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In the field of medicine, decision support systems play a crucial role by

harnessing cutting-edge technology and data analysis to assist doctors in

disease diagnosis and treatment. Leukemia is a malignancy that emerges

from the uncontrolled growth of immature white blood cells within the

human body. An accurate and prompt diagnosis of leukemia is desired due to

its swift progression to distant parts of the body. Acute lymphoblastic leukemia

(ALL) is an aggressive type of leukemia that affects both children and adults.

Computer vision-based identification of leukemia is challenging due to

structural irregularities and morphological similarities of blood entities. Deep

neural networks have shown promise in extracting valuable information from

image datasets, but they have high computational costs due to their extensive

feature sets. This work presents an efficient pipeline for binary and subtype

classification of acute lymphoblastic leukemia. The proposed method first

unveils a novel neighborhood pixel transformation method using differential

evolution to improve the clarity and discriminability of blood cell images for

better analysis. Next, a hybrid feature extraction approach is presented

leveraging transfer learning from selected deep neural network models,

InceptionV3 and DenseNet201, to extract comprehensive feature sets. To

optimize feature selection, a customized binary Grey Wolf Algorithm is

utilized, achieving an impressive 80% reduction in feature size while

preserving key discriminative information. These optimized features

subsequently empower multiple classifiers, potentially capturing diverse

perspectives and amplifying classification accuracy. The proposed pipeline is

validated on publicly available standard datasets of ALL images. For binary

classification, the best average accuracy of 98.1% is achieved with 98.1%

sensitivity and 98% precision. For ALL subtype classifications, the best

accuracy of 98.14% was attained with 78.5% sensitivity and 98% precision.

The proposed feature selection method shows a better convergence behavior

as compared to classical population-based meta-heuristics. The suggested
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solution also demonstrates comparable or better performance in comparison

to several existing techniques.
KEYWORDS

bio-inspired, CNN, transfer learning, leukemia classification, deep learning,
metaheuristics optimization
1 Introduction

Blood is a vital fluid for the human body. It performs a number

of crucial physiological functions, including the distribution of

oxygen and nutrients from organs to cells, delivery of waste

products from cells to organs for elimination, the maintenance of

the human immune system, clotting and wound healing process,

and the regulation of body temperature and fluid balance. The

body’s main source of blood production is the bone marrow, a

spongy tissue-like structure located within the bone cavities. A

complex process known as hematopoiesis involves the maturation

of stem cells into other blood cell types.

Figure 1 demonstrates the categorization of stem cells during

hematopoiesis of a normal human being. The hematopoietic stem

cells develop into either of two types of cells, i.e., a) lymphoid stem

cells and b) myeloid stem cells. The lymphoid stem cells are then

converted into the lymphoid blast, which then matures into B and T
02
subtypes of lymphocytes. In contrast, the myeloid type of stem cells

matures to synthesize erythrocytes, platelets, and various types of

granulocytes (i .e . , basophils , eosinophils , neutrophils ,

and monocytes).

The body produces the blood cells in a controlled manner as per

its requirements. Each cell type has a specific function in preserving

a person’s general state of health. An abnormality in the production

and structure of blood cells leads to certain medical conditions. For

example, white blood cells (WBCs), also referred to as leukocytes,

constitute an integral part of the general immune and inflammatory

response system (1, 2). Leukemia is a blood malignancy that is

caused by the unregulated production of immature leukocytes in

the bone marrow. Figure 2 shows a broad classification of leukemia,

which is primarily of two types, i.e., acute and chronic, depending

upon its progress rate. Chronic leukemia is slow-growing and takes

months or years to manifest its symptoms, whereas acute leukemia

develops rather swiftly. Each type of leukemia is further categorized
FIGURE 1

Human hematopoiesis.
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on the basis of affected leukocytes. In the chronic leukemia category,

chronic myeloid leukemia (CML) affects the myeloid type of cells,

whereas chronic lymphocytic leukemia affects the lymphoid cells.

Similarly, the acute leukemia category is further classified as acute

lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML)

categories. ALL is further categorized into T-cell or B-cell subtypes.

B-cell ALL is the most prevalent type of leukemia, impacting the B-

cell lymphocytes; it is further divided into pre-curser, pro, mature,

and common B-cell ALL subtypes.

The existing medical approach for leukemia diagnosis involves a

series of tests, ranging from simple blood count tests to more invasive

tests such as needle biopsy or bonemarrow aspiration. A blood test that

shows a high value of white blood cell count suggests leukemia

diagnosis. An important diagnostic tool in the evaluation of leukemia

is the peripheral blood smear test. It involves the smearing of blood on

the slide and its visual inspection under the microscope. A blood smear

of a leukemia patient shows a significant number of purple-stained

lymphoblasts in the bloodstream, with poorly defined boundaries.

Traditionally, hematologists perform this ocular inspection of blood

smears. This manual method not only consumes much time and effort

of medical experts but can also be error-prone due to several external

factors. Blood analysis is usually the first step of leukemia diagnosis and

is carried out in conjunction with more detailed analysis methods such

as RNA sequencing and molecular genetics. Computer-aided

automation of blood analysis can be a significant step in reducing

the time and cost of leukemia diagnosis.

