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Hypoxia is a common feature of solid tumours affecting their biology and response

to therapy. One of the main transcription factors activated by hypoxia is hypoxia-

inducible factor (HIF), which regulates the expression of genes involved in various

aspects of tumourigenesis including proliferative capacity, angiogenesis, immune

evasion, metabolic reprogramming, extracellular matrix (ECM) remodelling, and

cell migration. This can negatively impact patient outcomes by inducing

therapeutic resistance. The importance of hypoxia is clearly demonstrated by

continued research into finding clinically relevant hypoxia biomarkers, and

hypoxia-targeting therapies. One of the problems is the lack of clinically

applicable methods of hypoxia detection, and lack of standardisation.

Additionally, a lot of the methods of detecting hypoxia do not take into

consideration the complexity of the hypoxic tumour microenvironment (TME).

Therefore, this needs further elucidation as approximately 50% of solid tumours are

hypoxic. The ECM is important component of the hypoxic TME, and is developed

by both cancer associated fibroblasts (CAFs) and tumour cells. However, it is

important to distinguish the different roles to develop both biomarkers and novel

compounds. Fibronectin (FN), collagen (COL) and hyaluronic acid (HA) are
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important components of the ECM that create ECM fibres. These fibres are

crosslinked by specific enzymes including lysyl oxidase (LOX) which regulates

the stiffness of tumours and induces fibrosis. This is partially regulated by HIFs.

The review highlights the importance of understanding the role of matrix

stiffness in different solid tumours as current data shows contradictory results

on the impact on therapeutic resistance. The review also indicates that further

research is needed into identifying different CAF subtypes and their exact roles;

with some showing pro-tumorigenic capacity and others having anti-

tumorigenic roles. This has made it difficult to fully elucidate the role of

CAFs within the TME. However, it is clear that this is an important area of

research that requires unravelling as current strategies to target CAFs have

resulted in worsened prognosis. The role of immune cells within the tumour

microenvironment is also discussed as hypoxia has been associated with

modulating immune cells to create an anti-tumorigenic environment. Which

has led to the development of immunotherapies including PD-L1. These

hypoxia-induced changes can confer resistance to conventional therapies,

such as chemotherapy, radiotherapy, and immunotherapy. This review

summarizes the current knowledge on the impact of hypoxia on the TME

and its implications for therapy resistance. It also discusses the potential of

hypoxia biomarkers as prognostic and predictive indictors of treatment

response, as well as the challenges and opportunities of targeting hypoxia in

clinical trials.
KEYWORDS
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Hypoxia

Hypoxia is a state in which there is a lack of sufficient oxygen

supply to tissues and organs. This has detrimental effects on cells as

they require oxygen for their function. The physiological response to

hypoxia is to induce cell death. In the context of cancer,

overconsumption of oxygen leads to low levels of oxygen. However,

tumour cells find mechanisms to adapt to these harsh conditions,

enabling tumour cell survival. Hypoxia modulates tumour growth,

invasion, and resistance to therapy induced by rapid tumour cell

proliferation, abnormal tumour vasculature, high interstitial pressure,

or low oxygen delivery. These combined features can enhance a

tumours ability to metastasise (1, 2). Hypoxia can be described as

chronic, acute or cycling within solid tumours. Cycling hypoxia is

defined by tumours undergoing periodic exposure to hypoxia

followed by reoxygenation, which is associated with enhancing

common hallmarks of cancer (3, 4). This has a significant role in

promoting resistance to both radiotherapy and chemotherapy (2).

Schwarz et al., were the first to propose that hypoxia drives resistance

to radiotherapy (5). Thomlinson and Gray also observed hypoxia in

bronchial carcinomas. These tumours were found to grow in solid
02
cords surrounded by stroma, cords larger than 180 microns, were

associated with a necrotic centre due to insufficient oxygen supply (1).

These landmark studies led researchers to explore the impact of

hypoxia on anti-tumour response.

The hypoxic tumour microenvironment (TME) has been

defined as a condition where the partial pressure of oxygen (pO2)

is below 10 mmHg (6). Physoxia describes the maintenance of

physiological levels of oxygen in tumours. It can differ dependent on

tissue type and location, highlighting why hypoxia also varies

between different tumour types (Table 1).
Hypoxia- inducible factor activation
by hypoxia

HIF, a transcription factor responding to low oxygen levels,

regulates gene expression to adapt tumour cell behaviour for

survival (Table 2). It activates genes supporting hypoxia

adaptation, like those linked to angiogenesis, erythropoiesis,

glucose uptake, and anaerobic metabolism, while suppressing

non-essential genes for survival (46).
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Cellular response to hypoxia induces intracellular signalling

pathways regulated by HIF (2). HIF-1 is a heterodimer composed of

an oxygen-sensitive subunit, HIF-1a, and HIF-1b which is

constitutively expressed (47). Under physoxia, HIF-1a is

degraded however, under hypoxia, HIF-1a is stabilised and forms

a heterodimer with HIF-1b. This complex acts as a transcriptional

activator that binds to DNA sequences called hypoxia response

elements (HRE) in the promoters of target genes (14). HIF-2 is also

a heterodimer with and oxygen-sensitive HIF-2a subunit, whilst

sharing HIF-1b with HIF-1a as a constitutively expressed subunit

(48). However, HIF-1 and HIF-2 have distinctive roles and this is

why both are considered as separate therapeutic targets (Table 2).

HIF-3 is the least characterised HIF and has multiple isoforms

which are variants of HIF-3a. These isoforms have been identified

with different tissue distribution and functional properties. HIF-3

does not have a transactivation domain like HIF-1/HIF-2 but

instead contains a polypeptide that represses HRE-responsive

gene expression (49).
Frontiers in Oncology 03
Hypoxia as a biomarker

The amount of hypoxia varies in solid tumours, with around

50% of tumours having high levels of hypoxia (50). Numerous

studies show that most hypoxic tumours have the worse prognosis

(51). Therefore, the importance of hypoxia as an adverse prognostic

factor has led to interest in developing methods for its measurement

and targeting (51).

In the 1960s, studies were published on the use of oxygen

electrodes to measure hypoxia in cervical cancers (CC) (52).

Oxygen electrodes (Eppendorf probes) or fibre optic probes

(OxyLite) measure oxygen tension directly. The approach is based

on inserting an electrode into an accessible tumour and measuring

oxygen at multiple points within several tracks (51). Although this

is considered the gold standard, it is invasive, operator-dependent

and cannot account for heterogeneity (53). The result of

heterogeneity is the overestimation of viable hypoxic cells as both

areas with healthy cells and necrotic cells are measured (51, 54, 55).

The key differences in the two methods are summarised by Griffiths

& Robinson (53). The output of these methods is pO2 (Table 1).

Fyles et al. (56) showed that oxygenation measured by oxygen

electrodes was able to predict radiation response and survival in

patients with CC. Nordsmark et al. (57) show that in advanced head

and neck squamous cell carcinoma (HNSCC), patients with pO2

value of ≤2.5mmHg had a stronger predictive ability for radiation

response. However, despite the ability to predict radiation response

using this method, due to the limitations of the electrode systems,

this led to their discontinuation (Table 3).

Despite the limitations, the studies in oxygen measurement

show that there is a clinical benefit to measuring hypoxia, which has

led to continued research in the field including hypoxia targeted

therapies (73). The methods include increasing oxygen delivery to

tumours by breathing hyperbaric oxygen or carbogen; increasing

vascular perfusion (e.g., nicotinamide); giving oxygen-mimetic

radiosensitisers with radiotherapy (e.g., nimorazole); hypoxia-

activated prodrugs (e.g., tirapazamine, evofosfamide); and small

molecule inhibitors of hypoxia-relevant molecular targets (e.g.

belzutifan, SLC-0111) (74). Overall, there is currently a clinical

need to measure tumour hypoxia.
TABLE 1 Tissue and tumour physoxia and hypoxia expressed as partial
pressure of O2 (pO2).

Tissue Partial pressure
of O2 (pO2)
in tissue

Partial pressure
of O2 (pO2)
in tumour

Refs

Prostate 23-30 2.4-4.5 (7, 8)

Pancreas 9.3-92.7 0-5.3 (9, 10)

Lung 32-90 (11) 32-120 (12, 13)

Liver 30 6 (14)

Renal
cell

carcinoma

37.6 9.6 (15)

Cervix
(nullipara)

9-14 42-48 (10, 16)

Breast 37-65 3-15 (10, 17)

Brain 24-27 13 (10)

Head
and Neck

38-51.2 5-14.6 (12,
18–22)
TABLE 2 HIF molecule expression patterns and the pathways they target.

HIF
molecule

Expression
pattern

Target genes Pathways regulated Refs

HIF-1 (induced
under severe
hypoxia 0-2%
O2)- acute
hypoxia response

Endothelial cells, tumour
cells, immune cells
(neutrophils/
macrophages), fibroblasts
and cancer stem cells

VEGF, CA9, BNIP3, GLUT-1, VEGF,
uPAR, IGF1, PDGF-B, NDUFA4L2, HGF,
ITGA6, P4HA1, P4HA2, PLOD2, LOX,
syndecan-4, a5-integrin MMP-2, MMP9,
MMP15, NFkB

Angiogenesis, acid metabolism, cell death, glycolysis,
angiogenesis, proteolytic pathway of invasion, cell-ECM
interactions, enhanced invasion and migration, fibrosis-
enhanced metastasis, promote survival and function of
neutrophils, enhanced cell survival

(23–
36)

HIF-2 (induced
over severe
conditions 2-
5%)- long term
hypoxia response

Endothelial cells, tumour
cells
, fibroblasts, immune
cells (neutrophils,
macrophages), cancer
stem cells

VEGF (more potent response than HIF-1),
GLUT-1, UPAR1, ITGA6
, MMP14

Associated with long-term hypoxic response, angiogenesis,
glycolysis, proteolytic pathway of invasion, cell-ECM
interactions, vessel integrity and tumour neovascularisation,
promote survival and function of neutrophils, regulator of
innate immunity, and metastasis

(25,
26,
28,
29,
37–
41)

HIF-3 Endothelial cells,
tumour cells

Apoptosis, tumorigenesis, negative regulator of HIF-1/HIF-2 in
renal cell carcinoma

(42–
45)
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Currently, the most widely studied approach for assessing

hypoxia in cancer patients involves endogenous markers, which

has the advantage that large retrospective studies can be carried out

(51, 54, 75). The approach uses immunohistochemistry on pre-

treatment diagnostic biopsies (76). The markers used are hypoxia

inducible in vitro, e.g., HIF-1a, CA9 and GLUT1 (76, 77). Many

reports link high tumour HIF-1a expression with a poor prognosis

including meta-analyses of studies in brain (n=1,422) (78), breast

[BCa] (n=6,201) (79), digestive system (n=5,964) (80),

hepatocellular [HCC] (n=3,570) (81), and oral cavity (n=1,471)

(82) cancers. HIF-1a expression has been shown to be increased

independently of hypoxia in clear cell renal carcinoma (ccRCC) due

to a mutation in the von Hippel-Lindau (VHL) gene. The mutation

inactivates normoxic proteasomal degradation of HIF-1a inducing

elevated levels of HIF (83). Therefore, expression of hypoxia-related

endogenous probes may not necessarily correlate with hypoxia and,

are not a good standalone hypoxic marker. Meta-analyses have also

shown high tumour expression of CA9 is an adverse prognostic

factor in multiple cancers: renal cell carcinoma [RCC] (n=2,611)

(84), oral squamous cell carcinoma [OSSC] (n=1,616) (85), and

head and neck [H&N] cancer (n=1,470) (86). Several meta-analyses

also show GLUT1 is an adverse prognostic factor in several cancers:

lung (n=1,423 (87) and n=1,665 (88)), BCa (n=1,861) (89),

colorectal cancer [CRC] (n=2,077) (90), and OSCC (n=1,301)

(91). Furthermore, two meta-analyses in mixed cancer types

showed high GLUT1 expression in tumours is associated with a

poor prognosis (n=4,079 (92), and n=4,794 (93)). Although some of

these markers have shown promise in hypoxia detection and

stratifying patient therapy, this method relies on standardisation

and establishment of guidelines across different laboratories, a

common limitation in tissue-specific biomarkers (94). More focus

is needed on systems that can be implemented into clinic (11).

