
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Sharon R. Pine,
University of Colorado, United States

REVIEWED BY

Weiren Luo,
The Second Affiliated hospital of Southern
University of Science and Technology, China
Wenjun Liao,
Sichuan Cancer Hospital, China

*CORRESPONDENCE

Feipeng Zhao

zhaofeipeng008@swmu.edu.cn

†These authors have contributed equally to
this work

RECEIVED 31 October 2023

ACCEPTED 09 May 2024
PUBLISHED 28 May 2024

CITATION

Xia C, Zhao J, Huang Y, Miao H and
Zhao F (2024) Angiogenesis in
nasopharyngeal carcinoma: insights,
imaging, and therapeutic strategies.
Front. Oncol. 14:1331064.
doi: 10.3389/fonc.2024.1331064

COPYRIGHT

© 2024 Xia, Zhao, Huang, Miao and Zhao. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Mini Review

PUBLISHED 28 May 2024

DOI 10.3389/fonc.2024.1331064
Angiogenesis in nasopharyngeal
carcinoma: insights, imaging,
and therapeutic strategies
Chenxi Xia1†, Jia Zhao1†, Yu Huang2, Hongbin Miao3

and Feipeng Zhao1,2*

1Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical
University, Southwest Medical University, Luzhou, Sichuan, China, 2Department of Otolaryngology-
Head and Neck Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan, China, 3Department
of Otolaryngology-Head and Neck Surgery, Bishan hospital of Chongqing Medical University, Bishan
Hospital of Chongqing, Bishan, Chongqing, China
Nasopharyngeal carcinoma (NPC) is a highly prevalent head and neck

malignancy in southern China frequently diagnosed at advanced stages owing

to subtle early symptoms and associated metastasis. Angiogenesis emerges as a

pivotal factor in NPC progression, with numerous angiogenesis-related factors

showing aberrant expression and contributing to increased neovascularization

within NPC tumors. These abnormal vessels not only nourish tumor growth but

also facilitate metastasis, culminating in unfavorable patient outcomes. Multiple

studies have demonstrated the applicability of various imaging techniques for

assessing angiogenesis in NPC tumors, thus serving as a foundation for

personalized treatment strategies and prognostic assessments. Anti-angiogenic

therapies have exhibited significant potential for inhibiting NPC angiogenesis and

exerting anti-tumor effects. To enhance efficacy, anti-angiogenic drugs are

frequently combined with other treatment modalities to synergistically

enhance anti-tumor effects while mitigating the side effects associated with

single-agent therapies, consequently improving patient prognosis. Identifying

the potential mechanisms and key targets underlying NPC angiogenesis and

exploring more effective detection and treatment approaches holds promise for

shaping the future of NPC diagnosis, treatment, and prognosis, thereby offering

new avenues and perspectives for research and clinical practice.
KEYWORDS

nasopharyngeal carcinoma, angiogenesis, Epstein–Barr virus, exosomes, anti-
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1 Introduction

Nasopharyngeal carcinoma (NPC) is a prevalent head and neck cancer in Southeast

Asia, particularly in southern China, and often presents challenges due to its hidden

location and nonspecific early symptoms (1, 2). As an epithelial carcinoma originating from

the nasopharyngeal mucosa, NPC exhibits high sensitivity to radiotherapy (3). However, its
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propensity for local recurrence and distant metastasis often leads to

treatment failure and poor prognosis (4–6). The precise mechanism

underlying distant metastasis of NPC remains elusive; nevertheless,

there is a consensus that angiogenesis significantly contributes to

this process.

NPC represents a pathological ecosystem wherein a close

relationship exists between the tumor and the host, with the

vascular system serving as an integral component (7).