Thanks to the landmark advancement in the domain of digital

electronics and imaging technologies, automated blood analysis has

been made possible. In particular, computer vision-based blood

disease diagnosis has seen an increased research focus in recent

years. However, due to morphological similarities across various

blood entities as well as their structural anomalies, accurate

machine learning-based blood analysis, particularly leukemia

subtype detection, is still a challenge. A breakthrough in modern

computer vision approaches, i.e., deep convolutional neural networks

(CNNs), has shown a promising solution for a variety of classification

scenarios (3, 4). They are capable of extracting a diverse range of

features from the images. However, a large and well-labeled dataset is

typically required to achieve a certain acceptable accuracy level. In the

biomedical domain, a detailed dataset for CNN training from scratch

is not readily available. Transfer learning is an often adopted
Frontiers in Oncology 03
approach in which deep CNN, pre-trained on another dataset, is

retrained for a specific task (5, 6). Some well-known pre-trained

CNNs include ResNet (7), MobileNet (8), DarkNet (9), Inception

(10), and Xception (11). Modern methods also propose ensembles of

feature vectors extracted from multiple CNNs (12). Apart from the

wide use of deep CNNs in the computer vision domain, one limiting

factor is the very high size of their extracted feature vectors. The

present focus of research is to investigate approaches to improve the

accuracy of classification systems while reducing their computational

complexity and memory requirements.
2 Literature review

Existing research on leukemia detection can be broadly

categorized into two types of approaches. In the first category, the

studies are included, which perform white blood cell classification as

an important preliminary step. The second category of work is

focused on considering the stained images containing leukemia

blasts and proposing an efficient method for leukemia subtype

classification. Some considerable studies from the first category are

summarized as follows. Sanei and Lee proposed a method that

computes eigenvectors of blood cell images using the minimization

of similarity approach (13). Using the density and color information

of eigencells, a Bayesian classifier was used to perform cell

classification. Kumar et al. (14) used various image pre-processing

techniques with a random forest classifier for blood cancer detection.

Su et al. (15) suggested a segmentation method based on detecting a

discriminating zone of WBCs on the hue, saturation, and intensity

(HSI) space. WBC classification was performed using geometrical,

color, and local directional pattern (LDP) features. Sharma et al. (16)

used DenseNet121 CNN for WBC classification. Almezhghwi and

Serte (17) proposed an image augmentation approach using

generative adversarial networks, and classification was performed

using DenseNet. Yildirim and Çinar (18) proposed Gaussian and

median filtering approaches for image pre-processing. Then, multiple

CNN architectures were trained for WBC classification.

Table 1 summarizes some recently published leukemia

classification methods using blood smear images containing cell

blasts. Bhattacharjee and Saini (19) applied different morphological

operations to perform image segmentation. This was followed by

classification using multiple baseline classifiers to diagnose the

presence of ALL. The proposed solution achieved the best

accuracy of 95.23% with the artificial neural network (ANN)

classifier. Goutam and Sailaja (20) applied K-means clustering for

segmentation, followed by the local directional path technique in

order to extract features, and, finally, classification using support

vector machines (SVMs). The F-measure achieved by this approach

was 93.44. Patel and Mishra (21) applied histogram equalization

along with the zack algorithm group wbcS in the smear images.

Next, various morphological features including area, color, mean,

and standard deviation were extracted and classified using SVM.

The overall accuracy achieved by the system was 93.57%. Rawat

et al. (22) proposed a method in which leukocytes and lymphocytes

were sequentially separated from other blood cells. The shape and

grey-level occurrence matrices were classified using a binary SVM
FIGURE 2

Classification of leukemia disease.
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classifier. Mishra et al. (23) performed nucleus feature extraction

from RGB images using discrete cosine transform (DCT), followed

by SVM classification. Di Ruberto et al. (24) utilized a multiscale

blob detection scheme followed by the watershed algorithm for

segmentation and, finally, classification using CNN and SVM

classifiers. The proposed solution achieves a binary classification

accuracy of 94.18%. Anwar and Alam (26) proposed a three-phase

filtering algorithm to perform image segmentation. Next, 16 robust

features were extracted, and classification was performed using

ANN and SVM classifiers, yielding a specificity of 95.41%. Bodzas

et al. (25) utilized different data augmentation techniques and

performed training on their custom-proposed CNN architecture

to obtain an overall accuracy of 99.5% for the binary classification of

leukemic cells. Batool and Byun (27) proposed a lightweight deep

learning-based EfficientNet-B3 model, which employs depth-wise

separable convolutions for ALL classification. The proposed

method achieves an accuracy of 96.81% for leukemia subtype

classification using public datasets. Elhassan et al. (28) proposed

an approach of AML detection from WBC images. First, a CMYK

moment-based region of interest (ROI) localization method was

used, followed by deep learning-based feature extraction and

classification using several baseline classifiers. The proposed

system achieves the best accuracy of 97.57%. In our previous
Frontiers in Oncology 04
work (29), we utilized a quantum-inspired deep feature selection

method for WBC classification for leukemia detection.

Modern transfer learning-based deep CNN techniques are

characterized by their ability to extract a high number of

characteristics from the input images. Due to the unreasonably huge

feature sets that must be stored and processed, this has enormous

computational costs and memory needs (30, 31). Most frequently, a

large portion of these extracted deep characteristics are redundant and

provide nothing to help with categorization. By selecting just potent,

discriminating characteristics, feature selection is essential to reduce the

complexity of feature vectors. This shortens the processing time while

simultaneously improving the accuracy of the classification system.

Several studies have investigated efficient feature selection methods,

which include two kinds of approaches, namely, the filter approach and

the wrapper approach. The filter approach quickly converges to the

critical features, but it ignores the relationship between the classification

algorithm and the feature subset. The wrapper approach, in contrast,

considers a tight relationship between a subset of selected features and

accuracy. While nature-inspired metaheuristics have been extensively

applied in a wide range of combinatorial optimization problems (32–

34), they have been recently investigated for feature selection

optimization (35–38).
3 Contributions

This work proposes an improved pipeline for ALL subtype

identification. The following are the main contributions of this study.
1. First, an efficient neighborhood pixel-based contrast

enhancement technique was proposed based on a

differential evolution algorithm, whose parameters were

optimized using a greedy metaheuristic.

2. Next, two CNNs, namely, InceptionV3 and DenseNet201,

were used for feature extraction using deep transfer learning.