Alternative measurements of hypoxia have also been developed

including the indirect measurement of hypoxia using exogenous

probes such as 2-nitroimidazole compounds (pimonidazole and

EF5). These probes diffuse passively across the cell membrane and

the nitro-group is enzymatically reduced to a reactive species inside

the cell. Under hypoxic conditions, the nitro species undergoes

further reduction and forms covalent bonds with central

macromolecules which results in the accumulation of 2-

nitroimidazole in hypoxic cells. However, within normoxic cells,

the nitro species is re-oxidised and can diffuse out the cells (95, 96).

Tumour biopsies are collected and hypoxia is detected using

monoclonal antibodies. Multiple studies have shown the

prognostic significance of these markers in H&N cancers, PCa,

sarcomas, laryngeal cancer (LC), and glioblastoma (GBM). These

markers are associated with locoregional control (LRC) (97),

aggressive phenotype (98), metastases (99), poor outcome (100)

and short time to recurrence (101).

Imaging-based markers for hypoxia are undergoing

development such as 18F-MISO PET which uses a radioactive

tracer, fluoromisonidazole (FMISO), to measure the levels of

oxygen within tumours alongside positron emission tomography

(PET) imaging. This is associated with survival outcomes and

treatment response. In prospective hypothesis- generating and

validation cohorts, patients with H&N cancer received 18F-MISO
Frontiers in Oncology 04
PET at different timepoints before or during chemoradiotherapy

(CRT). Tumour hypoxia after 2 weeks of CRT correlated with a low

LRC, whereas patients with oxic tumours had a good prognosis

(102, 103). Carles et al. (104) prospectively analysed 35 HNSCC

patients evaluated with 18F-MISO PET during CRT, correlating the

changes in size and location of hypoxic areas within the tumour by a

new classification parameter. The classification parameter

distinguished between patients who had early or late disease

progression, and how their hypoxic regions changed during CRT.

Some of the radiomic features, particularly the low grey-level zone

emphasis was able to predict local recurrence with high accuracy.

Therefore, it was concluded that 18F-MISO PET hypoxia scanning

has potential to be useful for personalised treatment plans and

outcome prediction in HNSCC patients. However, 18F-MISO can

bind to non-hypoxic cells in conditions of inflammation, infection

or oxidative stress (105). Moreover, 18F-MISO has a slow blood

clearance and tissue uptake therefore, it takes a long time to reach

stable distribution in tumours (106). Although in a meta-analysis

study, it has been shown that PET measured hypoxia is a robust

parameter with a strong impact on outcome of HNSCC and that the

most commonly investigated tracers 18F-MISO and FAZA (18F-

Fluoroazomycin-arabinosid) can probably be used equivalently in

multicentre trials (107). Dynamic contrast enhanced-MRI (DCE-

MRI) has been shown to reflect heterogenous tumour perfusion and

subtle tumour volume change during radiation/chemotherapy in

prospective analysis of 62 CC patients. DCE-MRI is associated with

tissue oxygenation and therefore, can be a good parameter for

assessing hypoxia. In CC patients, they showed that there are

independent and better predictors of tumour recurrence and

death than clinical prognostic factors. Combining clinical

prognostic factors and MRI parameters improves early prediction

of treatment failure. This offers the potential of altering the

treatment plan for patients (108).

Each of the techniques described have individual advantages

and disadvantages (Table 3). The ability to measure hypoxia would

aid clinical decision-making, with a robust predictive biomarker

being the holy grail. However, a robust biomarker is not sufficient

for its implementation into clinic, as shown by the oxygen electrode

studies. Feasibility, economic costs, and undesirable effects in

patients also need to be considered.
Hypoxia and the
tumour microenvironment

The TME is a complex environment formed around tumours

involving the interplay of several cell types and molecules. In solid

tumours, the TME consists of cancer cells, surrounding blood

vessels, immune cells, cancer-associated fibroblasts (CAFs),

signalling molecules and the extracellular matrix (ECM)

(Figure 1). The tumour type, stage of cancer and location can

influence the nature of the TME. Tumour cells can change the

composition of the microenvironment by releasing extracellular

signals that promote angiogenesis or induce peripheral immune

tolerance to evade immune detection (109). Features including

hypoxia, the metabolic microenvironment, acidic niche and
frontiersin.org
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mechanical environment also play important roles in the phenotype

of the TME (110). The hypoxic TME can help the tumour grow,

spread or become resistant to treatments.

Metabolic switch within the TME is essential for cancer cell

growth and metabolism, and adaptation to the hypoxic

microenvironment. This phenomenon is described as the

Warburg effect and is characterised by cell metabolism favouring

glycolysis to meet the demand of the cancer cells for survival. The

Warburg effect involves increased rate of glucose uptake and

preferential production of lactate. This induces acidification of

TME from accumulation of large amounts of metabolic waste
Frontiers in Oncology 05
products including lactic acid, carbon dioxide and bicarbonate

protons (111). These products lower the pH of the extracellular

space and create a gradient between the intracellular and

extracellular pH. This has an impact on multiple hallmarks of

cancer including suppression of immune response, increasing

tumour invasion and metastasis, and modulating proliferation

(112). Hypoxia also enhances upregulation of glucose transporters

including GLUT1 and enzymes of the glycolytic pathway (e.g. CA9)

feeding back into the glycolysis cycle (113, 114). A further

consequence of acidification is the enhanced activity of matrix

metalloproteinases (MMPs) which have a role in degrading the

ECM and basement membrane (115). Therefore, the invasive and

metastatic potential of tumours under hypoxia is enhanced.

Acidification can also enhance resistance to chemotherapy and

radiotherapy by reducing the uptake of drugs and activating DNA

repair mechanisms (83).

This review will focus on the ECM, CAFs and immune cells

within the hypoxic TME, both as individual components and how

they interplay to create a more pro-tumorigenic microenvironment

that can be manipulated for better patient outcome.
Hypoxia and the extracellular matrix
in cancer

The ECM is a complex network of biomolecules in the

extracellular region that provides structural and mechanical

support to surrounding cells. Several reports show its importance

in the development of cancer (116). The ECM comprises a wide

range of molecules that include structural proteins (e.g. fibronectin

[FN], collagen [COL]), signalling molecules including cytokines

and growth factors, (e.g. endothelial growth factor [EGF],

transforming growth factor b [TGF-b]) and enzymes (e.g. MMPs,

lysyl oxidase [LOX], prolyl 4-hydroxylase [P4HA]). The main

protein components of the ECM are FN, COL, elastin and

laminin proteins (117–121).

(116) CAFs are located in the tumour stroma and are the main

producers of ECM (122–124). However, cancer cells also produce

ECM and are important in determining the tumour ECM

composition (125). In cancer development, the normal ECM

phenotype shifts towards a cancerous ECM phenotype (126, 127).

During this process, the ECM undergoes increased remodelling and

deregulation of the levels of growth factors and enzymes (e.g. MMPs

and TGF-b). Because of this remodelling process, a more fibrotic

and stiffened ECM develops in cancer (116, 127). The

transformation of the ECM towards a cancerous phenotype is a

key process for tumour development that promotes cell growth and

survival, metastasis and recruitment of cancer-associated cells (e.g.

CAFs and tumour-associated macrophages [TAMs]), and

modulates immune responses (4, 126, 128).

Hypoxia enhances ECM remodelling as a driver of tumour

desmoplasia, a complex process that includes ECM degradation,

composition and structural changes, generating a fibrotic and stiffer

ECM (129). Degradation of the basement ECM membrane is

enhanced in hypoxia as it drives neoplasia and tumour re-
TABLE 3 Advantages and disadvantages of hypoxia detection methods.

Technique Advantages Disadvantages

Oxygen
electrode
probes

Well validated Invasive

Histopathology
(e.g. necrosis)

Extremely cheap Hypoxia can appear
without necrosis

Easy to perform No serial measurements

Use of available
diagnostic biopsies

IHC* (GLUT-1,
CA9, HIF-1)

Cheap Not robust

Easy to perform Protein expression can be
affected by
external factors

Suitable for large
retrospective cohorts

Poor validation
across studies

Use of available
diagnostic biopsies

No serial measurements

Nitroimidazole
markers

Cheap Needs to be administered
7-48h before biopsy

Easy to perform Staining variability
across biopsies

Validated Do not detect acute
hypoxic areas

mRNA
gene signatures

Well validated (e.g breast,
lung, head and neck cancers)

No consensus signatures

Use of multiple genes allows
for robust and
replicable results

No serial measurements

Use of available
diagnostic biopsies

miRNA
signatures

Less vulnerable to degradation
than mRNA

Not validated

Use of multiple miRNAs
allows for robust and
replicable results

No serial measurements

Use of available
diagnostic biopsies

PET Allows serial measurements Expensive

Non-invasive Complex image analysis
*IHC, immunohistochemistry.
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oxygenation (130). As reviewed by Chang and Chaudhuri (131),

degradation of the basement membrane is a key for tumour

progression that promotes local tissue invasion, and tumour

metastasis (131). BCa patients with no basement membrane

degradation have five-year overall survival (OS) rate of 99%.

However, the percentage drops down to 85% for patients with

local invasion of the basement membrane, and 27% once metastatic

(132). Hypoxia increases MMPs secretion to induce basement ECM

membrane degradation through HIF signalling (133, 134). For

example, HIF-1 activity drives MMP2, MMP9, MMP14 and
Frontiers in Oncology 06
MMP15 overexpression (129, 134, 135). MMP2, MMP9, and

MMP14 target and promote COLIV degradation, an activity

associated with the destruction of basement membranes in BCa

(136). MMP1 is also overexpressed due to HIF-1 activity in bladder

cancer (BLCA), leading to increased migratory capacity in the

presence of reactive oxygen species (ROS) (137).

The changes in the composition and structure of the ECM under

hypoxia are driven by increased deposition and crosslinking of COL,

FN and hyaluronic acid (HA) (138). Higher numbers and

crosslinking of ECM fibres increase ECM stiffness and induces
TABLE 4 Clinical trials targeting different apoptotic pathways within solid tumours.

Compound Molecular
target

Clinical
trial
phase

Disease
sites targeted

Main findings Refs

ONC201 DRD2-
TRAIL
induction

I Refractory solid tumours Well tolerated and biologically active in advanced cancer patients (58)

ONC201 DRD2-
TRAIL
induction

II Recurrent/Refractory
metastatic breast cancer
and advanced
endometrial carcinoma

ONC201 was tolerable but did not have significant clinical activity as
a monotherapy

(59)

ONC201 DRD2-
TRAIL
induction

II Neuroendocrine tumours Tolerated well in patients with metastatic neuroendocrine tumours.
Showed clinical benefit*

(60)

ONC201 DRD2-
TRAIL
induction

II Recurrent glioblastoma Median OS was 41.6 weeks. One patient had durable OS with 85%
regression in one lesion and 76% regression in the second lesion. Another
patients continues to receive ONC201 for >12 months and remains
disease-free

(61)

Eftozanermin
alfa

TRAIL-
receptor

I Advanced solid tumours Acceptable safety, evidence of pharmacodynamic effects and preliminary
anticancer activity.

