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and meta-analysis
Qian Yan1,2†, Yubin Chen1,2†, Chunsheng Liu1†, Hexian Shi1,
Mingqian Han1, Zelong Wu1, Shanzhou Huang1,2*,
Chuanzhao Zhang1,2* and Baohua Hou3,1,2*

1Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of
Medical Sciences), Southern Medical University, Guangzhou, China, 2School of Medicine, South China
University of Technology, Guangzhou, China, 3Department of General Surgery, Heyuan People’s
Hospital, Heyuan, China
Background: Accurate detection of the histological grade of pancreatic

neuroendocrine tumors (PNETs) is important for patients’ prognoses and

treatment. Here, we investigated the performance of radiological image-based

artificial intelligence (AI) models in predicting histological grades using

meta-analysis.

Method: A systematic literature search was performed for studies published

before September 2023. Study characteristics and diagnostic measures were

extracted. Estimates were pooled using random-effects meta-analysis.

Evaluation of risk of bias was performed by the QUADAS-2 tool.

Results: A total of 26 studies were included, 20 of which met the meta-analysis

criteria. We found that the AI-based models had high area under the curve (AUC)

values and showed moderate predictive value. The pooled distinguishing abilities

between different grades of PNETs were 0.89 [0.84-0.90]. By performing

subgroup analysis, we found that the radiomics feature-only models had a

predictive value of 0.90 [0.87-0.92] with I2 = 89.91%, while the pooled AUC

value of the combined group was 0.81 [0.77-0.84] with I2 = 41.54%. The

validation group had a pooled AUC of 0.84 [0.81-0.87] without heterogenicity,

whereas the validation-free group had high heterogenicity (I2 = 91.65%,

P=0.000). The machine learning group had a pooled AUC of 0.83 [0.80-0.86]

with I2 = 82.28%.

Conclusion: AI can be considered as a potential tool to detect histological PNETs

grades. Sample diversity, lack of external validation, imaging modalities,

inconsistent radiomics feature extraction across platforms, different modeling

algorithms and software choices were sources of heterogeneity. Standardized

imaging, transparent statistical methodologies for feature selection and model
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development are still needed in the future to achieve the transformation of

radiomics results into clinical applications.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/,

identifier CRD42022341852.
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Introduction

Pancreatic neuroendocrine tumors (PNETs), which account for 3–

5% of all pancreatic tumors, are a heterogeneous group of tumors

derived from pluripotent stem cells of the neuroendocrine system (1–

3). In the past 10 years, the incidence and prevalence of PNETs have

steadily increased (4–6). Unlike malignant tumors, PNETs are

heterogeneous: they range from indolent to aggressive (7, 8). The

WorldHealth Organization (WHO) histological grading system is used

to evaluate the features of PNETs, and a treatment strategy is developed

accordingly (9, 10). Therefore, accurate evaluation of the histological

grade is crucial for patients with PNETs; non-invasive methods are

helpful, especially for tumors that are difficult to biopsy.

The application of artificial intelligence (AI) to medicine is

becoming more common; it is useful in areas such as radiology,

pathology, genomics, and proteomics (11–14), with broad

applications in disease diagnosis and treatment (15–18). Owing to

developments in AI technology, radiomic analysis can now be used to

predict PNETs grade, with promising results (19, 20). A study by Guo

et al. (21), which included 37 patients with PNETs, showed that the

portal enhancement ratio, arterial enhancement ratio, mean grey-level

intensity, kurtosis, entropy, and uniformity were significant predictors

of histological grade. Luo et al. (22) found that by using specific

computed tomography (CT) images, the deep learning (DL) algorithm

achieved a higher accuracy rate than radiologists (73.12% vs. 58.1%)

from G3 to G1/G2. Despite promising results, other studies with

different methodologies have produced different findings. Thus,

quantitative analysis will be valuable for comparing study efficacy

and assessing the overall predictive power of AI in detecting the

histological grade for PNETs.

In this review, we aimed to systematically summarize the latest

literature onAI histological grade prediction for PNETs. By performing

a meta-analysis, we aimed to evaluate AI accuracy and provide

evidence for its clinical application and role in decision making.
Materials and methods

This combined systematic review and meta-analysis was based

on the Preferred Reporting Items for Systematic reviews and Meta-
02
Analyses (PRISMA) guidelines. The study was registered in the

Prospective Register of Systematic Reviews (PROSPERO

ID: CRD42022341852).
Search strategy

Primary publications were extracted from multiple electronic

databases (PubMed, MEDLINE, Cocorane and Web of Science) in

September 2023 using radiomics/DL/machine learning (ML)/AI on

CT/magnetic resonance imaging (MRI) examinations of PNETs

grade. The search terms consisted of ML, AI, radiomics, or DL,

along with PNETs grade. The detail of search string was as follows:

(radiomics or machine learning or deep learning or artificial

intelligence)and (PNETs or pancreatic neuroendocrine tumors).

The reference lists of generated studies were then screened

for eligibility.
Study selection

Two researchers determined the eligibility of each article by title

and abstract evaluation and removed the duplicates. Case reports,

non-original investigations (e.g., editorials, letters, and reviews),

and studies that did not focus on the topic of interest were excluded.