Angiogenesis is an essential step in tumor progression, which not

only facilitates the supply of nutrients crucial for tumor growth but

also serves as a conduit for eliminating the metabolic waste

generated by cells. In contrast, tumor cells release pro-angiogenic

factors that stimulate the proliferation and migration of vascular

endothelial cells, ultimately leading to the formation of new blood

vessels. This intricate process accelerates tumor growth and

facilitates metastasis (8). Moreover, newly formed blood vessels

within the tumor exhibit immaturity and high permeability,

resulting in inadequate perfusion of the tumor and the creation of

a hypoxic microenvironment (9). This further promotes tumor

invasion and metastasis while inhibiting the effectiveness of

immune cells and reducing the diffusion and efficacy of

chemotherapy drugs. Clinically, these factors contribute to poor

prognosis (10).

Currently, radiotherapy is widely considered the primary

treatment for early-stage non-metastatic NPC. However, when

early distant metastasis occurs, radiotherapy combined with

chemotherapy is more effective in improving the prognosis (1, 2,

11). However, resistance to chemoradiotherapy results in

unsatisfactory therapeutic effects (4–6). NPC angiogenesis plays a

crucial role in tumor progression (12), significantly affecting both

patient outcomes and prognosis, highlighting its considerable

clinical value and prospects for anti-angiogenic therapy.

Therefore, gaining a comprehensive understanding of the

research advancements and applications of angiogenesis-related

NPC is of tremendous importance for treating advanced or

metastatic NPC.
2 Transcriptional regulation of
angiogenesis in NPC

2.1 VEGF

As a highly specific mitogen of endothelial cells, vascular

endothelial growth factor (VEGF) can strongly stimulate

endothelial cell proliferation to induce angiogenesis and

lymphangiogenesis (13). When VEGF expression levels increase

in the tumor tissues or serum of NPC patients, it typically closely

correlates with TNM staging, leads to a higher risk of distant

metastasis, and lowers long-term survival rates; therefore, it could

be a potential marker for distant metastasis and prognosis in NPC

(14–18). VEGF serves as a prognostic indicator for NPC patients

and is positively associated with an unfavorable prognosis (15, 17).

Serum VEGF detection proves beneficial in predicting tumor

metastasis and the clinical outcome of the patients (14, 16).
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VEGF expression is significantly correlated with microvessel

density (MVD), which is a potent indicator of vasculogenesis

(19). VEGF and MVD in NPC show a positive correlation with

tumor progression and stage (20). Secreted by NPC cells VEGF

promotes tumor angiogenesis, cell invasion, and migration (21).

Exosomes released by tumor cells can stimulate VEGF-related

pathways, fostering angiogenesis (22, 23). EBV-encoded proteins

can contribute to promoting tumor growth and progression by

interacting with VEGF (24, 25). VEGF is subject to regulation by

various factors. For instance, the pro-angiogenic effect of

chemotaxis-related factors is mediated through the regulation of

VEGF expression (26). In the hypoxic conditions resulting from

extensive tumor growth, activated HIF-1a stimulates VEGF

transcription (27). In the angiogenesis mechanism, VEGF can

activate the Ras/MAPK and PI3K/AKT pathways by influencing

matrix metalloproteinases and cyclooxygenase-2 in NPC (21, 28).