3. A combined feature vector was created by performing a

fusion of extracted feature vectors.

4. As a main contribution, the deep feature selection problem

was modeled as an optimization problem and solved using

a nature-inspired Grey Wolf Optimization (GWO)

algorithm. The suggested approach selects only the most

pertinent features, efficiently excluding correlated and

noisy information.

5. The classification performance of various baseline

classifiers was validated on the selected feature set to

obtain the best-performing classifiers.

6. The proposed system achieves better performance metrics

as compared to several existing feature selection methods,

with a significant reduction in feature vector size.
4 Materials and method

The key components of the suggested methodology are

elaborated upon in the subsequent sections.
TABLE 1 Summary of some published studies on leukemia identification.

Author Method Leukemia
type

Results

Bhattacharjee
and Saini (19)

Morphological
segmentation

ALL

Accuracy:
96.67%

Classification:
SVM

Accuracy:
90.47%

ANN Accuracy:
95.23%

K-means Accuracy:
85.71%

Goutam and
Sailaja (20)

K-means clustering
classification: SVM

AML F-
measure
93.44

Patel and
Mishra (21)

Zack algorithm
segmentation

classification: SVM

ALL Accuracy:
93.57

Rawat
et al. (22)

K-means clustering
classification: SVM

ALL Accuracy:
89.8%

Mishra
et al. (23)

DCT feature extraction ALL Accuracy:
81.66

Classification: SVM

Di Ruberto
et al. (24)

Watershed segmentation
classification: CNN, SVM

ALL Accuracy:
94.1.8%

Bodzas
et al. (25)

Classification: ANN, SVM ALL Specificity:
95.31%

Anwar and
Alam (26)

Automated feature
extraction

classification: CNN

ALL Accuracy:
99.5%
ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; SVM, support vector
machine; ANN, artificial neural network; DCT, discrete cosine transform; CNN,
convolutional neural network.
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4.1 Description of datasets

This study utilized different datasets of blood smear images. The

initial dataset utilized in this study was the ALL-IDB2 dataset

introduced by Scotti et al. (39). This dataset consisted of a total of

260 pictures, encompassing both healthy individuals and subjects

diagnosed with ALL. The dataset was generated by employing an

optical microscope that was attached to a Canon Power Shot G5

camera. The IDB2 dataset comprises images in which the region of

interest has been cropped to include the area of interest for both

normal and blast cells. All images were stored in the Tagged Image

File Format (TIFF) and had a resolution of 2,592 pixels in width and

1,944 pixels in height. Figure 3 displays a selection of sample images

from the ALL-IDB2 dataset.

This study used multiple datasets of blood smear images. First, the

ALL-IDB2 dataset was used, which was composed of 260 images of

healthy and ALL subjects. The dataset was prepared using an optical

microscope connected to a Canon Power Shot G5 camera. The IDB2

dataset contained images in which the area of interest of normal and

blast cells was cropped as the region of interest. All images were in TIFF

format with a resolution of 2,592 × 1,944 pixels. The figure

demonstrates some sample images of the ALL-IDB2 dataset.

Another dataset prepared by the bone marrow laboratory of

Taleqani Hospital, Iran (40) was also used. The dataset consisted of

3,242 peripheral blood smear images belonging to two classes, i.e.,

benign and malignant. The latter class was further divided into three

sub-classes of ALL, i.e., early, precursor B-cell ALL, and pro-B-cell

ALL. The images were captured using a Zeiss camera integrated with

a microscope setting with ×100 magnification. The resolution of

images was 224 × 224. Figure 4 shows some sample images of the

dataset of (40), whereas Table 2 shows the class distribution.
4.2 Proposed system pipeline

In Figure 5, a pipeline is presented for the proposed system. The

main steps of computation are discussed in the following.
Frontiers in Oncology 05
4.2.1 Contrast enhancement
In most of the existing works, image enhancement is mainly

accomplished using transforms, points, and spatial operations (41).

Among the transforms, various kinds of filtering operations are

included such as homomorphic or linear operations. Point

operations include contrast enhancement, thresholding, and

histogram adjustment. The main limitation of most of these

methods is that they perform a global operation on the input

image without considering region-specific contrast stretching.

Spatial transformation includes neighborhood-based methods

such as filtering or masking. These techniques sometimes produce

unnecessary noise enhancement of images or increase the

smoothness of image regions where sharpness is required (42).

In this work, we performed image contrast stretching using a

greedy differential evolution approach, which consisted of the

following steps.
1. Convert the input image from RGB image space to

HSI image.

2. Perform contrast stretching of the I-channel of the image

using the proposed greedy differential approach

3. Convert the HSI image to RGB image space.
The proposed contrast stretching method was based on

neighborhood pixel transformations instead of image-wise global

operators. Considering an input intensity image I with dimensions

M × N, we used the following function for pixel-wise update based

on local neighborhood (41). Mathematically, it is formulated by

Equation 1.

f (m, n) = m : d
b+sp(m,n)

� �
½I(m, n) − gmp(m, n)�

+mp(m, n)a   ∀ m ∈ M, n ∈ N ,
(1)

where I(m, n) is the current pixel value of the intensity image

with coordinates m and n, µ is the global mean of the image, µp(m,

n) is the local mean, and sp(m, n) is the local variance of a window

comprising of p × p neighborhood pixels around the central pixel I
FIGURE 3

Some samples of images from ALL-IDB2 dataset of Scotti et al. (39) used in this study.
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(i, j). Munteanu and Rosa (41) used the non-zero constants a, b,
and g. The non-zero value of b allows to have zero standard

deviation sp(i, j) of the pixel window. The final term of Equation

2 was added to achieve smoothness while preserving the brightness.