Based on the “PICOS” principle, the following inclusion criteria

were designed. 1) All studies about PNETs grading which trained

the models using only histology (and not biopsy) as gold standard

were selected; 2) All PNETs grading predictive models built by AI

were included. 3) Compared with physicians or models obtained

from clinical and traditional imaging characteristics; 4) The main

research purposes of the included studies were to differentiate the

grades of PNETs; 5) Research types: case-control studies, cohort

studies, nested case-control studies, and case-cohort studies; 6)

English language. Exclusion criteria were: 1) Only the influencing

factors were analyzed and a complete risk model was not built; 2)

guides, case reports and non-original investigations (e.g., editorials,

letters, meta-analyses and reviews); 3) other than English and

animal studies. Any disagreements were resolved by consensus

arbitrated by a third author.
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Data extraction

Data extraction was performed independently by two reviewers,

and any discrepancies were resolved by a third reviewer. The

extracted data included first author, country, year of publication,

study aim, study type, number of patients, sample size, validation,

treatment, reference standard, imaging modality and features,

methodology, model features and algorithm, software

segmentation, and use of clinical information (e.g., age, tumor

stage, and expression biomarkers). A detailed description of the

true positive (TP), false positive (FP), true negative (TN), false

negative (FN), sensitivity, and specificity were recorded. The AUC

value of the validation group along with the 95% confidence interval

(CI) or standard error (SE) of the model was also collected

if reported.
Quality assessment

All included studies were independently assessed using the

radiomics quality score (RQS), for image acquisition, radiomics

feature extraction, data modeling, model validation, and data

sharing. Each of the sixteen items was scored within a range of

-8–36. Subsequently, the score was converted to a percentage, where

-8 to 0 was defined as 0% and 36 as 100% (23).

The methodological quality of the included studies was accessed

by the Quality Assessment of Diagnostic Accuracy Studies 2

(QUADAS-2) criteria (24). Two reviewers independently

performed data extraction and quality assessment. Disagreements

between the two reviewers were discussed at a research meeting

until a consensus was reached.
Statistical analysis

Three software packages, Stata, version 12.0, MedCalc for

Windows, version 16.4.3 (MedCalc Software, Ostend, Belgium),

and RevMan, version 5.3.21 were used for statistical analysis. A

bivariate meta-analysis model was employed to calculate the pooled

sensitivity, specificity, positive likelihood ratio (PLR), negative

likelihood ratio (NLR), and diagnostic odds ratio (DOR),

respectively. The symmetric receiver operating characteristic

(SROC) curve was generated. The I2 value was used to assess

statistical heterogeneity and estimate the percentage of variability

among the included studies. An I2 value >50% indicated substantial

heterogeneity, and a random-effects model was used to analyze the

differences within and between studies. In contrast, if the value was

<50%, it signified less heterogeneity and a fixed-effects model was

used (25). Meta-regression and subgroup analysis were conducted

to explore the sources of heterogeneity. Moreover, the sensitivity

analysis was also performed to evaluate the stability. Deeks’ funnel

plot was used to examine publication bias. A p value less than 0.05

was considered significant. Fagan’s nomogram was employed to

examine the post-test probability.
Frontiers in Oncology 03
Results

Literature selection

We retrieved 260 articles from PubMed and 156 from Web of

Science; 137 were duplicates and were eliminated, resulting in 343

studies. After screening titles and abstracts, 85 potentially eligible

articles were identified. After full-text review, six articles were

excluded because of insufficient information; thus, 26 articles

were included in this systematic review (21, 22, 26–49). Among

them, six studies lacked information on positive and negative

diagnosis values; therefore, only 20 articles were eligible for the

meta-analysis. The results of the literature search are shown

in Figure 1.
Quality and risk bias assessment

As shown in Table 1, the selected articles were published

between 2018 and 2023. The RQS average total and relative

scores were 9.58 (2–20) and 26.60% (5.56–55.56%), respectively.

No validation group in 13 studies, and five were based on two

datasets from more than two distinct institutes. Due to the lack of

prospective studies, deficiency of phantom studies on all scanners,

absence of imaging at multiple time points, shortness of cost-

effectiveness analysis, and unavailable open science and data, all

the 11 included studies obtained the point of zero in these items. A

detailed report of the RQS allocated by the expert reader is

presented in Supplementary Table S1.

Study quality and risk of bias were assessed using the

QUADAS-2 criteria; the details are presented in Supplementary

Figure S1. A majority of studies showed a low or unclear risk of bias

in each domain. In the Patient Selection domain, one study is at

high risk, 25 studies are at moderate risk, and this risk mainly arises

from “discontinuous patient inclusion”. In the Index Test domain, 9

studies are at moderate risk due to the insufficient information

provided to make a judgment, while others were at low risk. In the

Reference Standard domain, only one study is at high risk because

some patients cannot be accurately categorized to the specific

grading in this study. In the Flow and Timing domain, all were at

low risk.
Publication bias

Deeks’ funnel plot asymmetry test was adopted to detect

publication bias: no bias was detected within the meta-analysis

(p=0.347, Figure 2).

Clinical diagnostic value of grading PNETs

As shown in Figure 3, Fagan’s nomogram was useful for

evaluating the diagnostic value of PNETs grade, and clinical

application. The results showed an increase of post-test

probability of the positive result (at 50%) to 81%, and a decrease

of the negative result to 4%.
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Study characteristics

Study characteristics are summarized in Table 1. All studies

employed a retrospective design, were published between 2018 and

2023, and the number of included patients was 32–270. Among the

26 studies, China was the main publication country (15 studies),

followed by Italy (5 studies), the USA (3 studies), Korea (2 study),

and Japan (1 study). Nineteen studies were based on CT and eight

on MRI images, while two combined images from CT andMRI, and

one applied for PET-CT. Thirteen of the 26 studies had validation

sets; five were externally validated using data from another institute.