(62)

LCL161 IAPs I Solid tumours Well tolerated up to doses of 1800 mg (63)

LCL161 IAPs I Relapsed/refractory small
cell lung cancer and
gynaecologic cancer

Study stopped before the maximum tolerated doses and recommended
phase II dose. Addition of oral topotecan causes more myelosuppression
and did not improve outcome

(64)

LCL161 IAPs II Triple negative
breast cancer

TNFa gene signature was predictive of sensitivity of patients to LCL161
in combination with paclitaxel

(65)

Birinapant IAPs I Solid tumours Maximum tolerated dose (47 mg/m2), safety and pharmacokinetic
properties confirmed. Prolonged stable disease in 3 patients, and
accumulates in tumour cells results in downregulation of cIAP1.

(66)

Birinapant IAPs II Relapsed/refractory
metastatic colorectal cancer

Birinapant + irinotecan showed clinical benefit with the greatest benefit
in KRAS mutated colorectal cancer

(67)

ASTX660 IAPs Phase I/II Advanced solid tumours Data published on lymphoma showing a manageable safety profile and
clinical activity at 180-mg/day. Data not published on solid tumours

(68)

Xevinapant IAPs Phase II Advanced squamous cell
carcinoma of the head
and neck

Combination with CRT demonstrated superior efficacy. Probability of
survival 5 years after randomisation was 53% in patients treated with
xevinapant + CRT vs 28% in placebo CRT arm

(69)

APG-1387 IAP I Advanced solid tumours Well tolerable with manageable adverse events (70)

SurVaxM Survivin I Recurrant
malignant glioma

Well tolerated. 3 patients maintained partial clinical response or stable
disease for + 6 months. Median progression free survival was 17.6 weeks.
Median OS was 86.6 weeks.

(71)

Navitoclax
(ABT-263)

Bcl-2 inhibitor I Small cell lung carcinoma Safe and well tolerated with dose dependent thrombocytopenia as the
major adverse effect. 1 x patient had a partial response longer than 2
years. 8 patients had stable disease.

(72)
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fibrosis. Fibrosis is associated with metastasis and poor cancer

prognosis (139, 140). For example, fibrosis reduces the expected

survival time of patients with non-small cell lung carcinoma

(NSCLC) by 60% (141). Mechanistically, fibrosis promotes cancer

development and spread through enhancing integrin

mechanosensory pathways that activate EMT transition (e.g. FAK/

Rho/ROCK signalling) (139, 140) leading to high ECM stiffness,

fibrosis, and increased metastasis (129). Fibrosis induction is mostly

mediated through increased COL deposition and enhanced

expression of ECM remodelling enzymes (e.g. P4HA1, P4HA2,

PLOD2) (129). Hypoxic induction of COL1 deposition has been

known for 40 years and confirmed in several studies (142–145).

Other studies also show HIF-mediated deposition and/or gene

expression of fibrillar COLs (COL3 (146), COL5 (147–150), COL11

(149, 151) and COL27 (149)), basement membrane COLs (COL4

(150, 152, 153), COL7 (154), COL10 (151, 155) and COL18 (153,

156)), filament-forming COLs (COL6 (146)), fibril-associated COLs

(COL9 (150, 151), COL14 (157)) and transmembrane COLs (COL13

(150)). Recent studies show hypoxia can also enhance fibrosis

through increasing FN expression (158, 159). Increase in HA under

hypoxia was first reported by Gao et al. (160). The findings were

recently validated by Chen et al., who associated the increase in HA to

higher invasive capacity of GBM cells (161). However, the role of HA

in hypoxia-induced fibrosis has not been widely explored, and

requires further research.

Enhanced deposition of ECM proteins (e.g. COL, FN, HA) is

not sufficient to induce fibrosis. ECM crosslinking enzymes such as

LOX are required to stiffen the ECM (129, 162). Increased

expression of the LOX family members under hypoxia has been

reported in several cancer studies (138, 163, 164), stromal cell, and

endothelial cells (165). Similarly, hypoxia has been reported to
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promote the expression of other COL crosslinking enzymes through

HIF signalling (PLOD1 (166), PLOD2 (167), P4HA1 (149, 168–

170) and P4HA2 (149, 169)).

We can infer that higher expression of crosslinking enzymes

under hypoxia enhances COL and FN fibrogenesis, leading to a

fibrotic and desmoplastic ECM in cancer, but it is currently believed

that hypoxic fibrosis generates migratory tracks to promote cancer cell

migration and metastasis (Figure 2). This model is supported by

reports showing that the expression of ECM-crosslinking enzymes is

necessary for metastasis in in vivomodels, and is associated with worse

patient outcome (170, 171). Hypoxia also increases the expression of

integrin receptors, further enhancing the mechanosensory pathways

driving EMT transition. Hongo et al., have shown hypoxia enhances

cancer cell migration through upregulation of a2, a5 and b1 integrins
(172). Ju et al., showed upregulation of integrins a1, a5, a11 and b1,
with a5 and b1 integrin also increased cancer cell migration (173). As

the integrins described above are COL and FN receptors, it is possible

that their upregulation under hypoxia provides a migratory advantage

in a context where hypoxia is inducing fibrosis due to increased COL

and FN deposition and crosslinking. However, there is evidence in the

literature contradicting the current model. Kakkad et al., and Goggins

et al., have shown hypoxia reduces COL fibre density through HIF-1

signalling using in vivo BCa and PCa xenograft models (174, 175).

Furthermore, Kuchnio et al., demonstrated that low prolyl-

hydroxylase 2 (PHD2), a protein that induces HIF-1 hydroxylation

and degradation, impairs ECM deposition, fibrogenesis, and

metastasis (176). These findings were validated by Madsen et al.,

who showed PHD2 inactivation impairs CAF activation, ECM

deposition, and fibrosis (177).

There are several possible explanations to the contradictory

findings. Most studies addressing hypoxia in the ECM have been in
FIGURE 1

The hypoxic tumour microenvironment (TME). Hypoxia plays an important role in the development of the TME. The TME is composed of hypoxic
tumour cells, cancer stem cells, tumour cells, immune cells, cytokines/chemokines, collagen, fibronectin, cancer associated fibroblasts (CAFs),
endothelial cells and, blood vessels. As the tumour cells grow, the tumour cells further away from the blood supply have limited access to oxygen
and become hypoxic tumour cells. Additionally, the TME undergoes a metabolic switch to meet the demands of the TME which involves increased
glucose uptake and production of lactate resulting in an acidic TME characterised by a decreasing pH. These changes result in a change in cytokine/
chemokine release, a change in immune cell phenotype, modification of the extracellular matrix, and activation of CAFs. Together, these form a
more pro-tumorigenic environment prone to increased invasive and metastatic potential, as well as increased resistance to chemoradiotherapy.
Created with BioRender.com.
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fibroblasts, as they are considered the main drivers of fibrosis in

cancer (139, 140). However, Tian et al., have shown cancer cells also

change the ECM composition and remodelling in the development

of fibrosis (178). Furthermore, the same study highlights fibroblasts

and cancer cells have distinct contributions to the ECM during the

development of fibrosis (178). Therefore, it is possible hypoxia

drives distinct ECM remodelling process in fibroblasts and

cancer cells.

Regard ing the hypox ia mechani sm dr iv ing ECM

remodelling, most studies have focused on the role of HIF-1/2

(110). However, the role of HIF-3, the unfolded protein response

(UPR) and the DNA damage response (DDR) pathways in the

induction of fibrosis is poorly understood. Distinct levels of

oxygen deprivation (179), and the length of exposure to

hypoxia (3, 180) can change the signalling of the hypoxia

pathways. Therefore, variability across experimental settings

can also explain the differences reported in literature. In

addition, to the current data no study has mechanistically

proven hypoxias ability to enhance ECM fibrogenesis.

Therefore, further clarification of the mechanisms driving

hypoxia ECM remodelling, and its links with fibrosis and

metastasis in hypoxic tumours is needed.
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Hypoxia and cancer
associated fibroblasts

CAFs are a type of stromal cell within the TME characterised by

an elongated morphology. They can be derived from different cell

types including resident fibroblasts, mesenchymal stem cells

(MSCs), pericytes, smooth muscle cells, endothelial cells,

epithelial cells, fibrocytes, stellate cells and adipocytes (Figure 3).

CAFs are characterised by a lack of protein expression for epithelial,

endothelial, or hematopoietic cells however, do express

mesenchymal biomarkers including vimentin, a-smooth muscle

actin (a-SMA), fibroblast activation protein (FAP) and platelet-

derived growth factor receptor-alpha (PDGFR-a) (183). They can

be regulated by both HIF-dependent and HIF-independent

mechanisms (110).

CAFs interact with multiple TME cells and have a significant

impact on tumour biology including angiogenesis, invasion,

immune evasion, metastasis and drug resistance (183) (Figure 3).

Hypoxia can alter the phenotype and function of CAFs, modulating

the crosstalk between different cells of the TME (110). Due to their

diverse role within the TME, tumour-promoting CAFs have been

considered potential therapeutic targets in cancer (110, 183, 184).
FIGURE 2

Hypoxia influences the development of a cancerous ECM. Hypoxia in the ECM increases collagen (COL) and fibronectin (FN) deposition, as well as
secretion of metalloproteinases (MMPs), lysyl oxidases (LOX) and prolyl 4-hydroxylase subunit alpha (P4HA) 1 and 2. Increased MMPs, LOX and
P4HA1/2 promote the generation of organised aligned COL and FN fibre tracks in the ECM, enhancing cell migration. Hypoxia also induces the
secretion of growth factors and cytokines, which are also released due to ECM remodelling, establishing a synergistic effect. Release of growth
factors (e.g. transforming growth factor b [TGF-b], endothelial growth factor [EGF], fibroblast growth factor [FGF]) enhance not only cancer cell
growth and survival, but also recruitment of cancer-associated fibroblasts (CAFs) and tumour associated macrophages (TAMs). TAMs and CAFs
participate in the secretion of growth factors, ECM remodelling and COL/FN deposition, increasing the synergistic effect. Under hypoxic stress,
angiogenesis is activated through secretion of angiogenic growth factors (e.g. vascular endothelial growth factor [VEGF], angiopoietin [ANG]). The
angiogenic process allows for the development of new blood vessels, enhancing ECM remodelling during the process. Additionally, an organised
hypoxic ECM provides migratory tracks directing cells towards blood vessels and enhancing intravasation. Pro-tumorigenic growth factors and
enzymes (e.g. TGF-b, LOX) can intravasate and travel to distant healthy tissues, generating pre-metastatic niches through ECM remodelling. The
same migratory tracks enhance cancerous cell migration and intravasation, allowing them to circulate and eventually colonise the pre-metastatic
niches and seed new tumour cells. Created with BioRender.com.
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More recently, different CAF subtypes have been identified with

either pro-tumorigenic or anti-tumorigenic effects (185). Although

research is emerging within this field, the focus on hypoxia is

limited. Therefore, it is important to differentiate between subtypes

and cancer types, to deliver a more targeted and personalised

therapy for patients.
CAF activation by hypoxia

Fibroblasts are activated in response to multiple signalling

molecules including TGF-b, interleukin-1b (IL-1b), PDGF, ROS,
stromal cell-derived factor 1 (SDF1), sonic hedgehog protein

(SHH), hepatoma derived growth factor (HDGF) and FGF. These

can be secreted by both cancer cells and stromal cells (Figure 2).