Conversely, when VEGF function is disrupted, angiogenesis is

prevented in NPC (29). Clinically, quercetin, a plant extract,

along with several tyrosine kinase inhibitors, inhibits angiogenesis

by targeting VEGF or its receptors (29–32). Gene polymorphisms,

specifically VEGF-460T/C and VEGF-2578C/A, can influence the

risk and invasiveness of NPC. These variations are significant in

guiding the assessment of clinical outcomes in patients, potentially

associated with angiogenesis (33, 34).
2.2 ANG

Angiogenin (ANG) is a secreted ribonuclease with proangiogenic

properties. Angiogenin-2 (ANG-2) plays a beneficial role in

promoting angiogenesis in NPC (35). Particularly, ANG-2 has been

reported to exert an anti-vascular effect in NPC, which is highly

dependent on VEGF expression levels. When endogenous VEGF is

absent, ANG-2 overexpression decreases the tumor microvascular

density, thereby playing an antitumor role (36). Furthermore,

angiotensin- (1–7) [ANG- (1–7)] can against the tumor angiogenic

process by reducing the expression of VEGF and hypoxia-inducible

factor-1a (HIF-1a) (37).
2.3 HIF-1a

HIF-1a is an important regulatory factor in the adaptation of

tumor cells to anoxic environmental conditions (27). It can serve as

an indicator of hypoxia within tumors and is intricately linked to

processes such as angiogenesis, invasion, metastasis, energy

metabolism, and resistance to tumor radiotherapy. During the

NPC angiogenic process, HIF-1a is regulated by many factors. To

achieve Epstein–Barr virus (EBV)-induced vasculogenic mimicry

(VM), EBV stimulates the expression of HIF-1a, which is also

activated by latent membrane protein 2A (LMP2A) (38).

Additionally, EBV-miR-BART1-5P (39), NPC-extracellular vesicle

(EV) -derived miR-144 (40), chemokine (C-C motif) ligand (CCL5)

(41), EBV- Epstein-Barr nuclear antigen 1 (EBNA1) (25), forkhead

box M1 (42), BART10-5p and miR-18a (43) can increase HIF-1a
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synthesis to bring about tumor angiogenesis and progression. NPC

t i s sue growth leads to the format ion of a hypoxic

microenvironment. In this hypoxic condition, HIF-1a expression

can be inhibited by a-momorcharin, causing the NPC vessel

formation suppressed (44).
2.4 MMPs

Matrix metalloproteinases (MMPs) are a group of endogenous

peptidases that degrade extracellular matrix (45). Exosomal MMP-

13 plays a pro-angiogenic role in NPC (46). MMPs also act as

mediators of other factors that enhance angiogenesis in NPC.

MMP-9 cooperates with the protease-activated receptor 2 and

EBV-encoded latent membrane protein 1 (LMP1) to induce

vasculogenesis in NPC (47). Ras-like estrogen-regulated growth

inhibitor (RERG) can suppress MMPs’ expression and influence

tumor vessel formation (48). In another study, RBMS3 (RNA

binding motif, single-stranded interacting protein 3) indirectly

inhibits the angiogenic effects of MMP-9 and MMP-2 (49).

ADAMTS9, a member of the ADAMTS (a disintegrin-like and

metalloproteinase (reprolysin type) with thrombospondin type 1

motif) metalloproteinase family, downregulates MMP-9 and

VEGF-A expression to inhibit NPC growth and vessel

formation (50).
2.5 NF-кB

Nuclear transcription factor кB (NF-кB), a family of

transcription factors, is involved in the regulation of tumor

angiogenesis and growth. According to some studies, NF-kB can

restrain the ability to promote NPC neovascularization by tumor

suppressor genes, such as transforming growth factor-b binding

protein 2 (51), RERG (48), cylindromatosis lysine 63 deubiquitinase

(52) and NFKB inhibitor beta (53). Additionally, it has been

reported that upregulated receptor-interacting serine/threonine

kinase 4 (RIPK4) (54), LMP1 (55, 56), and pregnancy upregulated

nonubiquitous calmodulin (CaM) kinase (PNCK) (57) are related

to the activation of NF-кB signaling pathway, which results in

tumor vessel formation and disease progression.
3 EBV-associated NPC
angiogenesis factors

In addition to host genetics, EBV infection may be the most

common causal agent of NPC (2) (Figure 1A). The positive

correlation between plasma EBV DNA load and NPC risk not

only makes it a valuable tool for NPC screening (58) but also

underscores its close association with NPC neovascularization. EBV

could activate stromal interaction molecule 1 (STIM1) -dependent

Ca2+ signaling to promote vasculogenesis in NPC (59) and

increased expression of the angiogenic factor CCL5, promoting

NPC vessel formation through modulation of the PI3K/AKT and
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HIF-1a pathways (41). In NPC, EBV could promote VM by

activating the LMP2A-mediated PI3K/AKT/mTOR/HIF-1a
signaling pathway (38).