In this work, we performed automatic estimation of decision

variables a, b, g, and d using a meta-heuristic algorithm. The

following objective function was used in Equation 2:

F(I*) =
log(log(G(I*))� ne(I*)� H(I*)

M � N
, (2)
Frontiers in Oncology 06
where I∗ denotes an enhanced intensity image obtained using

(2) on the input intensity image, and ne(I
∗) and H(I∗), respectively,

denote the number of pixels on the boundary and value of entropy

of I∗. The value of function G(I∗) was obtained by applying a Sobel

kernel on the enhanced intensity image I∗.

4.2.2 Optimization of decision variables using
differential evolution

The estimation of variables a, b, g, and d was performed using

bounded exploration of search space. First, a population matrix P

consisting of Np row vectors was generated, where each vector was

composed of four variables, i.e., a, b, g, and d. Each entity of the

population matrix was generated randomly, as Equations 3–6 (43).

P(i, j) = lb + r1 � (ub − lb),

∀ i ∈ 1,…,Np

� �
, j ∈ 1,…, 4f g, (3)

where lb and ub are respectively the minimum and maximum

values of the decision variable as given in Table 3, and r1 denotes a

random number in [0, 1]. All vectors of population P then

participated in computing the value of intensity transformation

function f(i, j) of Equation 2 and objective function F(I∗) of
TABLE 2 Class distribution of image dataset of Ghaderzadeh et al. (40).

Class No. of images

Benign 512

Precursor B-cell ALL 955

Pro-B-cell 796

Early pre-B 979
ALL, acute lymphoblastic leukemia.
FIGURE 4

Some samples of images from acute lymphoblastic leukemia (ALL) subtype dataset (40) used in this study.
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Equation 2. The vector yielding the maximum value of the objective

function was selected as the population best, i.e., Pb.

In the next step, each population vector Pi i ∈{1, …, Np}

underwent mutation operation to generate its corresponding

mutation vector Mi such that (43)

Mi(t) = Pb(t) + A(Pr1 − Pr2)  + A(Pr3 − Pr4), (4)

where t denotes the value of the current iteration, Pb(t) denotes

the iteration’s best individual vector, and scaling factor A is a

random number in [0, 1]. The indices of population vectors (i.e.,

r1, r2, r3, and r4) were randomly chosen such that they are all

distinct from each other and the index i of the current

population vector.

The population vector Pi and its corresponding mutation vector

Mi then underwent binomial crossover operation to generate vector

Ci such that (43)

Ci(t) =
Pi(t) i ≠ x1     r > x2

Ci(t) i = x1 or r ≤ x2

( )
, (5)

where x1 is a randomly generated index within the interval [1,

Np] and x2 is a random number in [0, 1]. Next, all decision variables

each vector Ci(t) are bounded within limits lb and ub. In differential

evolution, a greedy selection of survival of the fittest was carried out

using the following criteria to update the population matrix (43).
Frontiers in Oncology 07
Pi(t + 1) =
Pi(t)  if F(Ci) < F(Pi)

Ci(t) otherwise

( )
, (6)

where F(Pi) and F(Ci) denote the cost of the objective function

(2) using the vectors Pi and Ci, respectively. This completes one

iteration of the algorithm, which was repeated for T iterations.

4.2.3 Feature extraction
The contrast-enhanced images of datasets were used in the

feature extraction step. For this purpose, we employed transfer

learning as a feature extraction using two well-known deep CNNs,

namely, InceptionV3 and ResNetV2.

InceptionV3 is a deep CNN that belongs to the Inception family

of CNNs. It is pre-trained on the ImageNet database (44) consisting

of 1,000 object classes. The network has 316 layers and 350

connections (45). The size of the first layer, i.e., the input layer, is

299 × 299 × 3. A convolution layer consists of different filters and

stride sizes. Each convolution layer also incorporates batch

normalization and ReLU layers for adding non-linearity. A

pooling layer is also added between the convolution layers to

obtain active neurons. The addition of Inception modules is a

distinguishing characteristic of this network. They are designed

for multiscale feature extraction. Each inception module is built

using multiple parallel convolution layers with different filter sizes

and a pooling layer. The outputs of these layers are concatenated

along the depth dimension.

To use InceptionV3 for feature extraction, its last learnable

layer, “predictions”, was replaced with a fully connected layer,

which had outputs matching the number of classes of our

datasets [i.e., two classes for ALL-IDB2 and four classes for the

dataset of (40)]. The softmax layer named “predictions softmax”

was replaced by the new softmax layer. A label-free classification

layer was added to the network, which replaced the

“ClassificationLayer predictions” layer. Prior to the network

training, the dataset image resizing was performed per the

requirement of the network’s input layer. Then, specific

augmentation steps were performed. The activations were applied
TABLE 3 Minimum and maximum values of decision variables used in
differential evolution.

Decision
variable

Minimum
value (lb)

Maximum
value (ub)

a 0 1.6

b 0 0.5

g 0 0.8

d 0.5 1.5
FIGURE 5

Proposed pipeline for binary and multiclass identification of acute lymphoblastic leukemia.
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on the “avg pool” layer, and a feature vector of length 2,048 was

obtained per image of the training and testing datasets.

DenseNet201 (46) has a depth of 201 layers and was initially

trained on the ImageNet (44) dataset. The DenseNet201 is based on

the idea of layer concatenation; i.e., each layer obtains data from all

of its previous layers and transfers its computed feature maps to all

its next layers. As a result, a thinner and more compact network is

realized, which is computationally efficient and achieves

considerable memory savings.

To use DenseNet201 as a feature extractor, its “fc1000” layer

was substituted with a fully connected one that contains an equal

number of classes from our datasets. Similarly, a new softmax and

classification layer without labels was inserted in the network in

place of their respective layers. After performing image resizing and

augmentation, feature activation was applied on the global average

pool layer, and a feature vector of size 1,920 was extracted per image

of the dataset.