CAF activation can mediate cancer progression under hypoxic

conditions (Figure 3), HIF/TGF-b activation regulate ECM

remodelling, immune response, metabolic reprogramming,

angiogenesis and metastasis (181).
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Hypoxia activates resident fibroblasts specifically by ROS and

the activation of the HIF-1a pathway which are both driven by

hypoxia. Resident fibroblasts are stimulated and mobilised by TGF-

b1 to activate CAFs (Figure 3). PDGF, FGF, SHH and IL-1b
secreted by tumours, also play a role in the activation of resident

fibroblasts into CAFs activating ERK, Shh/Smo and NFkB
pathways. Pericytes, fibrocytes, stellate cells and adipocyte-derived

CAFs are recruited by tumours by TGF-b and SDF-1, and are

activated by TGF-b or PDGF. CAFs also originate from precursor

cells that are recruited by tumour cells. These are activated by the

multiple signalling molecules described. MSC-derived CAFs are

activated by SDF-1,TGF-b, HDGF and FGF. Epithelial cells can

differentiate into CAFs through TGF-b and ROS mediated EMT

(181). Endothelial cells undergo a similar process known as

EndoMT which is driven by TGF-b and PDGF (Figure 3) (186).

CAFs respond much like cancer cells to hypoxia and undergo

metabolic reprogramming to adapt to the TME and to support

glycolysis. CAFs also provide essential metabolites for tumour

growth. They have a bi-directional role with cancer cells, and
FIGURE 3

CAF activation pathways and downstream effects. CAFs are derived from multiple cell types and activated by multiple molecules including hedgehog
(Hh), transforming growth factor-b (TGF-b), reactive oxygen species (ROS), interleukin-1b (IL-1b), fibroblast growth factor (FGF), platelet-derived
growth factor (PDGR), stromal cell-derived factor 1 (SDF-1), heparin binding growth factor (HBGF) which can be driven by hypoxia. Precursor cells
including mesenchymal stem cells (MSCs) are a source of CAFs activated by CXCL-12 and TGF-b derived from tumour cells. Pericytes, fibrocytes,
stellate cells and adipocytes are also recruited by tumours by CXCL-12 and TGF-b, and are activated by TGF-b and PDGF. CAFs can derive from
mature epithelial cells that differentiate into functional CAFs by TGF-b mediated epithelial-mesenchymal transition (EMT). Endothelial cells undergo
EndoMT to differentiate into CAFs through TGF-b and SMAD signalling. HIF and TGF-b have a role in the function of CAFS. Genes associated with
changes in ECM remodelling, metabolic reprogramming, angiogenesis, immune response and metastasis are direct transcriptional targets of HIF in
CAFs or cancer cells. This creates bi-directional communication between CAFs and cancer cells through release of cytokines and chemokines (blue
dots) which promotes proliferation of both cells, and further enhancement of pro-tumorigenic pathways (Adapted from (181, 182)). Created with
BioRender.com.
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enhance tumour proliferation. The metabolic switch is important in

transforming fibroblasts to CAFs (23). Both melanoma tumour cells

and CRC CAFs undergo glycolysis under hypoxic conditions

however, CAF proliferation decreases relative to primary foreskin

fibroblasts. It is proposed that the increase in glycolysis is to aid

proliferation of tumour cells (23). Becker et al. (187) show that

hypoxia induces epigenetic reprogramming of normal fibroblasts

which results in a pro-glycolytic CAF-like phenotype. This induces

the metabolism of BCa cells and promotes tumour growth.

Together, these data highlight the role of CAFs in promoting

tumour growth, and how this can be driven by HIFs.
CAF subtypes

Hypoxia induces oncogenic signals that can change both CAF

phenotype and function reviewed by Han et al. (188). Rhim et al.

(189) and Özdemir et al. (190) highlight that the lack of clinical

success in targeting CAFs could be attributed to poor understanding

of their heterogeneity. Therefore, further elucidation of this could

help develop more targeted therapies.

These studies demonstrated that there is no common consensus

for defining CAFs within literature. Without a standardised naming

convention, it will be difficult to stratify patients who may benefit

from CAF-targeting therapeutics. CAFs have a significant role in

regulating multiple pro-tumorigenic pathways by the hypoxic TME

(Figure 3). Although, it is important to fully understand the CAF/

cancer cell axis, a deeper insight into CAF subtypes is needed to

fully elucidate these pathways.
CAFs and hypoxia

Contrary to data often presented on the role of HIF-1a as a

tumour-promoting factor, Kim et al. (191) have shown that

targeted deletion of HIF-1a in stromal cells enhances tumour

growth. In mammary stromal cells, HIF-1a is a negative regulator

of tumour development. HIF-1a null and VEGF-A-null mammary

tumours were associated with reduced hypoxia and decreased

permeability and density of tumours (191). TAM infiltration was

reduced in both null mammary tumours. In contrast, Chiavarina

et al. (192), showed that fibroblasts expressing HIF-1a increased

xenograft MDA-MB-231 breast tumour volume by ~3-fold. This

was associated with a reduction in caveolin-1 expression and an

increase in aerobic glycolysis shown by loss of mitochondrial

activity and increased lactate production. Direct activation of

HIF-1a in MDA-MB-231 cells in a xenograft model, showed a 3-

fold reduction in tumour volume. These data suggest that HIF-1a
effects are cell type dependent. The fibroblasts analysed by Kim

et al. (191), were derived from a mouse mammary model,

compared to Chiavarna et al. (192) who used a human

immortalised cell line, hTERT-BJ1.

In androgen-deprived prostate tumours, hypoxia is common

and associated with activation of HIF-1 and induction of TGF-b
expression. This results in differentiation of fibroblasts to
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myofibroblasts and production of CXCL13 which drives B-cell

recruitment and a more aggressive phenotype. This was

highlighted in a transgenic adenocarcinoma mouse model, where

the emergence of castration-resistant PCa was inhibited by

inhibition of TGF-b or blocking phosphodiesterase-5 which

prevents activation of myofibroblasts and CXCL13 (193). These

studies used different animal models, cancer models and methods

which could cause discrepancies within the data. The genetic

homogeneity within these species means that there is lack of

genetic variation that is more representative of the human

population. Most murine cancers are derived from mesenchymal

origin whilst human tumours mainly arise from epithelial tumours

(194). Additionally, the origin, differentiation and malignancy can

change the nature of the interaction between HIF-1a and CAFs.

Despite the evidence that CAFs have a tumour-promoting

role, there are studies that highlight tumour-supressing properties.

It is unknown whether fibroblast subtypes are normal fibroblasts

that are resistant to differentiating into CAFs, or a subtype of anti-

tumour CAFs. Hu et al. (195) emphasise the challenge of

personalising treatments due to our lack of understanding CAFs

functional distinctions within patient tumours. However, they

were able to identify 3 CAF subtypes from patients with

NSCLC, the different subtypes correlated with clinical response

to targeted therapies and tumour immune microenvironment.

They showed that NSCLC cells with mutant EGFR which accounts

for 20% of NSCLC resistance to tyrosine kinase inhibitors (TKIs)

had differing responses to EGFR TKI, Osimertinib, dependent on

CAF subtype.

Meflin is a protein expressed in CAFs within the pancreatic

TME. Low Meflin expression correlated with straight collagen fibre

alignment and a more aggressive pancreatic cancer (PaCa)

phenotype (196). Lida et al., showed that Meflin positive CAFs

have a tumour suppressive role in a PDACmouse model. Am80 was

identified as a reagent that induces Meflin expression in CAFs and

increased PDAC sensitivity to chemotherapeutics. Furthermore,

tumour vessel area and intra-tumoral drug delivery was enhanced

following treatment with Am80. Meflin suppressed tissue stiffening

by interacting with LOX to inhibit its COL crosslinking activity

(197) . CAFs are largely associated with creat ing an

immunosuppressive TME, reducing the efficacy of immune

checkpoint blockade. However, CAFs expressing Meflin in

patients with NSCLC, showed enhanced survival and favourable

therapeutic response to immune checkpoint blockade. Higher

prevalence of Meflin-positive CAFs is positively correlated with

CD4-positive T-cell infiltration and vascularisation within NSCLC

tumour. The anti-tumorigenic role of Meflin positive CAFs has also

been shown in CRC models (198). Takahashi et al., propose that

hypoxia depletes expression of Meflin on CAFs resulting in cancer-

promoting CAFs that induce chemoresistance (199).

Brechbuhl et al., show that estrogen-receptor (ER+) BCa have

two CAF subtypes defined by their CD146 expression. CD146neg

CAFs supress expression of ER and are less sensitive to tamoxifen.

Whilst CD146pos CAFs maintain ER expression in BCa cells and

sustain estrogen-dependent proliferation and sensitivity to

tamoxifen. This is also shown in PaCa (200), blocking CD146 in
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CAFs significantly enhanced tumour cell migration and invasion in

co-cultures with PaCa cells (201).

There has been limited research on the role of hypoxia in

regulating CAF phenotype. Madsen et al., show that chronic

hypoxia and HIF-1a stabilisation deactivate CAFs in an

orthotopic BCa model. The loss of PHD2 activity following

chronic hypoxia prevents both CAF-induced ECM remodelling

and BCa metastasis (177). This suggests that hypoxia may have a

positive interaction with CAFs, and that the influence of hypoxia

differs between different cell types. Despite the evidence of both pro-

tumorigenic and anti-tumorigenic roles of CAFs, there is limited

research on the role of hypoxia in regulating CAF expression and

role within the TME. All these data imply that targeting HIF-1a and

its signalling pathways in CAFs may provide different outcomes

between different patients and cancers. Therefore, it is essential that

specific characteristics of individual patient tumours and CAFs is

taken into consideration rather than a one-size-fits-all approach.
Hypoxia and immune cell regulation

Several infiltrated immune cells can be found within the TME

including CD8 T cells, CD4 T cells, regulatory T cells (Tregs),

natural killer cells (NK), TAMs and dendritic cells (DCs) (202).

Under physiological conditions, a tightly regulated balance between

immune activation and immune suppression is needed to maintain

homeostasis (203). External factors including hypoxia can alter this

balance (204). Data supports the role of hypoxia in dampening the

anti-tumour immune response by modulating key processes

including immune cell activation, infiltration and function (205).

Hypoxia-induced immune modulation can occur via direct and

indirect mechanisms including changes in cytokines and growth

factors, expression of immune checkpoint molecules and metabolic

activity (206–209). The role of hypoxia in modulating immune cell

activity is complex and may be tumour-dependent or person-

dependent. In addition, hypoxia can have different effects on the

distinct immune cells present within the TME.
Regulation of T cells

T cells (CD8+ and CD4+) are an important component of the

adaptive immune system and play a key role in eliminating tumour

cells via various cytotoxic activities (210, 211). The anti-tumour

function of T cells can be suppressed in several ways. This includes

up-regulation of inhibitory checkpoint molecules and the presence

of other immune cells such as Tregs, TAMs and myeloid-derived

suppressor cells (MDSCs) (210). Evidence suggests that hypoxia

plays an important role in inducing T cell dysfunction by

modulating expression of checkpoint molecules and immune cell

infiltrate via changes in growth factors, cytokines, chemokines and

intra-tumoural pH (212–214).

The presence of hypoxia in tumours causes up-regulation of

inhibitory immune checkpoint molecules and growth factors that

reduce the cytotoxic and survival potential of T cells (212–222).