Moreover, some genes encoded by EBV actively participate in

NPC neovascularization (Figure 1A). LMP1, a proto-oncogene

encoded by EBV, induces angiogenesis through several signaling

pathways (60). It promotes the expression of epidermal growth

factor receptors (EGFR) in NPC cells by activating the NF-kB
pathway and signal transducer and activator of transcription 3

(STAT3), which affects angiogenesis and enhances EBV infection in

NPC cells (55). LMP1 also promotes VM through the VEGF/

VEGFR1 signaling pathway (61). Under the influence of

extracellular epidermal growth factors (EGF), LMP1 enhances

VEGF-mediated angiogenesis by facilitating store-operated Ca2+

entry (SOCE) (24). Additionally, LMP1 can induce VEGF

expression through the JAK/STAT and MAPK/ERK pathways to

upregulate tumor vasculogenesis (62). In the NPC cell line NPC-

KT, LMP1 induces interleukin-8 (IL-8) expression to regulate

angiogenesis by activating the NF-kB pathway (56). Research

shows that LMP1-induced cyclooxygenase-2 (COX-2) may play a

role in NPC angiogenesis (63).

Moreover, EBV-encoded EBNA1 stimulates the expression of

transcr ipt ion factor AP-1 , which can promote NPC

neovasculogenesis by targeting IL-8, VEGF, and HIF-1a (25).

EBV-encoded RNAs promote angiogenesis by stimulating

vascular cell adhesion molecule-1 expression (64). EBV-miR-

Bart1-5p, a key miRNA encoded by EBV, can directly target

AMP-activated protein kinase (AMPKa1) and activate the

AMPK/mTOR/HIF-1 pathway, inducing abnormal glycolysis and

angiogenesis in NPC cells (39).
4 Exosome-associated NPC
angiogenesis factors

Exosomes, a subtype of EVs, are crucial mediators of

intercellular communication, being vesicular structures secreted

by cells and containing proteins, nucleic acids, and other

bioactive molecules that facilitate this process. Exosomes secreted

by tumor cells can be internalized and absorbed by endothelial cells

and tumor cells themselves, promoting angiogenesis and a

premetastatic niche, ultimately leading to tumor progression (65)

(Figure 1B). Similarly, exosomes in NPC have been reported to be

associated with pathological angiogenesis, distant metastasis,

resistance to chemoradiotherapy, and immunosuppression, and

their influence extends to the tumor microenvironment (66).

lncRNAs, miRNAs, and other non-coding RNAs are important

components of exosomes derived from tumor cells and participate in

NPC neovascularization. Linc-ROR, a long-stranded exosomal non-

coding RNA of nasopharyngeal origin, promotes NPC proliferation,

migration, and angiogenesis via the p-AKT/p-VEGFR2 pathway (67).

Exosome miR-205-5p plays a vasostimulatory role in NPC by

activating the EGFR/ERK signaling pathway and MMPs expression

by targeting desmocollin-2 (68). MiR-144 in EVs derived from NPC

plays a role in promoting tumor progression through the FBXW7/HIF-
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1a/VEGF-A axis, which promotes angiogenesis (40). MiR-17-5p, which

is highly expressed in NPC, targets bone morphogenetic protein and

activin membrane-bound inhibitor and regulates the AKT/VEGF-A

signaling pathway to increase angiogenesis (22). MiR-23a plays an

important role in NPC neovasculogenesis by acting on TSGA10 (69).

However, exosomal miR-9 secreted by NPC cells inhibits vascular

formation and metastasis by targeting midkine and regulating PDK/

AKT signaling (70).

Other factors derived from NPC exosomes have been reported.