4.2.4 Feature fusion
In this work, we performed a simple horizontal concatenation

of the individual feature vectors extracted from the abovementioned

deep CNNs and formed a fused feature vector of size 1 × (a + b),

where a = 2,048 and b = 1,920 are the number of features extracted

from InceptionV3 and DenseNet201 networks, respectively.

4.2.5 Meta-heuristic for feature selection
The combined feature vector obtained from the transfer

learning steps above has a considerably large size. Directly using

the extracted fused feature vector to train the baseline classifiers

requires a huge amount of processing power and memory. As a

main contribution, this work modeled the optimization problem of

feature selection with the objective of maximizing classification

accuracy with the minimum feature set. The optimization problem

was then solved with the help of a population-based meta-heuristic

named Grey Wolf Algorithm. This technique (47) mimics the

hunting behavior of grey wolves. A pack of grey wolf apex

predators consists of an average of five to 12 individuals. The grey

wolf population is composed of four distinct individuals categorized

as alpha, beta, delta, and omega, based on their dominant order. The

alpha wolf is the individual within a population that holds the

highest rank and assumes the role of decision-maker and dominant

figure. The subsequent position in the dominance hierarchy is

occupied by the beta wolf. It is subordinate to the alpha and helps

in the decision-making. The delta wolf ranks third in the hierarchy

and only dominates the least significant omega group.

In the mathematical framework of GWO, the most optimal

solution is referred to as the alpha wolf (a). Subsequently, the
second and third most optimal solutions are denoted as the beta (b)
and delta (d) wolves, respectively. The main steps of grey wolf

hunting are as follows:
Fron
• Search the prey (exploration).

• Encircle the prey.

• Attack the prey (exploitation).
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The prey encircle behavior of a pack of wolves is mathematically

modeled as defined in Equations 7–18.

D = C :Xp − V(t)
�� ��, (7)

V(t + 1) = Vp(t) − A :D, (8)

where Vp denotes the prey vector position at iteration t, V (t) is

the current position of the grey wolf, A and C are the vectors of

coefficients:

A = 2:a : x1 − a, (9)

C = 2:x2 (10)

where x1 and x2 are vectors containing random vectors in [0, 1],

and a is the encircling coefficient that mimics the encircling

behavior by decreasing linearly from 2 to 0, which is linearly

decreased from 2 to 0 with iterations as (47)

a = 2 − 2(
t

tmax
) (11)

where tmax is the maximum number of algorithm iterations.

During an iteration t, each wolf updates its position using the a, b,
and d wolves such that (47)

V(t + 1) =
V1 + V2 + V3

3
(12)

V1 = Va − A1 :Daj j (13)

V2 = Vb − A1 :Db
�� �� (14)

V3 = Vd − A1 :Ddj j (15)

where Va, Vb, and Vd denote the position vectors of a, b, and d
wolves, respectively, at iteration t; A1, A2, and A3 are computed

using Equation 9. The vectors D, Db, and Dd are computed as

Da =   C1Va − Vj j (16)

Db =   C1Vb − V
�� �� (17)

Dd =   C1Vd − Vj j (18)

The coefficients C1, C2, and C3 are computed using Equation 10.

The original GWO algorithm of Mirjalili et al. (47) is generally

applicable to continuous optimization problems with variables X

∈ R.

4.2.5.1 Binary Grey Wolf Algorithm

This work used a binary GWO algorithm of Emary et al. (48), in

which the position update of the wolf is determined using the

crossover operation of individual genes, and mathematically

formulated by Equations 19–23.

V(t + 1) = (V1 ⊗V2 ⊗V3) (19)
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where V1, V2, and V3 are binary vectors for dimension dmax and

computed as

Vd
i =

1, if (Dd
j + Vd

j ) ≥ 1

0,         otherwise 

( )
     ,∀ d ∈ D (20)

For i = 1, 2, 3, Vd
j is equal to Va ,Vb , and Vd , whereas Dd

j is equal

to Dd
a ,Dd

b , and Dd
d respectively. Dj

d is computed as (48):

Dd
j =

1, if Sdj ≥ r4

0, otherwise 

( )
(21)

where r4 is the vector of random numbers in [0, 1]. The

continuous step size Sdj is computed as (48)

Sdj =
1

exp( − 10(Ad
1 :D

d
j − 0:5)) + 1

(22)

Dd
j is equal to Da ,Db , and Dd , respectively, for i = 1,   2, and 3.

Ad
1 is computed using Equation 9, whereas Dd

j is computed using

Equations 16 – 18. The new position of the wolf is updated using the

following crossover operation (48).

Vd(t + 1) =

Vd
1 , if r6 <

1
3

Vd
2 , if 

1
3 ≤ r6 <

2
3

Vd
3 ,         otherwise

8>><
>>:

9>>=
>>; (23)

where r6 is a random variable that follows a uniform

distribution in the interval [0, 1].

4.2.5.2 Wrapper feature selection using binary GWO

This study presents the application of the binary GWO method

for the purpose of deep feature selection within the leukemia

classification pipeline. The computational steps of the suggested

feature selection strategy are presented in Algorithm 1.

The main inputs to the binary GWO algorithm include the

fused feature matrix F, the vector L, which contains the labels of the

training image set; the maximum count of iterations tmax the size of

grey wolf population np; and dimension size dmax, which represents

the total number of variables (features) of each wolf (solution) of

population. The size of matrix F is nt × dmax, where nt and dmax

respectively denote the number of training images and the

dimension of fused feature vector per image.