Hypoxia has been shown to up-regulate immune checkpoint
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molecules on T cells (TIGIT, TIM3 and VISTA) in pre-clinical

models of melanoma, CRC and lung cancer. They are associated

with reduced anti-tumour T cell activity (6, 159, 213, 215–222).

VEGF is a hypoxia-responsive growth factor that has a role in

immune regulation. In vivo studies investigating the effects of

inhibiting VEGF on immune regulation suggest that blocking

VEGF improves the cytotoxic potential of CD8+ T cells by

increasing production of IFNg and TGF-b (223, 224). However,

careful consideration of the anti-VEGF approach needs to be

highlighted as although inhibiting VEGF improved anti-tumour

immune cell phenotype, this was accompanied by increased

hypoxia. Using combinational therapies may help eliminate the

risk of negative side effects. In addition, targeting hypoxia via VEGF

or HIF-1a may need a deeper understanding of the cell-type or

tumour expression profile. Especially since Palazon et al. (224) show

that deletion of either HIF-1a or VEGF in CD8+ T cells reduces

their ability to infiltrate and kill BCa tumours.

Single-cell analysis of tumours from HCC patients

demonstrates that regions of high hypoxia have increased Treg

infiltration and decreased granzyme B positive T cells compared

with low hypoxic regions (214). In vitro analysis suggested that

hypoxia increases secretion of CCL28 which increases Treg

migration (212). In addition, the hypoxic TME is more acidic and

glucose deprived which leads to changes in immune cell metabolism

(i.e. activation of glycolysis, increased lactic acid levels and amino

acid metabolism) (24, 207–209, 225–231). These metabolic changes

provide Tregs with a survival advantage, as they are resistant to high

levels of lactate. Meanwhile, other immune cells including NK cells,

DCs, CD8+ and CD4+ T cells cytotoxicity and maturation is

inhibited, causing increased immune suppression (207–209, 226,

231–233). In vitro co-culture analysis using HCC cell lines suggests

that hypoxia increases expression of indoleamine 2, 3-dioxygenase 1

(IDO1) in monocyte-derived macrophages and Tregs leading to

reduced CD8+ T cell proliferation and cytotoxic effects and

expansion of Tregs (227, 229). The effects of hypoxia on IDO1

are potentially cell-type specific as expression of IDO1 in tumour

cells (i.e. OC cells) is reduced under hypoxic conditions (229). This

along with the differences observed in targeting VEGF and HIF-1a
in different cell types highlights the complexity associated with

drug-targeting. Suggesting that a greater understanding of the wide-

spread expression profile of targets of interests is needed to improve

drug efficacy and reduce toxicity.
Regulation of NK cells

NK cells form part of the innate immune response that can

induce rapid and strong anti-tumour activity without the need for

priming by antigen-presenting cells (211). However, under hypoxic

conditions expression of PD-L1 on NK cells is increased, leading to

reduced CD8+ T cell proliferation (234, 235). In addition, hypoxia

reduces NK cell activation in response to tumour cells by reducing

the expression of NK cell surface receptors (i.e. NKp46, NKp30,

NKp44 and NKG2D) (236). Although hypoxia reduces expression

of receptors associated with NK cell activation, the surface density

and function of the Fc-g receptor CD16 remains unaffected under
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hypoxia (236), suggesting that hypoxia does not affect the cytotoxic

potential of NK cells. Similar to observations in T cells, hypoxia

affects NK cell activity to different extents and may be tumour-

dependent, person-dependent or dependent on the severity of

hypoxia (236–239). Balsomo et al. (236) found that even in the

presence of hypoxia, NK cells were able to efficiently kill melanoma

cells but the same was not observed for HCC and BCa cell lines

(237, 238). In vitro analysis of HCC cell lines demonstrated that

HCC cells and NK cells exposed to 6%, oxygen significantly

inhibited NK cell toxicity against the HCC tumour cells (238).

However, at oxygen concentrations <6% there was no significant

decline in NK cell activity, suggesting differences in downstream

pathways activated at different oxygen concentrations. This is an

important observation as it suggests that the extent of hypoxia can

influence the resulting NK cell response either positively or

negatively. Therefore, biomarkers that allow for gradients of

tumour hypoxia to be identified would be advantageous in

providing personalised treatment approach to targeting

immune cells.
Regulation of myeloid-derived
suppressor cells

MDSCs are immune cells derived from the myeloid linage that

have potent immunosuppressive activity even under physiological

conditions (240). Hypoxia increases intra-tumoural lactate,

promoting production of MDSCs which reduces T cell and NK

cell proliferation and cytotoxic potential of T cells. Noman et al.

(241) showed that hypoxia upregulates the expression of PD-L1 but

not PD-L2, PD-1, CTLA-4, CD80 or CD86 on splenic MDSCs.

Subsequent inhibition of PD-L1 increased the cytotoxic capability

of CD4+ and CD8+ T cells by restoring the production of IFNg.
Down-regulation of IL6 and IL10 is the proposed mechanism for

improved T cell cytotoxicity by PD-L1 blockage (241).
Regulation of monocyte-derived tumour-
associated macrophages

TAMs are innate immune cells that are recruited into the

tumour and differentiate from monocytes. Recruitment and

differentiation of TAMs is orchestrated by chemotactic signals

from soluble factors such as CCL2, CCL5, colony-stimulating

factor 1 (CSF1), VEGF, semaphorin 3A (SEMA3A) endothelial

cell monocyte-activating polypeptide-II (EMAP-II), endothelin,

stromal cell-derived factor 1a (SDF1a) and oncosatin M (211,

242). Within the tumour, TAMs are found in abundance in both

vascular and avascular stromal areas. TAMs can exist as M1 or M2

phenotype, with M2 TAMs associated with a pro-tumorigenic

potential. Hypoxia modulates TAM recruitment, phenotype and

function to induce an immunosuppressive TME.

Hypoxia inhibits the mobility of TAMs, resulting in

accumulation of TAMs within hypoxic areas. Sica et al. (243)

showed that defective expression of CCR2, a monocyte

chemotactic protein in TAMs derived from patients with OC
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induces monocyte migration towards CCR2. Chemokines and

cytokines produced by TAMs are key modulators of angiogenesis

and metastasis, promoting a pro-tumorigenic microenvironment.

TNF-a and IL-1 are secreted by macrophages and blood monocytes

(244, 245). Both cytokines are associated with stimulating VEGF,

and therefore may drive angiogenesis (246, 247).

Increased lactic acid in regions of hypoxia induces an M2 TAM

phenotype which is associated with poor prognosis in BCa, CC, PCa

and BLCA (231, 248–250). Exosomes secreted from hypoxic

tumours contain elevated levels of cytokines and chemokines that

drive macrophage recruitment and M2 polarisation. Park et al.

(251) showed that exosomal protein secretion in hypoxic

melanoma, squamous skin carcinoma and lung cancer cells was

3-4 fold higher than in normoxic cells. The hypoxic exosomes were

associated with secretion of immunosuppressive mediators

including TGF-b1and chemo-attractants including, CSF-1

associated with M2-like macrophage polarisation. The role of

exosomes in promoting M2 polarisation has been demonstrated

further by Shou et al. (252) in oesophageal cancer. Downregulation

of PTEN is alsoshown by Zhu et al. (253) via exosomal miR223

derived from hypoxic TAMs co-cultured with OC cells. This

resulted in decreased apoptosis, increased cell viability and

enhanced drug resistance. In cancer, an M2-phenotype

macrophage can enhance immunosuppression, promote

angiogenesis and drug resistance. Polarisation of TAMs to an

M2-like phenotype induces secretion of IL-10, TGF-b or VEGF

wh i ch i nh i b i t T c e l l f un c t i on , i ndu c e T r e g s and

promote angiogenesis.

iNOS expression is increased in the presence of HIF-1a in

macrophages under hypoxic conditions (24). Doedens et al. (24)

show that hypoxia mediates suppression of T cell infiltration in vitro

dependent on macrophage expression of HIF-1a in BCa models.

IDO expression has been shown to increase monocyte-derived

macrophages in a CCL20 dependent manner when co-cultured

with hypoxic HCC cells. This correlated with increased HIF-1a
expression. Additionally, the monocyte-derived macrophages were

shown to supress T cell function and induce Tregs, generating an

immunosuppressive microenvironment (227).
Regulation of monocyte-derived
dendritic cells

DCs are specialised antigen presenting cells that differentiate

from circulating monocytes and link the adaptive and innate

immune response (211). Low oxygen tension has been associated

with the differentiation and function of DCs.

Hypoxia reduces the ability of DCs to uptake tumour antigen

and downregulates the expression of DC differentiation and

activation markers including CD40, CD80 and MHCII via

increased production of factors including IL-10, iNOS and VEGF.

This affects the ability of DCs to process and present tumour

antigens, reducing T cell priming and ultimately the induction of

treatment induced immunogenic cell death (254). In addition,

hypoxia induces increased secretion of osteopontin by DCs, a

factor associated with enhanced migration of tumour cells (255).
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Regulation of immune cells by hypoxia via
other cells in the TME

There is strong evidence for the role of hypoxia in inducing

direct effects on immune cells. However, hypoxia can also modulate

immune cells indirectly via actions of tumour cells, endothelial cells

and CAFs.

In terms of immune regulation by tumour cells, hypoxia has

been shown to modulate epithelial mesenchymal plasticity. In lung

adenocarcinoma, hypoxia-induced a mesenchymal phenotype in

some hypoxic tumour cells. These hypoxic subclones demonstrated

increased resistance to CD8+ T cell and NK cell-mediated lysis via

TGF-b signalling (256). In vitro data using human cell lines derived

from metastatic PCa and BCa tumours (DU145 and MDA-MB-

231) demonstrates that hypoxia (0.5% O2) increases tumour cell

expression of PD-L1 in a HIF-1a dependent manner leading to

increased T cell apoptosis (257). In vivo models of melanoma

suggest that increased expression of NANOG under hypoxic

conditions upregulates the expression and secretion of TGF-b,
and promotes the infiltration of immunosuppressive cells (258).

In vivo models of BCa suggest that hypoxic mammary tumours

secrete a variety of cytokines and growth factors (CCL2, G-CSF,

TNF-a, VEGF, TIMP-1 and MMP-9) that increase infiltration of

MDSCs (CD11b+/Ly6Cmed/Ly6G+). This increase in myeloid cell

infiltration is inversely correlated with NK cell suppression, which

enabled a microenvironment primed for metastatic growth of

disseminated tumour cells within the lung. HIF-1a expression has

been shown to negatively correlate with major histocompatibility

complex (MHC) class I chain-associated genes which are essential

for tumour antigen presentation and immune recognition. In vitro,

analysis of PaCa demonstrated that hypoxia reduces the expression

of MHC on the surface of PaCa cells. In addition, hypoxia induced

the shedding of membrane bound MHC into extracellular space

forming a soluble MHC which acts as a decoy and reduces the

capacity of antigen presenting immune cells to present antigens to

CD8+ T cells, thereby reducing T cells priming and T-cell

mediated killing.

Hypoxia can induce changes to endothelial cells via increased

expression of VEGF and FGF, altering interstitial pressure, intra-

tumoural perfusion and expression of adhesion molecules. Changes

in adhesion molecules (i.e. ICAM1, P-selectin, E-selectin,

MAdCAM-1 and VCAM) on endothelial cells can lead to

reduced immune cell infiltration and shift the balance of the

infiltrated immune cell profile towards a more immune

suppressive phenotype.