HS1-related protein X-1 (HAX1) in EVs enhances the expression

level of integrin b6 and regulates the FAK pathway to promote

tumor angiogenesis (71, 72). High-mobility group box 3 (HMGB3)

of nuclear exosome origin accelerates pathological vasculogenesis in
Frontiers in Oncology 04
NPC (73). NPC exosomes containing limb-bud and heart (LBH)

inhibit epithelial-mesenchymal transformation and angiogenesis by

regulating VEGF-A (74). Additionally, PFKFB-3 (Enzymes 6-

phosphofructo-2-kinase/fructose-2, 6-bisphosphatase-3) (75),

MMP13 (46), intercellular adhesion molecule-1 (ICAM-1), CD44

variant isoform 5 and platelet response protein-1 (76) in exosomes

are involved in the regulation of NPC angiogenesis.
5 Other NPC angiogenesis factors

There are many studies on NPC angiogenesis. For instance, the

proangiogenic lncRNA LINC00240 functions by inhibiting the
A

B

FIGURE 1

The association of EBV infection and exosomes with angiogenesis in NPC. (A) EBV-associated NPC angiogenesis factors. EBV and some genes
encoded by EBV could activate the angiogenesis in NPC. EGF, epidermal growth factors; EGFR, epidermal growth factor receptors; SOCE, store-
operated Ca2+ entry; STIM1, stromal interaction molecule 1; LMP1, latent membrane protein 1; STAT3, signal transducer and activator of
transcription 3; IL-8, interleukin-8; COX-2, cyclooxygenase-2; EBNA1, Epstein-Barr nuclear antigen 1; AMPKa1, AMP-activated protein kinase; PTEN,
tensin homolog deleted on chromosome ten; CCL5, chemokine (C-C motif) ligand; CCR5, C-C chemokine receptor type 5; ERK, extracellular
regulated kinase; PI3K, phosphoinositide 3-kinase; mTOR, mammalian target of the rapamycin; VEGF, vascular endothelial growth factor; HIF-1a,
hypoxia-inducible factor-1a; ER, endoplasmic reticulum. (B) Tumor-derived exosomes in angiogenesis of NPC. NPC cells secreted exosomes which
can be internalized and absorbed by endothelial cells and tumor cells themselves, promoting the angiogenic process. HAX1, HS1-related protein X-1;
HMGB3, high-mobility group box 3; LBH, limb-bud and heart; VEGF, vascular endothelial growth factor; MMPs, matrix metalloproteinases.
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expression of miR-26a-5p (77). The enhancer of zeste homolog 2

(EZH2), which is highly expressed in NPC, can activate NPC

neovasculogenesis via the EZH2-miR-1-ET-1 axis and promote

the proliferation, migration, and VM of NPC cells (78).

Additionally, kinesin family member 2A (79), vimentin (80),

tripartite motif-containing 24 (81), CD93 (82), TWIST (12), and

annexin A2 (83) exert angiogenic effects on NPC. Instead, it is

reported that in NPC human METCAM/MUC18 (84), inhibitor of

growth 4 (ING4), PTEN (phosphatase and tensin homolog deleted

on chromosome ten) (85), IkappaB kinase alpha (86), PTPRG

(protein tyrosine phosphatase, receptor type G) (87), fibulin-2

(88) and latent TGF-b binding protein 2 (89) plays an anti-

angiogenic role. In addition to the aforementioned factors,

hypoxia can trigger angiogenesis of NPC (90).
6 Angiogenic application in NPC

6.1 Angiogenesis-related imaging studies
in NPC

Abnormal microangiogenesis can aggravate hypoxia, which is an

important factor affecting treatment resistance and poor prognosis of

NPC. Dynamic contrast-enhancedmagnetic resonance imaging (DCE-

MRI) is a noninvasive technique that reflects capillary permeability,

angiogenic activity, tumor angiogenesis, blood perfusion, and hypoxic

status of NPC tissues. Remarkably, some parameters in DCE-MRI are

associated with positive expression of HIF-1a in NPC, which can

provide the basis for the formulation of individualized treatment for

NPC patients (91). Due to significant changes in dynamic parameters

during radiotherapy, DCE-MRI can monitor NPC angiogenesis during

treatment and quantitatively evaluate the effects of tumor treatment

(60). Multiple studies have shown that magnetic resonance perfusion-

weighted imaging (MR-PWI) (92) and diffusion-weighted imaging

(DWI) also reflect NPC angiogenesis and radiotherapy sensitivity.