Phase 1 initializes the main parameters including iteration

counter t, and alpha, beta, and delta grey wolves Xa, Xb, and Xd

along with their fitness values fa, fb, and fd, respectively. In Phase 2,

an initial population is generated and stored in matrix X of size np ×

dmax. The randn(1, np, 1: dmax) function generates a matrix of

dimensions np ×dmax of binary values of uniform distribution in [0,

1]. The execution phase of the GWO algorithm proceeds in Steps 6–

75. The while loop is executed for tmax iterations. In an iteration,

first, a prey is extracted from the population matrix (Step 8), and its

fitness is evaluated (Step 9). The Fitness function receives three

inputs, namely, the fused feature set F, the vector L of labels, and

one member of the population, i.e., a binary vector X. In the Fitness

function routine, Steps 85–86 obtain the features from F, which are

indexed by non-zero values of X. The updated feature matrix F2 is
Frontiers in Oncology 09
then divided into testing and training parts. In Steps 87–93 of the

Fitness function, the classification error of the K-nearest neighbor

(KNN) classifier is used as a fitness value (cost). This value is then

used to update the alpha, beta, and delta Xa, Xb, and Xd grey wolf

vectors, respectively, in Steps 10–23 of the main function. Steps 26–

74 of the main routine perform the position update of each grey

wolf of the population according to Equations 19, 20 of the binary

GWO algorithm. After the execution of the while loop for tmax

iterations, the global best solution, i.e., alpha wolf Xa, contains the

indices of features to be selected from the fused feature vector.
1: External Inputs: F, L,dmax,tmax,np

2: Phase 1: Initialization of Main Parameters t ← 1,

Va(1,1: dmax) ← 0, fa ← ∞

Vb(1,1: dmax) ← 0, fb ← ∞

Vd(1,1: dmax) ← 0, fd ← ∞

3: Phase 2: Generate Initial Population of Grey Wolves

4: (1: np,1: dmax) ← randn(1: np,1: dmax)

5: Execution

6: while i< tmax do

7: for j = 1: np do

8: V ← (j,1: dmax)

9: f ←Fitness (F, L, V)

10: if f< fa then

11: Vb←Va

12: fb ←fa

13: Va ←V

14: fa ← f

15: else if f< fb then

16: Vd ← Vb

17: fd ← fb

18: Vb←V

19: fb ← f
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20: else

21: Vd ← V

22: fd ← f

23: end if

24: end for

25: Population Update

26: for j = 1: np do

27: for d = 1: dmax do

28: a← 2 − 2 i
tmax

29: a1←2.a.rand(1, 1)-a

30: a2←2.a.rand(1, 1)-a

31: a3←2.a.rand(1, 1)-a

32: c1←2.rand(1, 1)-a

33: c2←2.rand(1, 1)-a

34: c3←2.rand(1, 1)-a

35: Da (1,d)← c1 :Va (1,d) − V(j,d)j j

36: Db (1,d)← c1 :Va (1,d) − V(j,d)j j

37: Dd (1,d)← c1 :Va (1,d) − V(j,d)j j

38: S1(1,d)← 1
1+exp(−10(a1 :Da (1,d)−0:5))

39: S2(1,d)← 1
1+exp(−10(a2 :Db (1,d)−0:5))

40: S3(1,d)← 1
1+exp(−10(a3 :Dd (1,d)−0:5))

41: if S1(1,d) ≥ randn(1,1) then

42: D1(1,d) ← 1

43: else

D1(1,d) ← 0

44: end if

45: if S2(1,d) ≥ randn(1,1) then

46: D2(1,d) ← 1
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47: else

D2(1,d) ← 0

48: end if

49: if S3(1,d) ≥ randn(1,1) then

50: D3(1,d) ← 1

51: else

D3(1,d) ← 0

52: end if

53: if (Va(1,d) + D1(1,d)) ≥ 1 then

54: Z1(1,d) ← 1

55: else

Z1(1,d) ← 0

56: end if

57: if (Vb(1,d) + D2(1,d)) ≥ 1 then

58: Z2(1,d) ← 1

59: else

Z2(1,d) ← 0

60: end if

61: if (Vd(1,d) + D3(1,d)) ≥ 1 then

62: Z3(1,d) ← 1

63: else

Z3(1,d) ← 0

64: end if

65: r ← rand(1,1)

66: if r < 1
3 then

67: V(j,d)←Z1(1,d)

68: else if r ≥ 1
3 andr < 2

3 then

69: V(j,d)←Z2(1,d)
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70: else

71: V(j,d)←Z3(1,d)

72: end if

73: end for

74: end for

75: end while

76: Select Features

77: I ← 1: dmax

78: SF ← I((Va == 1))

OUTPUT: SF

79: Function: Fitness

80: Inputs: V,L,F

81: Parameters: k = 5,ho = 0.2,a1 = 0.99,a2 = 0.01

82: if (sum(V == 1) == 0) then

83: G = 1

84: else

85: F2 ←F( :, (V == 1))

86: Atrain ,Ltrain ,Atest ,Ltest ←partition(F2,L,ho)

87: Model←trainKNN(Atrain ,Ltrain ,k)

88: Lpred ←predict(Model,Atest)

89: a←sum(Lpred == Ltest)=length(Ltest)

90: e← 1 − a

91: qs ←sum(a == 1)

92: qt ←length(V)

93: G ←a1 � e + a2 � ( qs
qt
)

94: end if

95: Return: G
ALGORITHM 1. Feature selection based on binary GWO algorithm.
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4.2.6 Classification
The set of selected features from the binary GWO algorithm

was then used along with the label L for training and classification of

outer classifiers. Multiple classifiers were used in this work, and the

best-performing classifiers were selected.
5 Results and discussion

The proposed decision support system for leukemia

identification was implemented on an Intel Core i5 CPU with

and 64-bit Windows 10 operating system and 16GB RAM.
5.1 Experiment 1: binary classification

First, the proposed pipeline was implemented for binary

detection of leukemia using the ALL-IDB2 dataset. The

classification performance of CNN was influenced by the quality

and size of the training dataset. A small dataset leads to overfitting

and poor generalization of the model. Hence, augmentation of

contrast stretched ALL-IDB2 dataset was performed using the

operations of random rotation, flipping, intensity modification,

and brightness correction. Table 4 shows the class distribution of

ALL-IDB2 as a result of augmentation. In the next step, the

augmented dataset was divided into training and test parts with a

70:30 split ratio, as shown in Table 5. Then, the training dataset was

used for transfer learning of InceptionV3 and DenseNet201 models

with parameters listed in Table 6.

