. Representative images are presented (left, scale bar =
30 mm). The number of spheres was counted (right, n= 5. **P < 0.01, ***P < 0.001 using Student’s t-test with Holm-Sidak correction for multiple
comparisons). The mRNA expression level (normalized to GAPDH) is presented relative to that in (B, C) adherent cells and (D, F) cells treated with
shCtrl. n.s., not significant.
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alternative candidate genes in OSC properties. Carbohydrate

sulfotransferase 13 (CHST13), which catalyzes the transfer of

sulfate to position 4 of the GalNAc residue of chondroitin (55),

was the commonly significantly upregulated gene in all three OSC

populations defined by the co-expression of ABCG1/KLF4/MYC,

and ABCG1/KLF4/KIT, and SOX2/NES/MYC (Figures 1F, G, J,

Supplementary Figure 1C). In addition to B3GAT3 and CHST13,

there were several significantly upregulated genes in each OSC

population without overlap, indicating that these additional genes

require further exploration. OS is highly heterogeneous in terms of

molecular pathogenesis, which is at least in part due to the genetic

and phenotypic variation in OSCs, suggesting that optimal

biomarkers vary slightly between patients and cancer types (56,

57). For that reason, different OSC markers were used for each of

the datasets: GSE152048 and GSE162454. It is also noteworthy that

there were discrepancies in the expression of PG biosynthesis genes

between OSC populations and OS tissues. Only B3GAT3 was

significantly upregulated in OSC populations (Figures 1F, G, J,

2C). However, all five PG biosynthesis genes (XYLT1, XYLT2,

B4GALT7 , B3GALT6 , and B3GAT3) were significantly

upregulated in OS tissues (Figure 2A), in which the proportion of

OSC is small. Therefore, it can be speculated that XylT-I/XYLT1,

XylT-II/XYLT2, GalT-I/B4GALT7, and GalT-II/B3GALT6 may

have functional roles in differentiated OS cell properties rather

than in OSC properties, providing an incentive to pursue further

research to determine their roles in OS pathogenesis in cell

culture studies.

The primary therapeutic approach for OS is a combination of

surgical intervention and chemotherapy. Effective treatments for OS

have not improved over the past four decades (3, 4). Although

accumulating evidence suggests that mutations in the tumor

suppressor genes, RB1 and TP53, are associated with the

development of OS, cytogenetic analysis suggests that genomic

profiles differ significantly among patients with OS, without

specific patterns, resulting in difficulties in the development of

new and effective drugs and innovative treatment strategies (58–

62). Our findings contribute to the improvement of our

understanding of the molecular mechanisms underlying OS

development and progression, as well as OSC properties, and

suggest that PG/GAG biosynthesis and the corresponding genes

expressed by OSCs may represent novel and effective targets for

drug development to treat OS in humans.
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