Common parameters in DWI assessments include pure molecular

diffusion (D) and perfusion-related diffusion (D*). Research has

indicated that elevated D* values correlate with increased

angiogenesis and parenchymal perfusion in NPC (93, 94). The D

value was significantly decreased in primary NPC; however, elevated D

and D* values indicated radiosensitivity of the cancer, suggesting a

favorable prognosis for the tumor.

Contrast-enhanced ultrasound (CEUS) is an imaging technique

that assesses tumor vasculogenesis by examining the diffusion

patterns of contrast agents within a tumor. It has been claimed

that MVD in NPC grafts can be reflected by CEUS parameters in a

nude mouse model (95). Additionally, dynamic contrast-enhanced

ultrasonography (DCE-US) can be used to evaluate the efficacy of

anti-angiogenic therapy in NPC (96).
6.2 Angiogenesis-related therapy in NPC

In recent years, various new treatment schemes have been

developed, among which anti-angiogenesis therapy has emerged

and has been used in clinical practice to inhibit the malignant
Frontiers in Oncology 05
progression of tumors by blocking or inhibiting the related

regulatory pathways (Table 1) (Supplementary Table 1).

Bevacizumab, a monoclonal antibody targeting VEGF, effectively

inhibits VEGF activity, thereby achieving the objectives of anti-tumor

angiogenesis and metastasis suppression in NPC (97). This therapy can

be used for the treatment of locally advanced and metastatic NPC (98–

100). Recent studies have demonstrated that Endostar, a recombinant

human endostatin, is a targeted drug with antiangiogenic and

antitumor effects, and when combined with other antitumor

therapies, it significantly enhances the overall anticancer effect (101,

102). Endostar significantly enhances radiosensitivity in NPC, reducing

the side effects of radiotherapy. Moreover, it can be combined with

chemotherapy or chemoradiotherapy to improve the prognosis of

patients with metastatic NPC (101, 103, 104). The effect of endostar

is related to the downregulation of VEGF expression (105) and could

correct the pathological angiogenesis process to disrupt the hypoxic

environment in tumor tissues (106).

Many kinase inhibitors can also be employed as anti-angiogenic

drugs for NPC treatment. Apatinib, famitinib, sunitinib, and lenvatinib

are tyrosine kinase inhibitors that inhibit MVD in patients with NPC.

The mechanism of tumor angiogenesis inhibition by apatinib is related

to blocking the binding of VEGF and VEGFR. Studies have confirmed

that apatinib can achieve good efficacy in the treatment of NPC patients

with lung metastasis and advanced VEGFR-2-negative NPC while

ensuring safety (107). Apatinib can be used not only as a monotherapy

but also in combination with radiotherapy or chemotherapy to treat

patients with NPC, effectively enhancing its anti-vascular effects (29,

108). Famitinib combined with radiotherapy increased the

radiosensitivity of NPC cells by inhibiting angiogenesis (109). As a

single agent, sunitinib significantly inhibited tumor growth and
TABLE 1 Anti-angiogenesis drugs in nasopharyngeal carcinoma.

Drug Model
system

Reported
Regulatory
pathway

Ref.

Bevacizumab clinic
application

VEGF↓ (97–
100)

Endostar clinic
application;
mice

VEGF↓;
Disrupting the
hypoxic
environment

(101–
106)

Tyrosine kinase inhibitors:
apatinib, famitinib,
sunitinib, lenvatinib

clinic
application

Blocking the
binding of VEGF
and VEGFR

(29, 31,
32,
107–
109)

Morphine cell
line;mice

Unclear (110)

Valsartan and losartan clinic
application;
mice

VEGF-A↓,
ANG-2↓

(111)