The majority (20/26) used different kinds of ML classifications

(such as Randon Rorest (RF); Support Vector Machine (SVM);

Least absolute shrinkage and selection operator (LASSO) logistic

regression), and two of them adopted Convolutional Neural

Network (CNN). About half of the included studies (11/21) used

models combined with clinical features (such as tumor size, tumor

margin, TMN stage, etc.), while others used only radiomics features.

Thirteen studies applied cross-validation to select stable features

between observers.

The details of TP/FP/FN/TN and the models’ sensitivity and

specificity are shown in Table 2. The highest area under the curve

(AUC) value of the AI-based validation model was 0.99 (95% CI:

0.97–1.00). Six studies offered no details regarding TP/FP/FN/TN,
Frontiers in Oncology 04
and the AUC value of four studies was incomplete; thus, all of these

six studies were excluded in meta-analysis.
Meta-analysis

Overall performance of the AI models

Twenty studies with 2639 patients were included in the meta-

analysis, which provided data on TP/FP/FN/TN and model

sensitivity and specificity, and 19 studies offered the AUC with

95% CI of the models. The results are reported in Tables 2 and 3 and

Figure 4. The AI models for PNETs showed an overall pooled

sensitivity of 0.826 [0.759, 0.877], a pooled specificity of 0.812

[0.765, 0.851] and the pooled PLR and NLR were 4.382 [3.509,

5.472] and 0.215 [0.155, 0.298], respectively. Moreover, the pooled

DOR was 20.387 [13.108, 31.706], and the AUC of the SROC curve

was 0.89 [0.84-0.90] with I2 = 90.42% [81.10-99.73], P=0.000.

Subgroup analysis based on the image source and

AI methodology

Meta-regression was conducted and found there was no

significant differences between groups (Supplementary Table S2).

Then subgroup analysis was performed to compare studies

evaluating the performance of different image sources: CT and
FIGURE 1

Flowchart of the article selection.
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TABLE 1 Characteristic of all included studies.

Radiomic/

AI

approach

Software

Segmentation

Clinical

model

Inclusion

of Clinical

Features

in

the Model

Clinical Features

ROI NR;manual Yes No NR

ROI
3D

Slicer;manual
No Yes

age, sex, and body mass

index, tumor size

ROI
3D

Slicer;manual
Yes Yes

tumor

location, size, shape, margin,

cystic changes, pancreatic

and bile duct

dilation, parenchymal

atrophy, tumor intensity in

T1WI and T2WI,

the phase of peak enhanced

value, enhanced mode, organ

invasion,

and vascular invasion.

ROI
3D

Slicer;manual
No Yes

age, sex, and BMI, T stage, N

stage, clinical stage,

perineural invasion, size,

shape, phase of peak

enhancement value, organs

invasion, and

vascular invasion

ROI NR;manual No No NR

ROI NR;manual No No NR

ROI Image J;manual No No NR

ROI
ITK-

SNAP;manual
Yes Yes tumor margin

ROI Matlab;manual Yes Yes NR

ROI

Omni-Kinetics

software;

manual

No No NR
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Study Aim Imaging Country Year
Patient

(N)
G1/G2/G3

Training

set

Internal

Validation

set

External

validation

set

Data

source

Reference

standard

Algorithm

architecture

Statistical

methods

Total

number of

radiomics

features

included

Benedetti

G

(2021)

(26)

G1

vs

G2/

G3

CT Italy 2021 39 25/12/2 All NR NR
Single

institution
pathology NR NR 69

Bian Y

(2020)

(27)

G1

vs

G2

CT China 2020 102 52/50 All NR NR
Single

institution
pathology

LASSO

logistic

regression

10-fold

cross-

validation

NR

Bian Y

(2020-

MRI) (28)

G1

vs

G2/

G3

MRI China 2020 139
42/47/8(18/

18/6)

96(42/

47/8)
42(18/18/6) NR

Single

institution
pathology

LASSO

logistic

regression

10-fold

cross-

validation

14

Bian Y

(2021-

MRI) (29)

G1

vs

G2/

G3

MRI China 2021 157 61/78/18 All NR NR
Single

institution
pathology

LASSO

logistic

regression

10-fold

cross-

validation

7

Canellas

R

(2018)

(30)

G1

vs

G2/

G3

CT USA 2018 101 63/35/3 All NR NR
Single

institution
pathology NR NR 5

Choi TW

(2018)

(31)

G1

vs

G2/

G3

CT Korea 2018 66 45/16/5 All NR NR
Single

institution
pathology

Logistic

regression
NR NR

Gao X

(2019)

(32)

G1

vs

G2

vs

G3

MRI China 2019 106
35/49/12(4/

4/2)

96(35/

49/12)
yes 10(4/4/2)

Two

institutions
pathology GAN;CNN

5-fold

cross-

validation

NR

Gu DS

(2019)

(33)

G1

vs

G2/

G3

CT China 2019 138 57/69/12
104

(38/66)
NR 34(19/15)