Hypoxia also modulates chemokine and cytokine production by

CAFs, which increases immune cells associated with an

immunosuppressive microenvironment. Data demonstrates that

hypoxia increases CAF secretion of CXCL13 which promotes B

cell recruitment in PCa. Increased B cell tumour infiltration is

associated with progression to castration-resistant disease and

neuroendocrine differentiation, both of which are associated with

poor prognosis (193). In BCa, hypoxia-induced CAF secretion of

CXCL12 suppresses the anti-tumour activity of T cells, DCs, NK

cells and enhances the pro-tumour activity of Tregs, MDSCs and
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TAMs. Hypoxia up-regulates TGF-b secretion which up-regulates

expression of PD-L1 and PD-L2 on CAFs. This promotes T cell

exhaustion and immune evasion (259).
The tumour microenvironment and
resistance to therapy

The ECM, CAFs and immune cells are all shown to be impacted

by hypoxia, having an effect on cancer cell resistance to

chemotherapy, radiotherapy and immunotherapy. One way in

which hypoxia induces resistance is by modulating the TME. This

phenomenon has attracted research interest for a long time, yet it

still remains unsolved (260, 261).

Our understanding to date includes knowledge of the hypoxic

TME inducing cell quiescence and causing resistance of tumours to

cell-cycle specific drugs including alkylating agents (e.g cisplatin),

antimetabolites (e.g gemcitabine), mitotic inhibitors (e.g paclitaxel)

and cyclin-dependent kinase (CDK) inhibitors (e.g Palbociclib)

(262–266). Hypoxia can also activate survival pathways including

PI3K/AKT, MAPK and NFkB which induces resistance to apoptosis

and DNA damage summarised by Rohwer and Cramer (267).

Hypoxia is also a well reported factor contributing to poor

response to radiotherapy (1, 268, 269). and suppression of

immune response by activation of expression of immune

checkpoint inhibitors. It also alters the composition and function

of immune cells within the TME (213, 270).
Resistance to chemotherapy

Resistance to chemotherapy is controlled by multiple

mechanisms, and these effects are often enhanced by hypoxia.

Biomechanical and biophysical properties of the ECM of solid

tumours often induce resistance to chemotherapy. Hydroxylation

of collagen by P4HA1, P4HA2, PLOD1 and PLOD-2 mediates

tissue stiffness and is regulated by HIF-1 (110). Hayashi et al. (271)

highlight that increased tissue stiffness is associated with a poorer

clinical complete response in BCa patients, relative to patients with

a low tissue stiffness score (10% versus 38% respectively). This has

also been shown in PaCa by Rice et al. (272), where matrix stiffness

was correlated with chemoresistance to paclitaxel. Matrix stiffness

has been proposed to enhance chemoresistance by inducing cell

cycle arrest in the G0 phase. Physical signals induced by matrix

stiffness are transduced to tumour cells via integrin receptors which

have a role in mechano-transduction. This alters cell morphology,

proliferative capacity and invasive ability of tumour cells. However,

there is conflicting data on the exact role of matrix stiffness in

therapeutic efficacy dependent on the tumour type. In metastatic

CRC, increased ECM stiffness was regulated by highly activated

metastases-associated fibroblasts which reduced the efficacy of

bevacizumab. Addition of anti-RAS, a hypertension drug, to the

regime enhanced response to bevacizumab by reducing stiffness of

the ECM (273). Qin et al., highlight how intermediate matrix

stiffness (38 kPa) induces resistance to doxorubicin measured by
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cell death rates (29.6% cell death) in BCa cells (MDA-MB-231),

compared to low matrix stiffness (10 kPa- 48.5% cell death) and

high matrix stiffness (57 kPa- 55.2% cell death). It is proposed that

high expression of integrin-linked kinase (ILK) and translational

coactivator, Yes-associated protein (YAP), within the BCa matrix is

associated with resistance to doxorubicin (274). In contrast, MCF-7

BCa cells exposed to a rigid matrix stiffness (2710 kPa), the IC50 of

cisplatin and taxol decreased significantly (p < 0.01), compared to

the soft matrix stiffness (5.3 kPa) which showed more resistance.

OC cells, SKOV3, were also shown to have enhanced survival within

the soft matrix (0.5 kPa), compared to a stiffer substrate (25 kPa)

following treatment with 1 mM cisplatin. This correlated with

overexpression of multi-drug resistance proteins, ABCB1 and

ABCB4, in cells grown on the soft gel matrix (275). Furthermore,

in osteosarcoma cell lines, the IC50 value and viability of cells was

significantly higher at 7kPa compared to the 55 kPa matrix (276).

Bordeleau et al., have correlated increased matrix stiffness with

disruption of vessel architecture and integrity and promotion of

tumour-like vascular phenotype. Increased stiffness of collagen

resulted in increased outgrowth of angiogenic sprouts from

spheroids, and a 1.5-fold increase in branching, compared to the

softer collagen gels. Furthermore, they demonstrated that MMPs

played a key role in promoting increased angiogenesis which was

found in stiffer matrices. This provides a potential explanation for

reduced chemotherapeutic efficacy following increased matrix

stiffness (277). Overall, these data demonstrate the contradictions

in data, and that it is important to consider multiple components of

the matrix including stiffness and its effects on vasculature. These

data have all been demonstrated in a normoxic context however, we

know hypoxia has an essential role in regulating matrix stiffness

(110), and therefore is likely to modulate response to chemotherapy.

Another consequence of a hypoxic TME is its acidification, this

is detrimental to resistance to therapies through a mechanism

described as ‘ion trapping’ (278). The phenomenon of ‘ion

trapping’ is described as weak bases isolated in acidic

compartments, and weak acids sequestering into alkaline

compartments. This has consequences for weak base drugs

including anthracyclines and vinca alkaloids (279). Furthermore,

Wachsberger et al. (280) showed that chronic exposure to acidic

conditions activates heat-shock protein, HSP-27, inducing cisplatin

resistance. Vukovic & Tannock (281)., observed that intracellular

acidification arrested cells in G1 phase, making the cells more

resistant to mitoxantrone, paclitaxel and topotecan in murine

mammary carcinoma cells and urothelial cancer cell lines. These

chemotherapeutics are all weak bases therefore, acidic conditions

reduce the cytotoxicity of these drugs by inhibiting their uptake due

to a larger proportion of the drug molecules becoming protonated,

limiting diffusion to cells.

The cell cycle plays an important role in regulating cancer cell

proliferation and apoptosis. The hypoxic TME induces cell cycle

arrest or quiescence in cancer cells (260). This is particularly

prevalent in the G1/S and G2/M checkpoints, which protect cells

from DNA damage and genomic instability. Cells become “stuck” in

these cell cycle phases making them less sensitive to chemotherapies

that target rapidly dividing cells. Chronic hypoxia is associated with

the induction of a quiescent state in cancer cells, where the cells are
Frontiers in Oncology 14
temporarily and reversibly arrested in G0 phase. This is associated

with a more aggressive tumour phenotype (282). The G0 phase of

the cell cycle is where cells are not actively dividing. These cells

remain dormant until the cells are exposed to favourable conditions

(283). Druker et al., reviewed the role of hypoxia and its control of

the cell cycle (284) highlighting that identifying G0-arrested cells

within tumours remains a challenge as there is a lack of easily

measurable markers to measure this state (283). BCa cells exposed

to chronic hypoxia (1% O2 for up to 7 days) were shown to enter

G0/G1 cell cycle phase (282), and it is established that this phase of

the cell cycle is resistant to cytotoxic chemotherapies (285).

p16INK4A has been related to inducing cell senescence, and

inhibition of pRb phosphorylation through cyclinD/CDK4 (286).

Box et al. (287) measured cell cycle arrest genes in multiple cancer

cell lines and primary fibroblasts. They found that different cell

types had different cell cycle arrest profiles in response to hypoxia.

BCa cells (HTB-30), CC cells (HeLa) and human mammary

epithelial cells all showed induction of G1/S arrest after initial

exposure to hypoxia. However, a HCC cell line (Hep3B) lacked

observable G1/S arrest in hypoxia conditions. Although all cell lines

showed reduced proliferation at 24 h. Loss of multiple cyclin-

dependent kinase inhibitors (CDKI) was found in the cell lines

including p16, p21 and p27. Methylation of P16 has been associated

with reduced sensitivity to paclitaxel in patients with advanced

NSCLC (288). Therefore, regulation of CDKI by hypoxia plays a

role in resistance to chemotherapeutics. Yano et al. (285)

highlighted that 90% of cancer cells within the centre of tumours

are in G0/G1 phase following implantation of MKN45 metastatic

stomach adenocarcinoma cells in nude mice. Furthermore, 75% of

cancer cells located >100 µm from tumour blood vessels are also in

this phase. Therefore, most drugs currently used in clinics are

ineffective in solid tumours as they target cancer cells in S/G2/

M phases.

Dysregulation of DNA repair pathways is associated with

initiation and progression of cancers. Hypoxia increases DDR

prote ins , decreas ing homologous directed repair by

downregulating BRCA1, BRCA2 and RAD51, decreasing

mismatch repair proteins MLH1, MSH2, MSH3 (289) and

downregulating base excision repair factors including, APE1,

OGG1 and MYH (290). With these mechanisms active within

hypoxic tumours treated with chemotherapies, it can be difficult

to effectively treat solid tumours. PARP inhibitors have shown

promise in overcoming dysregulation of DNA repair pathways

(291), Shelton et al. (292) showed in vitro and in vivo

enhancement of the effects of 5-FU, irinotecan or oxaliplatin and

radiation with PARP inhibitor, ABT-888 in CRC cells. However,

hypoxia has been associated with reduced efficacy of PARP

inhibitors in multiple cancer cell lines (293). Dysregulation of

DNA repair pathways can have significant implications for

patients, which leads to genomic instabilities and accumulation of

mutations. Understanding DNA repair deficiencies in tumours can

aid in treatment decisions including the use of PARP inhibitors.

Other targets such as DNA-dependent protein kinase inhibitors and

Rad51 inhibitors are currently being explored preclinically.

Prognostic biomarkers can indicate whether a patient is suitable

for these treatments by considering mutations in BRCA1/BRCA2 in
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BCa which indicates a more aggressive phenotype. Identifying these

mutations can inform clinicians that patients will be suitable for

treatment with PARP inhibitors (294). Weil et al., show that

dependent on the DNA repair pathway defects, breast and

ovarian tumours can be more sensitive with platinum-based

drugs or PARP inhibitors (295). This demonstrates that

identifying patients with DNA repair defects can guide treatment

decisions. In BRCA deficient cells, PARP inhibition is 3 times more

effective than cisplatin. Lou et al., highlight the benefits of profiling

patients with DDR pathway profiling. Patients with a low DDR

score did not benefit from adjuvant chemotherapy with anti-

PD1 (296).

Many chemotherapies induce apoptosis of cells however,

resistance to chemotherapy is characterised by a reduction in

apoptosis. The B-cell lymphoma-2 protein (Bcl-2) family of

proteins are one of the main regulators of the intrinsic apoptosis

pathway, and in chemoresistance upregulation of Bcl-2 proteins is

observed which offsets the pro-apoptotic proteins. Hypoxia has

been indicated as a key regulator Bcl-2 proteins, downregulating

pro-apoptotic proteins and upregulating anti-apoptotic proteins in

HCC and lung cancer cell lines (297). Treatment of OC cell lines

with cisplatin was associated with upregulation of Bcl-xL and

subsequent chemoresistance (298). Additionally, dysregulation of

inhibitors of apoptosis (IAPs) have been correlated with

chemoresistance in multiple cancers. IAP overexpression of

cIAP1 in oesophageal squamous carcinoma correlated with

resistance to cisplatin and camptothecin (299). Overexpression of

ML-IAP (Livin) correlated with resistance to etoposide, vincristine,

5-FU in CRC cells (300). In primary cells derived from melanoma

patients, Nachmias et al. (301) also showed resistance to etoposide

correlating with increased expression of the gene. These data were

associated with patient clinical response.