Traditional Chinese
medicines:
Rhizoma Curcumae, quercetin,
triptolide, traditional herbal
formula NPC01

cell
line;mice

VEGF↓; NF-kB↓ (30,
112–
114)
front
VEGF, vascular endothelial growth factor; ANG-2, angiogenin-2; NF-кB, nuclear
transcription factor кB. The meaning of symbol “↓” is “blocking” or “inhibiting”.
iersin.org
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angiogenesis in NPC xenografts. These effects can be enhanced when

combined with chemotherapy (32). For anti-angiogenic drug-resistant

NPC, lenvatinib has been shown to effectively reverse the resistance of

NPC with high FGF-2 expression (31). Additionally, the angiokinase

inhibitor BIBF 1120 has an antitumor angiogenic effect and can be used

in combination with cisplatin to treat NPC (115).

Many traditional Chinese medicines and their extracts have

antitumor effects in the antivascular treatment of NPC.

Bioinformatics analysis showed that Rhizoma Curcumae could

inhibit angiogenesis in NPC (112). After treatment with

quercetin, VEGF expression and NF-kB activity were decreased,

and endothelial cell tube formation was inhibited (30). Li Yanwei

et al. found that NPC01, an ancient recipe from the Song Dynasty of

China, may play an anti-angiogenic role in cancer by inhibiting the

effects of pro-angiogenic factors HIF-1a and VEGF (113).

Triptolide, a traditional Chinese medicinal extract combined with

radiotherapy, inhibits the growth and angiogenesis of NPC (114).

Furthermore, some drugs have unexpected effects in anti-

angiogenic therapy for NPC, in addition to their traditional

effects. Low doses of the opioid analgesic morphine in NPC led to

chemoresistance, which was surprisingly associated with reduced

tumor neovascularization, whereas high doses had the opposite

effect (110). Angiotensin II receptor blockers (ARBs), which are

commonly used in cardiovascular diseases, not only have traditional

antihypertensive effects but also have anti-angiogenic effects in NPC

by promoting cell apoptosis (111).
7 Conclusions

Angiogenesis is an essential process for the distant metastasis and

local recurrence of NPC; however, the underlying mechanism is

intricate and ambiguous. Based on the current state of researches, key

factors such as VEGF, ANG, HIF-1a, MMPs, and NF-kB play a

pivotal role in the angiogenesis of NPC (Supplementary Table 2).

Recent findings have highlighted the regulatory roles of EBV

infection and exosomes in angiogenesis. In clinical practice, DCE-

MRI and CEUS have proven to be effective imaging techniques for

angiogenesis detection. Furthermore, the use of antiangiogenic drugs,

such as bevacizumab and Endostar, either alone or in combination

with other chemotherapy drugs, has demonstrated significant

potential for enhancing the prognosis of patients with NPC.

The ongoing advancements in angiogenesis research within

NPC offer a novel avenue for the identification of biomarkers.

The miRNAs within exosomes and the distinctive molecules linked

to EBV imply a potential correlation with the angiogenesis and

metastasis of NPC. Subsequent investigations are warranted to

identify more precise and clinically significant markers related to

exosomes and EBV. These may offer valuable insights for clinical

diagnosis and prognosis of NPC.

Multi-targeted anti-angiogenic approach may emerge as a more

efficacious strategy for NPC treatment. However, the reported

clinical anti-angiogenesis drugs are limited, and their targets

exhibit relative simplicity. EBV participates in NPC angiogenesis

through diverse pathways. Exploring crucial targets and developing

drugs targeting Epstein-Barr virus-mediated angiogenesis could
Frontiers in Oncology 06
represent a novel avenue for anti-angiogenic interventions.

Combining such approaches with anti-angiogenic drugs may

enhance the efficacy of NPC treatment in the future.

In summary, a better understanding of angiogenesis provides

new insights into the mechanism of NPC. Advancements in key

factors, EBV infection, and exosomes hold promise for enhancing

NPC diagnosis, treatment, and prognosis, paving the way for future

research and clinical application of NPC.
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