Two

institutions
pathology MRMR;RF

cross-

validation
25

Guo C

(2018)

(21)

G1/

G2

vs

G3

CT China 2018 37 13/11/13 All NR NR
Single

institution
pathology NR NR NR

Guo C

(2019)

(34)

G1

vs

G2

vs

G3

MRI China 2019 77 31/29/17 All NR NR
Single

institution
pathology NR NR NR
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TABLE 1 Continued

Radiomic/

AI

approach

Software

Segmentation

Clinical

model

Inclusion

of Clinical

Features

in

the Model

Clinical Features

ROI
3D

Slicer;manual
Yes Yes

tumor size, phase of peak

enhancement, enhanced

mode, organs invasion,

vascular invasion

ROI
3D

Slicer;manual
No No NR

ROI
3D

Slicer;manual
Yes Yes

the clinical stage and

maximum diameter

ROI
ITK-

SNAP;manual
No No NR

ROI syngo;manual No No NR

ROI
3D

sclicer;mannual
No No NR

ROI
Scout

Liver;manual
Yes Yes

tumor shape, tumor margin,

tumor attenuation on arterial

phase, tumor uniformity,

vascular invasion, CT value

of tumor

ROI

LifeX

software;

manual

Yes Yes

symptoms, diameter at CT

scan, enhancement

homogenous vs

heterogenous, margin well-

defined vs ill-defined,

TNM stage

ROI NR;manual No Yes

T stage, dilated bile duct,

clinical TNM stage, and

tumor margin

ROI
3D

sclicer;manual
No No NR

ROI NR;manual No No NR

ROI
3D

sclicer;manual
No No NR
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Study Aim Imaging Country Year
Patient

(N)
G1/G2/G3

Training

set

Internal

Validation

set

External

validation

set

Data

source

Reference

standard

Algorithm

architecture

Statistical

methods

Total

number of

radiomics

features

included

Liu C

(2022)

(35)

G1

vs

G2/

G3

CT/MRI China 2022 123 48/55/20 82(32/50) 41(16/25) NR
Single

institution
pathology MRMR;LDA NR 7

Li W

(2021)

(36)

G1

vs

G2

MRI China 2021

48

(51

lesions)

26/25 All NR NR
Single

institution
pathology

Logistic

regression
NR NR

Liang WJ

(2019)

(37)

G1

vs

G2/

G3

CT China 2019 137 42/44;28/23 86(42/44) NR 51(28/23)
Two

institutions
pathology

LASSO

logistic

regression

10-fold

cross-

validation

8

Luo Y

(2020)

(22)

G1/

G2

vs

G3

CT China 2020 112 NR 93 NR 19(13/6)
Two

institutions
pathology

CNN;

RF;SVM

8-fold

cross-

validation

NR

Ohki K

(2021)

(38)

G1

vs

G2/

G3

CT/MRI Japan 2020

32

(33

lesions)

22/11 All NR NR
Single

institution
pathology NR NR 7

Onofrio

MD

(2019)

(39)

G1/

G2

vs

G3

CT Italy 2018 100 31/52/17 All NR NR
Single

institution
pathology NR NR NR

Pulvirenti

A

(2021)

(40)

G1

vs

G2

vs

G3

CT USA 2021 150 94/47/9
105(66/

33/6)
45(28/14/3) NR

Single

institution
pathology SVM NR 10

Ricci C

(2021)

(41)

G1

vs

G2/

G3

CT Italy 2021 68

29/30/2/7

(unable

to

distinguish)

All NR NR
Single

institution
pathology

LASSO

logistic

regression

cross-

validation
NR

Wang X

(2022)

(42)

G1

vs

G2/

G3

CT China 2022 139 47/92 83(28/55) 56(19/37) NR
Single

institution
pathology LASSO;SVM

5-fold cross-

validation;

the bootstrap

NR

Zhao ZR

(2020)

(43)

G1

vs

G2

CT China 2020 99
31/28

(18/22)
59(31/28) 40(18/22) NR

Single

institution
pathology SVM

5-fold

cross-

validation

6

Zhou RQ

(2019)

(44)

G1

vs

G2

vs

G3

CT China 2019 92 32/48/11 All NR NR
Single

institution
pathology

Logistic

Regression;

SVM; LDA;

Multilayer

perceptron

leave-one-out

cross-

validation

NR

Chiti G

(2022)

(45)

G1/

G2
CT Italy 2022

78

(GI:53;

PNETs:25)

36/18/5/

19(NEC)
58 20 NR

Single

institution
pathology

LASSO

logistic

regression

NR NR
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TABLE 1 Continued

Internal

Validation

set

External

validation

set

Data

source

Reference

standard

Algorithm

architecture

Statistical

methods

Total

number of

radiomics

features

included

Radiomic/

AI

approach

Software

Segmentation

Clinical

model

Inclusion

of Clinical

Features

in

the Model

Clinical Features

31 NR
Single

institution
pathology MRMR NR NR ROI

MIM

software;

manual

Yes Yes NR

11 NR
Single

institution
pathology

Logistic

regression;

neural

network;RF

5-fold cross

validation;10-

fold

cross-

validation

11 VOI
MIM software;

semi-automatic
Yes Yes

primary tumor size, hepatic

metastasis, and extra-

hepatic metastasis

69 NR
Single

institution
pathology RF NR 10 ROI

3D

sclicer;manual
No No NR

NR 113
Five

centers
pathology

LASSO

logistic

regression

5-fold

cross-

validation

4 ROI
ITK-

SNAP;manual
Yes Yes boundary, vascular invasion

twork; RF, Random Forest; SVM, Support Vector Machine; GAN, Generative Adversarial Networks; MRMR, Minimum Redundancy Maximum Relevance; LDA, Linear Discriminant
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Study Aim Imaging Country Year
Patient