InceptionV3 and DenseNet201 return deep feature vectors of

sizes 2,048 and 1,920, respectively, which are horizontally

concatenated to obtain a fused feature vector of size 3,968. This

vector is then subjected to the proposed feature selection step using

the GWO algorithm. After a fixed number of iterations, the GWO

algorithm returns its best solution, i.e., a reduced vector of the most
TABLE 4 Class distribution of ALL-IDB2 dataset before and
after augmentation.

Class
Frequency

Before After

Healthy 130 593

ALL 130 601
ALL, acute lymphoblastic leukemia.
TABLE 5 Training and testing ALL-IDB2 dataset for binary classification
of leukemia.

Class Training Images Testing Images Total

Healthy 415 178 593

ALL 420 181 601

Total 835 359 1,194
fronti
ALL, acute lymphoblastic leukemia.
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important selected features, which are then used to train several

baseline classifiers with multiple settings of their kernel. Table 7

shows the performance results of the proposed binary classification

pipeline. The KNN classifier with cosine kernel achieves the best

performance metrics with a reduced feature vector of 797 features,

which is approximately 80% smaller than the original fused feature

vector of size 3,986. The confusion matrix of the KNN cosine

classifier is demonstrated in Table 8.

In Figure 6, the error rate of the GWO algorithm is plotted

along with the standard genetic algorithm (GA), as a function of

iterations with a constant value of population size np = 20. A better

convergence behavior is demonstrated by the GWO algorithm as

compared to GA, which reveals that GWO performs better

exploration of feature search space.
5.2 Experiment 2: leukemia
subtype classification

In the second step, the proposed pipeline was implemented for

multiclass problems, i.e., leukemia subtype identification using the
Frontiers in Oncology 12
dataset of Ghaderzadeh et al. (40). As discussed earlier, the dataset

consists of four classes, i.e., benign, precursor, pro-B-cell, and early

pre-B. Following the contrast stretching phase (Section 4.2.1) on the

dataset, the augmentation was carried out using the same

methodology as binary classification. The class distribution of the

augmented dataset is shown in Table 9. Next, with a splitting ratio

of 70:30, the training and testing parts of the dataset were extracted

as shown in Table 10.

In Table 11, the leukemia subtype classification results are

presented. Several classifiers with various kernels were tested. The

performance metrics, i.e., accuracy, precision, recall, sensitivity,

specificity, and F1 score, were computed through macro averaging

of the individual class metrics. In this case, the SVM classifier with

Gaussian kernel achieved the best average accuracy of 98.05%,

whereas the maximum average accuracy values achieved by KNN,

decision tree, and neural network (NN) classifiers were 97.9%, 82.4%,

and 95.8%, respectively. The testing confusion matrix with the SVM

Gaussian classifier is demonstrated in Table 12, whereas the class-

wise statistics are mentioned in Table 13. The maximum accuracy of

98.66% was achieved by the pro-B-cell class, whereas all other classes

achieved an accuracy of above 90%.
TABLE 6 Parameter settings for training of InceptionV3 and DenseNet201 models.

Parameter Value Parameter Value

Kernel type sdgm Max epochs 10

Initial learning rate 1× 10−4 Environment Auto

Validation frequency 30 Stride size 1

Mini-batch size 20 Dropout rate 0.1
TABLE 7 Results of binary classification of leukemia on ALL-IDB2 dataset.

Classifier Selected feature vector size Accuracy % Sensitivity F1 score Precision Recall

KNN cosine
KNN coarse
KNN cubic
KNN fine

797

98.1
97.8
97.9
97.5

0.981
0.971
0.981
0.964

0.987
0.981
0.976
0.965

0.98
0.972
0.972
0.989

0.987
0.972
0.972
0.977

SVM (regression)
SVM (Gaussian)
SVM (quadratic)

85.2
86.4
72.2

0.887
0.894
0.734

0.842
0.891
0.741

0.890
0.901
0.882

0.80
0.86
0.72

Decision tree (medium) 72.4 0.742 0.725 0.73 0.726

NN wide 94.8 0.925 0.911 0.932 0.951
fron
KNN, K-nearest neighbor; SVM, support vector machine; NN, neural network.
TABLE 8 Confusion matrix of binary classification experiment of ALL-IDB2 with KNN-cosine classifier.

Predicted class

TPR FNRALL Healthy

True Class ALL 177 4 97.7% 2.2%

Healthy 2 176 98.8% 1.2%
tie
TPR, true-positive rate; FNR, false-negative rate; KNN, K-nearest neighbor; ALL, acute lymphoblastic leukemia.
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Table 14 presents an accuracy comparison of three feature

extraction methods, i.e., a full set of deep features extracted from

InceptionV3 and DenseNet201 CNNs, a reduced set of features

selected by the proposed GWO algorithm, and a standard genetic

algorithm. The table demonstrates that the GWO algorithm achieves

a better or comparable accuracy as compared to the other two feature

selection methods with a significantly small feature set.

In Table 15, a comparison is presented of the performance of our

proposed method with some existing studies on leukemia

identification. For a fair comparison, we selected the published

studies that have used identical or almost similar datasets. Our

proposed pipeline for leukemia binary detection and subtype

identification achieves better or comparable performance metrics as

compared to several other relevant studies with smaller feature sizes.