Our knowledge on the dysregulation of apoptosis in solid

tumours has led to the exploration of novel drug compounds that

increase apoptosis (Table 4). There are multiple molecules within

the apoptotic pathway that can be targeted; agonists to TRAIL and

SMACmimetics have been developed. Birinapant has been tested in

patient-derived xenograft models of OC and CRC and melanoma

showing growth inhibition following intraperitoneal administration

(30mg/kg) (302). Tolinapant (ASTX660) is another SMAC mimetic

and IAP antagonist which has shown success preclinically in

HNSCC, BLCA and CRC (303). In H&N cancer, tolinapant

enhanced radiation-induced immunogenic cell death in syngeneic

mouse models. An in vitro BLCA study showed that tolinapant

induced necroptosis. It was proposed that this mechanism could

help overcome resistance to cisplatin in BLCA (303). Crawford et al.

(304) show that there may be clinical benefit of combining

tolinapant with FOLFOX chemotherapy in microsatellite stable

CRC with elevated cIAP1 and cIAP2.

Myeloid cell leukemia-1 (Mcl-1) is a member of the anti-

apoptotic Bcl-2 family, and has been identified as an apoptotic

survival factor in TNBC. Mcl-1 is commonly amplified in 56% of

TNBC tumours and its overexpression associated with poor clinical

prognosis (305). This was one the studies that led to the

investigation of Mcl-1 as a target for patients with poor
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prognosis. Pre-clinical models in PaCa, BCa, lung cancer and OC

cell lines showed Mcl-1 inhibition in vivo and in vitro (306–308).

Both preclinical studies and clinical trials show that modulation of

apoptosis is a valuable target in tumours with dysregulated

apoptosis, and offers a strategy for overcoming chemoresistance.

Hypoxia upregulates expression of drug efflux pumps and

confers with resistance to chemotherapy. Multidrug resistance

protein 1 (MRP1), multidrug resistance-associated protein 1

(MRAP1) and breast cancer resistance protein (BRCP) are all

regulated by HIF-1a in CRC (309) and HIF-2a in OC (310).

Additionally, reduced drug uptake due to poor blood supply is

characteristic of hypoxic tumours (311). There are limited studies

that correlate clinical data with chemotherapy response. One of the

proposed reasons for limited knowledge on MDR1/P-gp expression

is poor sensitivity and specificity and difficulty in quantifying levels

of protein by immunohistochemistry, and normal tissue

contamination (312). Furthermore, clinical trials targeting drug

efflux pumps show little promise of improving patient outcome.

Despite attempts to target efflux pumps that are upregulated in

cancer cell lines, there is limited efficacy in the drugs developed.

Mohelnikova-Duchonova et al. (313) show that in PaCa, multiple

ABC transporters are upregulated compared to normal tissue. This

highlights that tumours are likely to adapt to alternative

mechanisms of resistance if single efflux pumps are targeted

(313). In contrast, A phase I trial combining tyrosine kinase

inhibitor, pazopanib, with topotecan which is an approved

treatment for SCLC, CC and metastatic OC showed a 1.7-fold

increase in patient exposure compared to topotecan treatment

alone. Pazopanib was trialled due to its mild affinity for Pgp/

ABCB1 and high affinity for BCRP/ABCG2 (314).
Resistance to radiotherapy

Approximately 50% of all cancer patients undergo radiotherapy

as part of their treatment, 60% with curative intent (315).

Radiotherapy uses high-energy radiation to target and destroy

cancer cells. There are two main ways of delivering radiotherapy

to patients; external beam radiation which uses an external source

of radiation to target tumours, or internal radiation therapy

including brachytherapy which uses radioactive sources including

seeds, wires or pellets that are placed directly inside or near the

tumour (316). However, it was discovered by Gray et al. (317) that

tumour cells are less damaged by a dose of X- or g-radiation than

oxygenated cells versus anoxia at the time of irradiation.

Other forms of radiotherapy include protons, electrons and

carbon ions. Proton beam therapy delivers a higher dose of

radiation than conventional radiation using photons whilst

sparing the surrounding tissue. However, it is only used in a

subset of patients, particularly children and patients with complex

brain cancer, H&N cancers and sarcomas in the UK. Treatment is

limited to these tumour types as proton beam therapy requires a

high degree of accuracy and precision which means that tumours

that change shape or move due to close proximity to organs of the

autonomic system, are unsuitable for this therapy. It is beneficial to
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use proton beam therapy in children as its localised effects reduce

late-stage toxicity (318). Dose painting can be used to target more

hypoxic regions of tumours with a higher dose of protons, to try and

overcome the potential of radio-resistance and induce permanent

damage to DNA of cancer cells (319).

Oxygen is an essential factor that influences response to

radiotherapy in solid tumours. Gray et al. (317) showed that

when partial pressure of oxygen is below 20mmHg at the time of

irradiation, the cells become resistant to radiation damage. When

tumours are targeted with radiation, they absorb the radiation and

produce highly reactive free radicals either directly or indirectly.

The radicals produced are unstable and highly reactive with oxygen,

which induces damage to the target tissue. Radiation induces DNA

damage by producing ROS and inducing apoptosis. Therefore,

presence of oxygen in tumours enhances the effect of radiation by

increasing ROS production and inhibiting DNA repair. To produce

the same effect in hypoxic conditions, 2.5-3.0-fold increase in

radiation is required (320). Horsman et al. (75) review and

summarise the clinical impact of hypoxia in patient outcome

following radiotherapy (321–323). As previously described, solid

tumours have varying degrees of tissue oxygenation that fluctuates

overtime. Therefore, when radiotherapy is delivered during periods

of reduced oxygen, its effectiveness is reduced (324).

Thiruthaneeswaran et al. (325) summarise the role of hypoxia on

radiotherapy and the challenges that remain within the field that

need to be overcome to offer patients the best clinical outcome.

Understanding the hypoxic TME is crucial for optimizing

treatment outcomes. Hypoxia alters radiation effectiveness,

necessitating higher doses for hypoxic tumours, yet this can lead

to increased side effects (326). Approaches including altered

fractionation, dose escalation, and high linear energy transfer

(high-LET) radiation help combat hypoxia’s challenges. To

improve efficacy, radio-sensitizing agents like nitroimidazoles or

carbogen can be employed. Wang et al. stress the need for precise

dose guidelines in clinical practice. Overall, tailoring treatment

plans to individual tumour biology remains key for achieving

optimal outcomes (327).

When discussing radiotherapy, we often refer to the 6R’s of

radiotherapy which are of mechanisms that are important in

determining the response of biological tissue to multiple doses of

radiation. These include repair, redistribution, repopulation,

reoxygenation, radiosensitivity and reactivation of the immune

system (328–330). Hypoxia plays a role in dysregulating the 6R’s

and impacting patient response to treatment.

Disruption of the 6 R’s by hypoxia has been discussed by

Rakotomalala et al. (50). Wozny et al. (331) show that hypoxia (1%

O2) increases non-homologous end-joining (NHEJ) and increases

radio-resistance in HNSCC. Hypoxia disrupts the capacity of cells to

repair radiation-induced DNA making hypoxic cells less susceptible

to damage by radiation. Primary human fibroblasts exposed to

chronic hypoxia (0.2% O2) were shown to have defective repair of

DNA double-strand breaks (DSBs) following irradiation, compared

to cells grown in normoxic conditions. It was proposed that

unrepaired DNA-DSBs drive genetic rearrangement and genomic

instability under hypoxic conditions. Genomic instability can
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increase metastatic capacity of tumours. The authors propose that

understanding the DNA-DSB repair defects regulated by hypoxia in

tumours could improve the treatment modalities used for cancer

(332). Exposing H1299 lung carcinoma cells to chronic hypoxia (72 h

0.2% O2) downregulated homologous recombination (HR) proteins

which increased sensitivity to DNA cross-linking agents and

increased radiosensitivity compared to acutely hypoxic cells (6h

0.2% O2) and anoxic cells. Therefore, chronically hypoxic cells that

are repair deficient may be a novel target to selectively kill hypoxic

cells (333). BCa cells cultured in 3% O2, showed reduced expression

of RAD50, RAD51, BRCA1 and BRCA2 which are essential for HRR.

The same genes were downregulated in PCa with the addition of

RAD54, and NHEJ genes (Ku70, LIG4 and XRCC4) when cultured in

0.2% O2 (334, 335).

Redistribution describes alterations to the cell cycle following

radiotherapy. Hypoxic cells enter arrest in G1/S and G2/M phases

making cells less sensitive to radiation, hindering the redistribution

of cells to more sensitive cell cycle phases. Enhanced expression of

HIF-1a correlates with upregulation of p21 and CDKI-1

phosphorylation in PCa. Luo et al. (336) showed that this

correlates with radioresistance both in vitro and in vivo which

maintains PCa cells in G0/G1 or S phase.

Repopulation following radiotherapy describes the proliferation

of cancer cells that have survived irradiation. Hypoxic conditions

often drive rapid proliferation and therefore the accelerated growth

reduces the efficacy of radiotherapy. Cancer stem cells play an

important role in recurrence of tumours following radiotherapy.

Luo et al. (336) showed that WNT/b-catenin signalling is

responsible for progression of PCa tumours following

radiotherapy which is driven by HIF-1a and is responsible for

repopulation. In gastric cancer, hypoxia has been shown to increase

KDM4B (lysine demethylase) which induces cyclin A1 expression

following irradiation. This enhances cancer cell proliferation

following treatment (337).

Reoxygenation of tumour cells occurs between radiotherapy

fractions. Reoxygenation describes when death of oxygenated cells

within normoxic regions decreases the oxygen consumption within

these areas which enables molecular oxygen to diffuse to hypoxic

regions that are located 70-100 micrometres from functional blood

vessels. More hypoxic tumours with disrupted vasculature struggle

to reoxygenate and therefore make the cells more resistant to

radiotherapy (Figure 4). Adding treatments to a patients plan

which enhances oxygen delivery can help overcome this

mechanism. Moeller et al. (338) show that through a poorly

understood mechanism, tumours exposed to radiation release

cytokines that inhibit apoptosis of endothelial cells. This is

regulated by HIF-1, and enhances oxygen delivery to tumour cells

that survive initial irradiation. In a CC model, tumour cells rapidly

repopulated following irradiation as the decreased tumour bulk

caused by the initial dose, reduced tumour mass and created a

favourable growth environment. This was mediated by Akt/mTOR

dependent mechanisms, which activated HIF-1 intra-tumoural

activity (339). HIF-1 stabilisation in these tumours further

enhances radioresistance. Increased lactate levels induced by

metabolic switch in HNSCC and CC are associated with reduced
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sensitivity to radiotherapy (340, 341). Autophagy has been

attributed to a cytoprotective role, protecting cells from damage

including radiation. This has been shown in osteosarcoma, BCa and

rectal cancers (342, 343).

The mechanisms of apoptosis activated during cell death can

impede cancer cell radiosensitivity. Hypoxia directly modulates the

cancer cell apoptotic response, which reduces cancer cells

radiosensitivity. Cuisnier et al. (344) showed that chronic hypoxia

(3% or 5% O2) led to overexpression of Bcl-2 in CC cells (KB-3-1).