(N)
G1/G2/G3

Training

set

vs

G3

Mori M

(2022)

(46)

G1

vs

G2/

G3

CT Italy 2022 101 76/25 70

Park YJ

(2023)

(47)

G1/

G2

vs

G3

[18F]

FDG

PET-CT

Japan 2023 58 7/26/25 47

Javed AA

(2023)

(48)

G1

vs

G2/

G3

CT USA 2023 270
176/94

(G2/G3)
201

Zhu HB

(2023)

(49)

G1

vs

G2/

G3

MRI China 2023 228 75/153 115

LASSO,Least absolute shrinkage and selection operator; CNN, Convolutional Neural Ne
Analysis; NR, Not Reported.
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MRI. Two models used both CT and MRI images; thus, 16 models

extracted radiomic features from CT images and six models from

MRI. The pooled SE, SP, PLR, and NLR were 0.849 [0.786, 0.895],

0.803 [0.748, 0.847], 4.297 [3.386, 5.451], and 0.189 [0.134, 0.266],

respectively for CT models, and 0.791 [0.643, 0.888], 0.820 [0.764,

0.866], 4.407 [3.206, 6.058], 0.255 [0.141, 0.459], respectively for

MRI models. The pooled DOR was 22.769 [14.707, 35.250] and
Frontiers in Oncology 08
17.304 [7.713, 38.822] for CT and MRI models, respectively. The

AUC of the SROC curve was 0.88 [0.85-0.91] with heterogeneity

(I2 = 79.25% [55.20-100.00], P=0.004) on CT images compared with

MRI (AUC=0.83 [0.79-0.86], I2 = 71.55%[36.80-100.00], P=0.015).

Subgroup analysis of different AI methodologies was used to

compare algorithm architecture; most models not only applied ML

classifiers, but more than one classifier. In total, 15 models were
FIGURE 2

Deeks’ funnel plot evaluating the potential publication bias (p=0.034).
FIGURE 3

Fagan’s nomogram assessing the clinical diagnostic value of PNETs.
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conducted using ML for PNETs. The pooled SE, SP, PLR, and NLR

were 0.806 [0.727, 0.867, 0.789 [0.742, 0.829], 3.813 [3.156, 4.606],

and 0.246 [0.175, 0.346], respectively. The pooled DOR was 15.508

[10.196, 23.589] and the AUC of the SROC curve was 0.84[0.81-

0.87] with heterogenicity, I2 = 89.88%[79.90-99.86]. Of the

remaining three models for non-ML, the pooled AUC value was

0.89 [0.86-0.92] with I2 = 28.80[0.00-100.00] (Table 3).

There were ten models using cross-validation to select the best

features and models. The group with cross-validation had a pooled

AUC of 0.87 [0.83-0.91] with I2 = 78.98%, while the group without

was 0.88 [0.84-0.90] with I2 = 75.30%. The pooled SE, SP, PLR, and

NLR were 0.831 [0.784, 0.871], 0.785 [0.737, 0.828], 3.523 [2.812,

4.414] and 0.196 [0.127, 0.302], respectively for the cross-validation

group, and 0.799 [0.670, 0.866], 0.835 [0.772, 0.884], 4.849 [3.365,

6.698], and 0.241 [0.141, 0.413], respectively for the group without
Frontiers in Oncology 09
ICC. The pooled DOR were 20.262 [12.084, 33.973] and 20.120

[9.171, 44.140] for the groups with and without ICC, respectively.
Subgroup analysis based on
dataset characteristics

We also compared the models that included clinical data and by

utilizing radiomics features only, and found that clinical features

reduced heterogenicity. The pooled SE, SP, PLR, and NLR were

0.801 [0.707, 0.870], 0.795 [0.739, 0.842], 3.906 [2.983, 5.115], and

0.251 [0.166, 0.379], respectively for the group including clinical

data, and 0.847 [0.747, 0.913], 0.829 [0.749, 0.888], 4.970 [3.349,

7.377], and 0.184 [0.109, 0.310], respectively for the radiomics-only

group. The pooled DOR for the radiomics group was 27.034
TABLE 2 Results for accuracy to predict grade of PNETs.