This shows the validity and applicability of the proposed approach.
6 Conclusion

Leukemia, a kind of hematologic malignancy, is frequently

diagnosed in both pediatric and geriatric populations. An automated,

computer-aided system of leukemia diagnosis is essential to aidmedical
FIGURE 6

Error rate of feature selection using genetic and Grey Wolf Optimization algorithms. Population size np = 20.
TABLE 9 Class distribution of dataset of Ghaderzadeh et al. (40) before
and after augmentation.

Class
Frequency

Before After

Benign 512 1,024

Precursor 955 1,000

Pro-B-cell 796 1,050

Early pre-B 979 1,020
TABLE 10 Class distribution of training and testing parts of dataset of
Ghaderzadeh et al. (40) for leukemia subtype classification.

Class Training images Testing images Total

Benign 716 308 1,024

Precursor 700 300 1,000

Pro-B-cell 735 315 1,050

Early pre-B 714 306 1,020

Total 2,149 1,229 4,094
TABLE 11 Results of leukemia subtype classification using the dataset of Ghaderzadeh et al. (40).

Classifier Selected feature vector size Accuracy % Sensitivity F1 score Precision Recall

KNN cosine
KNN coarse
KNN cubic
KNN fine

797

97.9
97.6
97.4
96.4

0.783
0.781
0.709
0.771

0.78
0.78
0.71
0.771

0.978
0.976
0.974
0.96

0.783
0.781
0.974
0.771

SVM (regression)
SVM (Gaussian)
SVM (quadratic)

85.2
98.14
96.2

0.721
0.785
0.638

0.642
0.78
0.61

0.890
0.981
0.96

0.659
0.785
0.61

Decision tree (medium) 82.4 0.68 0.689 0.82 0.826

NN wide 95.8 0.71 0.86 0.952 0.086
fron
KNN, K-nearest neighbor; SVM, support vector machine; NN, neural network.
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TABLE 12 Confusion matrix of leukemia subtype identification using SVM Gaussian classifier on dataset of Ghaderzadeh et al. (40).

Predicted class

TPR FNRBenign Precursor Pro-B-cell Early pre

T
ru
e 
C
la
ss

Benign 1,004 11 5 4 98.04% 1.9%

Precursor 5 982 11 2 98.2% 1.8%

Pro-B-cell 2 2 1,036 10 98.6% 1.4%

Early pre 6 13 5 996 97.67% 2.35%
F
rontiers in On
cology
 14
 frontie
TPR, true-positive rate; FNR, false-negative rate; SVM, support vector machine.
TABLE 13 Statistics of individual classes using SVM Gaussian kernel.

Class Accuracy % Sensitivity % Precision % Recall

Benign 98.04 98.72 98.72 0.9804

Precursor 98.2 97.42 97.42 0.982

Pro-B-cell 98.66 98.01 98.01 0.986

Early pre 97.64 98.41 98.41 0.976
SVM, support vector machine.
TABLE 14 Performance comparison of leukemia classification using three feature selection approaches, i.e., proposed GWO feature selection
algorithm, feature selection using genetic algorithm, and full feature set.

Classifier
Full feature set Genetic algorithm Grey Wolf Algorithm

No. of features Accuracy % No. of features Accuracy % No. of features Accuracy %

KNN cosine

3,986

97.2

1,520

96.2

797

97.9

KNN coarse 96.9 94.3 97.6

KNN cubic 98.1 97.2 97.4

KNN fine 95.1 96.1 96.4

SVM Gaussian 98.5 97.58 98.14

SVM regression 90.2 89.2 85.2

NN wide 96.2 94.5 95.8

Decision tree medium 84 81.2 82.4
KNN, K-nearest neighbor; SVM, support vector machine; NN, neural network.
TABLE 15 Comparison of classification accuracy of proposed leukemia identification pipeline with some existing relevant works.

Work Proposed method Dataset Disease type Performance result

Classification: SVM, ANN

(24) Multiscale blob detection
deep feature extraction: AlexNet classification: SVM

ALL-IDB ALL Accuracy = 94.1%

(25) Preprocessing
segmentation: three-phase filtering morphological feature extraction

Self-collected ALL Specificity = 93.5%

(49) Active contours for nucleus detection
Shape and texture feature extraction classification: NN, SVM

Self-collected Leukemia Accuracy = 98.8%

(50) Preprocessing
Feature extraction: hybrid CNN
Classification: bagging ensemble

ALL-IDB
MiMMSBI
SN-AM

ALL
AML

Multiple myeloma

ALL classification accuracy
= 97.04%

This
work

Contrast stretching using DE
Deep feature extraction: InceptionV3 and DenseNet201 feature selection:

GWO algorithm

ALL-IDB2
(40)

Leukemia
ALL subtypes

Accuracy = 97.9% Accuracy
= 98.14%
KNN, K-nearest neighbor; ANN, artificial neural network; ALL, acute lymphoblastic leukemia; NN, neural network; AML, acute myeloid leukemia; GWO, Grey Wolf Optimization.
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professionals in making informed decisions about the disease and

making an effective prognosis and treatment plan. In this work, we

have demonstrated the effectiveness of deep feature optimization taking

as a relevant design case, the detection, and classification of leukemia

disease from blood smear images. We have proposed a hybrid deep

learning methodology utilizing transfer learning as feature extraction.

The problem of feature selection has been modeled as a combinatorial

optimization problem and solved using a customized Grey Wolf

Optimization algorithm. Our proposed leukemia identification

system can be used as a supporting evidence tool in conjunction

with other more detailed analysis methods such as RNA sequencing

and molecular testing. We believe that the proposed expert system can

also be integrated with more complex and rather practical image

analysis systems such as image flow cytometry.
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