Overexpression of Bcl-2 inhibited radiation induced apoptosis by

inhibiting ROS production. Furthermore, expression of the pro-

apoptotic molecule, Bax, was reduced with no translocation of the

gene in the mitochondria. Decreased Bax expression mediated by

HIF-1 was also shown by Bamodu et al. (345) in HCC which

correlated with a radiation-resistant phenotype. This mechanism

driven by PDK1 which is a HIF-1a target gene which drives PI3K/

AKT/mTOR pathway, inducing radiotherapy resistance.

Rakotomalala et al. (50) summarise further mechanisms of

resistance to cell death.

Hypoxia and immune cell regulation play a role in the anti-

tumour microenvironment therefore, the ‘6th R’ was identified by

Boustani et al. (328). It describes the reactivation of the anti-tumour

immune response following irradiation. Radiotherapy induced

tumour cell death releases tumour-associated antigens, activates

DCs and produces cytokines and chemokines that stimulate the

priming and infiltration of T cells into the tumour. However, within

a hypoxic TME, the immunogenicity of tumour cells reduces by

increasing immunosuppressive cells. There are currently ongoing

trials combing radiotherapy with immunotherapy (328). More

recently, a ‘7th R of Radiobiology’ has been described by

Taghizadeh-Hesery (346) as ‘reinforcement’ by the TME. This

describes that radiation cancer cell response can be altered by

both cellular and noncellular components that surround the

tumour, and this can be regulated by hypoxia (346).
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Resistance to immunotherapy

As researchers have gainedmore insight into the crucial role of anti-

tumour immunity and hypoxia in patient prognosis, immunotherapies

have been introduced as a therapeutic intervention for some solid

tumours (270, 347). HIF-1a upregulates PD-L1 on both tumour and

stromal cells, whilst its receptors PD-1, CTLA-4 and LAG3 are all

expressed on immune cells. Overexpression of PD-L1 is associated with

resistance to immunotherapies in hypoxic melanoma, CRC and glioma.

Combining metformin, which reduces oxygen consumption with anti-

PD-1 therapy in melanoma and CRC showed improved efficacy in

hypoxic tumours. Inhibiting HIF-1a in glioma reduced PD-L1

expression and enhanced immunotherapy efficacy (348, 349).

Furthermore, retrospective analysis of HNSCC patient samples

treated with immunotherapy either as front-line therapy or following

platinum failure found that patients, with higher %CA9/mean intensity

(%CA9/I) associated with more hypoxic tumours, had reduced efficacy

of anti-PD-1 therapy. Metastatic/recurrent patients with a lower % CA9

were associated with improved OS, low CA9/I was associated with a 12-

month OS rate of 51.3% versus 14.1% in patients with high CA9/I.

Patients with low hypoxia and high CD8 had better efficacy with anti-

PD-1 (350). Upregulation of HIF-1a/CXCL12 correlates with higher

PD-L1 expression in HCC, and therefore worse prognosis in these

patients (351).
Pseudohypoxia and cancer

Oxygen-dependent HIF activation has been extensively covered

in this review, but it is important to consider oxygen-independent

HIF activation leading to pseudohypoxia. Interest is growing in this

concept as it may explain the persistence of the Warburg effect in

cancers where even non-hypoxic cells preferentially use glycolysis

for ATP production (271). A number of gene mutations have been
FIGURE 4

Tumour reoxygenation. Normoxic tumour cells are killed by irradiation which induces a reduction in tumour bulk. Oxygen consumption is reduced
by normoxic cells which enables oxygen to diffuse to hypoxic regions. This induces vessel regrowth and reoxygenation of hypoxic cells. The
reoxygenated cells are more sensitive for reirradiation. Created with BioRender.com.
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associated with this phenomenon. These gene mutations have led to

the development of compounds for clinical trials and approval of

antagonists for multiple solid tumours, as one of the implications of

pseudohypoxia is resistance to conventional therapies (352, 353).
Von Hippel-Lindau

Mutations in the VHL gene result in the loss of the Von Hippel-

Lindau tumour suppressor protein (pVHL), which is responsible for

targeting HIF for degradation. Without functional pVHL, HIF

remains stabilized, contributing to the pseudohypoxic state and the

development of various tumours (354). In the case of ccRCC, this

results in a highly angiogenic tumour due to overproduction of

hypoxia inducible VEGFA mRNA. Initial VHL inactivation in RCC

induces expression and accumulation of both HIF-1a and HIF-2a
however, HIF-2a expression becomes dominantly expressed in

chronic hypoxia and supresses HIF-1a protein (355). This promotes

oncogenic potential by driving tumour progression and metastasis

through activation of hypoxia-sensitive signalling pathways and

overexpression of HIF-2a target genes (352). The understanding of

the biology underpinning this phenomenon has produced early

positive results using a HIF-2a antagonist to treat ccRCC, resulting

in approval by the U.S. Food and Drug Administration (FDA) (353).
Mouse double minute 2 homolog (MDM2)

Data from Retinoblastoma and Myelodysplastic syndromes

(MDS) implicate MDM2 in pseudohypoxia. Zhang et al., have

shown that MDM2 promotes cell survival in retinoblastoma

through regulating both pVHL and HIF-1a resulting in HIF

stabilisation (356). Studies in MDS suggest that TP53 loss of

function mutations can affect oxygen-independent HIF

degradation by MDM2. This results in accumulation of HIF-1a
and pseudohypoxia (357). These data suggest that novel agents such

as MDM2 inhibitors could have a role in the treatment of cancers

with a number of clinical trials under way (358).
Other genetic factors

Pseudohypoxia can also be driven by genetic mutations or

alterations in other genes involved in the oxygen-sensing and

response pathways (359). Mutations in genes associated with

angiogenesis such HIF-dependent neovascularisation through

VEGF or through anti-apoptotic proteins such as IAP-2 can

result in activation of hypoxia-associated pathways (360).

Understanding the molecular basis of oxygen-independent

pseudohypoxia will lead to novel target and biomarker discovery

and potential for improved patient outcomes.
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Clinical trials

This review has defined the biological importance of tumour

hypoxia with its ubiquitous effects. The clinical importance of

hypoxic regions within solid tumors has been known since the

early 20th century. Data from numerous studies reveal the

prevalence of hypoxia in various types of human tumours, though

there is significant variability among individual cases.

Over the past four decades, controlled clinical trials have

demonstrated that radiation resistance due to tumour hypoxia

can be mitigated by interventions like normobaric or hyperbaric

oxygen therapy and the use of nitroimidazoles as hypoxic

radiation sensitizers. More recently, hypoxic cytotoxins, drugs

that selectively target cells in hypoxic environments, have

gained attention.

As far back as 2008, a systematic review involving 10,108

patients across 86 randomized trials aimed to modify tumour

hypoxia in patients receiving primary radiation therapy found

that hypoxic modification significantly improved the efficacy of

radiotherapy (361). Hypoxic modification resulted in better LRC

and an associated improvement in OS. However, the incidence of

distant metastases and radiation-related complications did not

show significant changes. There are only two solid tumours in

which hypoxia modification is standard of care. HNSCC where the

ARCON Trial and DAHANCA 5 trial confirmed that hypoxia

modification improved LRC (97, 323). In the ARCON trial, LRC

improved by 80% in patients with T3 and T4 laryngeal cancer which

aided in organ preservation (97). Within the DAHANCA-5 trial,

LRC increased to 49% with addition of nimarazole versus 33% in

the placebo group (323). Since DAHANCA-5 randomised patients

between radiotherapy alone and radiotherapy with nimorazole,

nimorazole is used as a standard of care in Scandanavia. The

BCON trial confirmed that radiotherapy with carbogen and

nicotinamide was superior to radiotherapy alone for muscle-

invasive BLCA with a 13% absolute improvement in OS (362).

Updated 10-year outcomes show that benefit is maintained

especially if patients are stratified by hypoxia biomarkers such as

necrosis or a 24-gene transcriptomic signature (363).

More recently, Bourigault et al., have shown that the

antimalarial drug atovaquone can reduce tumour hypoxia

detected using hypoxia PET in NSCLC patients. This is a small

promising phase II study which poses the challenge of how

investigators pursue clinical trials without industrial support (364).

Pseudohypoxia may prove to be an area of greater interest with

industry already pursuing clinical trials with a novel molecular

agent targeting HIF-2a approved by the FDA based on data from a

small phase II study while the phase III trial is awaited (353).

Despite the substantial evidence supporting the benefits of

hypoxic modification, its implementation in clinical practice

remains limited. There are many reasons why this is including

prejudice, lack of familiarity and funding structures (365).
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Conclusions and future perspectives

Hypoxia is a key regulator of the TME and plays a role in

regulating hallmarks of cancer (366), mediating chemotherapy,

radiotherapy and immunotherapy resistance. This review has

highlighted how hypoxia regulates multiple pro-tumorigenic

pathways through HIF to induce changes in the ECM, activate

CAF s t o enhan c e t umo r i g en e s i s and p romo t e an

immunosuppressive microenvironment. Additionally, the role of

hypoxia in inducing changes to tumour cell metabolism was also

discussed showing its role in resistance to therapies due to

acidification of the TME (83).

Whilst there is strong evidence supporting the role of hypoxia in

enhancing tumorigenesis and its role in complicating treatment in a

clinical setting, there are still gaps in knowledge. It is important to

be able to decipher the complexity of the TME including clarifying

the contradictions in ECM data, and how hypoxia interacts with

CAFs and their specific influence on both the ECM and TME. Many

in vitro models used to study hypoxia often rely on 2D models of a

single cell type which do not take into consideration the whole TME

(367). Therefore, using new models able to recapitulate the hypoxic

TME in 3D with multiple cell types may drive research further. This

can provide novel insights into how the mechanosensory

interactions influence resistance to therapies for example through

matrix stiffness, and the specific cell types that can be targeted to

evade this mechanism of resistance (354, 368). Representation of

cycling hypoxia which is more physiologically relevant than acute

or chronic hypoxia may be beneficial (3). Understanding the

specific roles of CAFs within the TME is critical as there are

multiple subtypes with differing roles. Until this is fully clarified,

it will be difficult to develop targeted strategies

Further elucidation of the role of HIF-3 may provide important

insights into HIF biology, and new mechanisms of therapeutic

targets (369). Additionally, continued research into pseudohypoxia

could provide a novel strategy to target tumours.

Hypoxia research has enabled the development of hypoxia-

specific treatments that have shown some clinical success (97, 323,

362). As summarised by Hoskin (365), the problem lies with the lack

of clinical implementation despite significant evidence supporting

benefits of hypoxia modification. Development of hypoxic

biomarkers is still of interest and perhaps indicates that there is a

future for hypoxia-targeted therapies in clinics with better methods of

stratifying patients. Some limitations with current biomarkers that

have been developed is that they use platforms that are not clinically

applicable. Furthermore, many of the biomarkers are not validated in

prospective clinical trials. Understanding the best format for

analysing hypoxia gene/protein signatures in tissue (fresh frozen/

FFPE), and using platforms that are clinically available and affordable

could help overcome this.
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The complex hypoxic TME provides an opportunity for

identifying novel therapeutic targets. However, as we have learnt

from treatments already implemented in clinic, for example anti-

PD-1 therapies, there are often mechanisms that induce resistance

(351). Understanding the complex interactions between the

different cell types within the hypoxic TME, and the differing

expression patterns regulated by hypoxia could help develop

more targeted treatments. Developing biomarkers using platforms

that we know are clinically accessible can overcome the challenge of

clinical implementation.
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