Study TP FP FN TN SE SPE AUC SE 95%CI

Benedetti G(2021) (26) 16 1 9 13 0.64[0.43-0.82] 0.93[0.66-1.00] 0.80 0.08 0.71-1.00

Bian Y(2020) (27) 49 19 3 33 0.94[0.84-0.99] 0.63[0.49-0.76] 0.86 0.04 0.84-0.85

Bian Y(2020-MRI) (28) 15 6 3 18 0.83[0.59-0.96] 0.75[0.53-0.90] 0.74 0.09 0.52-0.88

Bian Y(2021-MRI) (29) 39 19 22 77 0.64[0.51-0.76] 0.80[0.71-0.88] 0.78 0.04 0.70-0.85

Canellas R(2018) (30) NA NA NA NA NA NA 0.65 NA NA

Choi TW(2018) (31) NA NA NA NA NA NA 0.774 NA NA

Gao X(2019) (32) NA NA NA NA NA NA 0.893 0.007 0.886-0.912

Gu DS(2019) (33) 13 2 2 17 0.87[0.60-0.98] 0.89[0.67-0.99] 0.90 0.05 0.80-1.00

Guo C(2018) (21) 22 2 2 11 0.92[0.73-0.99] 0.85[0.55-0.98] 0.96 0.05 0.77-0.97

Guo C(2019) (34) 29 0 2 17 0.94[0.79-0.99] 1.00[0.80-1.00] 0.99 0.01 0.97-1.00

Liu C(2022) (35) 13 4 3 21 0.81[0.54-0.96] 0.83[0.36-1.00] 0.85 0.06 0.71-0.94

Li W(2021) (36) 13 2 13 23 0.50[0.30-0.70] 0.92[0.74-0.99] 0.70 0.08 0.54-0.85

Liang WJ(2019) (37) NA NA NA NA NA NA 0.891 0.028 0.772-0.961

Luo Y(2020) (22) 11 1 2 5 0.85[0.55-0.98] 0.83[0.36-1.00] 0.81 0.04 0.71-0.88

Ohki K(2021) (38) 21 3 1 8 0.95[0.77-1.00] 0.73[0.39-0.94] 0.86 0.01 0.86-0.90

Onofrio MD(2019) (39) 14 12 3 71 0.82[0.57-0.96] 0.86[0.76-0.92] 0.92 0.04 0.78-0.92

Pulvirenti A(2021) (40) 7 6 8 24 0.47[0.21-0.73] 0.80[0.61-0.92] NA NA NA

Ricci C(2021) (41) 25 8 4 31 0.86[0.68-0.96] 0.79[0.64-0.91] 0.91 0.00 0.90-0.92

Wang X(2022) (42) 31 2 6 17 0.84[0.68-0.94] 0.89[0.67-0.99] 0.88 0.01 0.87-0.89

Zhao ZR(2020) (43) 16 2 2 20 0.89[0.65-0.99] 0.91[0.71-0.99] 0.88 0.07 0.70-0.96

Zhou RQ(2019) (44) NA NA NA NA NA NA 0.85 NA NA

Chiti G(2022) (45) NA NA NA NA NA NA 0.82 0.09 0.62-1.00

Mori M(2022) (46) 6 8 3 14 0.67[0.30-0.93] 0.64[0.41-0.83] 0.72 0.07 0.59-0.85

Park YJ(2023) (47) 4 1 1 4 0.80[0.28-0.99] 0.80[0.28-0.99] 0.83 0.04 0.73-0.93

Javed AA(2023) (48) 39 6 6 18 0.87[0.73-0.95] 0.75[0.53-0.90] 0.80 0.01 0.70-0.90

Zhu HB(2023) (49) 57 11 8 37 0.88[0.77-0.95] 0.77[0.63-0.88] 0.86 0.06 0.79–0.94
fro
TP, true positive; FP, false positive; TN, true negative; FN, false negative; SE, sensitivity; SPE, specificity; AUC, area under the curve; SE, standard error; 95%CI, 95% confidence interval; NA,
not applied.
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[13.412, 54.492], and the AUC of the SROC curve was 0.81 [0.77-

0.84] with I2 = 41.54%, which was a little higher than that of the

included clinical data group (DOR: 16.581 [9.466, 29.044]); AUC:

0.90 [0.87-0.92]) (Table 3).

Moreover, 11 models were validated, while nine models were

not. The pooled SE, SP, PLR, and NLR were 0.823 [0.754, 0.876],

0.799 [0.744, 0.846], 4.106 [3.128, 5.389], and 0.221 [0.155, 0.315],

respectively for the validated group, and 0.836 [0.708, 0.914], 0.824

[0.741, 0.884], 4.741 [3.248, 6.920], and 0.199 [0.110,0.361],

respectively for the control group. The pooled DOR for the

validated group was 15.574 [8.579, 28.273] and 23.766 [11.504,
Frontiers in Oncology 10
49.095] for the control group. The AUC of the SROC curve was 0.84

[0.81-0.87] without heterogeneity for the validation group and 0.89

[0.86-0.91] with I2 = 91.65% for the control group.

In a subgroup analysis based on the number of patients, the

pooled results of 12 models, which included >100 patients, were

0.815 [0.737, 0.874], 0.784 [0.735, 0.826], 3.769 [3.086, 4.603], and

0.236 [0.165, 0.337] for the pooled SE, SP, PLR, and NLR,

respectively. For the remaining eight models, the pooled SE, SP,

PLR, and NLR were 0.847 [0.715, 0.925], 0.871 [0.799, 0.920], 6.560

[4.224, 10.187], and 0.175 [0.091, 0.338], respectively. The pooled

DOR and the AUC values for the two groups were 15.974 [10.228,
TABLE 3 Subgroup analysis and estimates pooled of PNETs.

Group models AUROC I²(%)
P

value
Sensitivity Specificity

Positive Like-
lihood Ratio

Negative
Likelihood

Ratio

Diagnostic
Odds Ratio

All AI-
based model

20
0.89 [0.84
- 0.90]

90.42
[81.10-
99.73]

0.000
0.826

[0.759, 0.877]
0.812

[0.765, 0.851]
4.382 [3.509, 5.472] 0.215 [0.155, 0.298]

20.387
[13.108, 31.706]

CT 16
0.88 [0.85
- 0.91]

79.25
[55.2-
100.0]

0.004
0.849

[0.786, 0.895]
0.803

[0.748, 0.847]
4.297 [3.386, 5.451] 0.189 [0.134, 0.266]

22.769
[14.707, 35.250]

MRI 6
0.83 [0.79
- 0.86]

71.55
[36.80-
100.0]

0.015
0.791

[0.643, 0.888]
0.820

[0.764, 0.866]
4.407 [3.206, 6.058] 0.255 [0.141, 0.459]

17.304
[7.713, 38.822]

ML 15
0.84 [0.81
- 0.87]

89.88
[79.90-
99.86]

0.000
0.806

[0.727, 0.867]
0.789

[0.742, 0.829]
3.813 [3.156, 4.606] 0.246 [0.175, 0.346]

15.508
[10.196, 23.589]

non-ML 5
0.89 [0.86
- 0.92]

28.80
[0.00-
100.00]

0.124
0.879

[0.745, 0.947]
0.869

[0.799, 0.916]
6.686

[4.305, 10.383]
0.140 [0.063, 0.308]

47.863
[17.964,
127.526]

cross-
validation

10
0.87 [0.83
- 0.91]

78.98
[54.2-
100.0]

0.004
0.831

[0.784, 0.871]
0.785

[0.737, 0.828]
3.523 [2.812, 4.414] 0.196 [0.127, 0.302]

20.262
[12.084, 33.973]

without
cross-

validation
10

0.88 [0.84
- 0.90]

75.30
[45.77-
100.0]

0.009
0.799

[0.670, 0.866]
0.835

[0.772, 0.884]
4.849 [3.365, 6.698] 0.241 [0.141, 0.413]

20.120
[9.171, 44.140]

clinical
features
included

10
0.81 [0.77
- 0.84]

41.54
[0.00-
100.0]

0.090
0.801

[0.707, 0.870]
0.795

[0.739, 0.842]
3.906 [2.983, 5.115] 0.251 [0.166, 0.379]

16.581
[9.466, 29.044]

only
radiomics
features

10
0.90 [0.87
- 0.92]

89.91
[79.76-
99.87]

0.000
0.847

[0.747, 0.913]
0.829

[0.749, 0.888]
4.970 [3.349, 7.377] 0.184 [0.109, 0.310]

27.034
[13.412, 54.492]

validation set 11
0.84 [0.81
- 0.87]

0.00
[0.00-
100.00]

0.375
0.823

[0.754, 0.876]
0.799

[0.744, 0.846]
4.106 [3.128, 5.389] 0.221 [0.155, 0.315]

15.574
[8.579, 28.273]

without
validation set

9
0.89 [0.86
- 0.91]

91.65
[83.81-
99.48]

0.000
0.836

[0.708, 0.914]
0.824

[0.741, 0.884]
4.741 [3.248, 6.920] 0.199 [0.110, 0.361]

23.766
[11.504, 49.095]

N>100 12
0.84 [0.81
- 0.87]

83.28
[64.73-
100.0]

0.001
0.815

[0.737, 0.874]
0.784

[0.735, 0.826]
3.769 [3.086, 4.603] 0.236 [0.165, 0.337]

15.974
[10.228, 24.948]

N ≤ 100 8
0.91 [0.88
- 0.93]

77.39
[50.76-
100.0]

0.006
0.847

[0.715, 0.925]
0.871

[0.799, 0.920]
6.560

[4.224, 10.187]
0.175 [0.091, 0.338]

37.404
[16.542, 84.577]
AUC, area under the curve; ML, machine learning.
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24.948] and 0.84 [0.81-0.87] vs. 37.404 [16.542, 84.577] and 0.91

[0.88-0.93] (Table 3).
Discussion

PNETs are a heterogeneous group of malignancies: they can

be grouped into grades G1, G2, and G3 according to mitotic

count and Ki-67 index (1–3). Accurate classification of PNETs

grades is important for treatment selection, prognosis, and

follow-up. However, due to the heterogeneity of PNETs, tumor
Frontiers in Oncology 11
grading may not be uniform within a single lesion or between

different lesions in the same patient (7, 8). Moreover, histology is

currently the only validated tool to grade tumors and describe

their characteristics; surgery and endoscopic biopsy are used

clinically to analyze the histological grade of PNETs. However, it

is difficult to perform a satisfactory biopsy for PNETs located

around major vessels, or small tumors—especially using fine-

needle aspiration biopsy (50–53). Therefore, the detection of

histological grades based on radiological images is also an

important diagnostic tool. With increasing AI application in

medical fields, we believe that AI-based models can enhance the
B

C

A

FIGURE 4

Pooled diagnostic accuracy of PNETs. (A, B) Forest plots of sensitivity, specificity; (C). Summary receiver operator characteristic curve.
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prediction value of tumor grading. To the best of our knowledge,

we are only aware of few and insufficiently updated systematic

review on this topic that has evaluated the diagnostic accuracy

of radiomics.

In our study, we investigated the ability of imaging-based AI to

detect PNETs histologic grading. Our results showed that AI-based

grading of PNETs with an AUC of 0.89 [0.84 - 0.90] exhibited good

performance but high heterogeneity (I2 = 90.42% [81.10-99.73], P =

0.000). Among the included studies, we found considerable

heterogeneity in pooled sensitivity and specificity. Moreover,

according to our sensitive analysis, 3 articles (29, 40, 46) had

poor robustness and may be one of the sources of heterogeneity

(Figure S2). There was no significant publication bias

between studies.

The diagnostic performance of the radiomics model varied with

the strategies employed. CT and MRI images are the main sources

for analyzing PNETs. Because of its high availability and low cost,

CT is widely used than MRI. In this study, we found that imaging

techniques may be influencing factors of prediction power, but not

independently so. CT was more commonly used (16 studies) and

showed better performance than MRI (6 studies) in grading PNETs,

with an AUC of 0.88 [0.85-0.91] vs. 0.83 [0.79-0.86]. Although

unconfirmed, we speculate that CT may be more powerful for

obtaining vessel enhancement characteristics and observing the

neo-vascular distribution, which is useful in vascularly-rich

PNETs (54). Future studies are needed to validate this finding.

We had only one study applied PET-CT grading PNETs and found

AUROC of 0.864 in the tumor grade prediction model which

showed good forecasting ability (47). Thus, more investigation

into PET-CT will be useful in developing AI models, which

showing good predictive performance (AUC = 0.992) and can

detect cell surface expression of somatostatin receptors (55, 56).

Clinical data such as age, gender, tumor size, tumor shape,

tumor margin and CT stage are closely related to the pathogenic

process of PNETs and therefore should not be ignored in diagnostic

models (27–29, 47, 49).,Liang et al. (37) built a combined model

which can improve the performance (0.856, [0.730–0.939] vs. 0.885

[0.765–0.957]). Wang et al. (42) found that the addition of clinical

features can improve the radiomics models (from 0.837 [0.827–

0.847] to 0.879 [0.869–0.889]). However, we found that including

clinical factors did not always result in better performance but did

decrease the heterogenicity (AUC of 0.81 [0.77-0.84] with

I2 = 41.94% vs. 0.90 [0.87-0.92] with I2 = 89.91%). This may due

to the data are processed differently, such as age or other clinical

numerical data can be easily quantified by radiomic modeling (i.e.,

age as a variable in an algorithm or function). And in clinical

models, age regarded as risk factors always varied in different

situations. Therefore, future radiomics analyses should

incorporate clinical features to create more reliable models or add

radiomics features to existing diagnostic models to validate their

true diagnostic power.

The lack of standardized quality control and reporting throughout

the workflow limits the application of radiomics (17, 57). For example,

validation/testing data must remain completely independent or hidden

until validation/testing is performed in order to create generalizable

predictive models at each step of a radiomics study. In our study, 11
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studies of 20 had validation set and only 3 had external validation. Lack

of proper external validation would influence the transportability and

generalizability of the models in the studies and also hamper the

conclusions of the review. Moreover, according to our findings, lacking

validation sets was also one of the main causes of heterogeneity. There

should be no direct comparison between the results obtained by

studying only the primary cohort and those obtained by studying

both the primary and validation cohorts. Validated models should be

considered more reliable and promising, even if the reported

performance is lower.

As shown in Table 1, there were also a wide variety of feature

extraction and model selection methods, and although AI classifiers

did not show outstanding diagnostic performance in our evaluation,

it is undeniably a future research direction and trend. Most of the

included studies used more than one machine learning or deep

learning for feature selection or classification, but the best

performing AI classifiers varied from study to study. To date,

there are no universal and well-recognized classifiers, and the

characteristics of the samples are a key factor affecting the

performance of classifiers (58, 59). Finding uniform and robust

classifiers for specific medical problems has always been a challenge.

Despite the encouraging results of this meta-analysis, the overall

methodological quality of the included literature was poor, reducing

the reliability and reproducibility of radiomics models for clinical

applications. Lack of prospective studies with scanner modeling

studies, lack of imaging studies at multiple time points, insufficient

validation and calibration validity of the models, short time frame

for cost-effectiveness analyses, insufficient cost-effectiveness

analyses, and lack of publicly available science and data

contributed to the low RQS scores. In addition, only half of the

studies were internally validated and less independent external

validation. To further standardize the process and improve the

quality of radiomics, the RQS should be used not only to assess the

methodological quality of radiomics studies, but also to guide the

design of radiomics studies (17).

Diversity of the samples, inconsistencies with radiomics feature

extraction across platforms, different modeling algorithms, and

simultaneous incorporation of clinical features may all account

for the high heterogenicity of the combined models. According to

our sub-analysis results, the heterogenicity mainly came from the

different imaging materials (CT vs MRI), the algorithm architecture

(ML vs non-ML), whether validated or not and clinical features

included. Thus, standardized imaging, a standardized independent

and robust set of features, as well as validation even external

validation are all approaches to lower the heterogenicity and

highlights for attention in future research. To sum, the AI

method was effective in the preoperative prediction of PNETs

grade; this may help with the understanding of tumor behavior,

and facilitate vision-making in clinical practice.

Our study has several limitations. First, most included studies

were single-center and retrospective, inevitably causing patient

selection bias. Second, different methods were investigated,

including the type of imaging scans utilized, the type and number

of radiological features studied, the choice of software, and the type

of analysis/methods implemented, thus leading to the high

heterogeneity among studies. Therefore, some pooled estimates of
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the quantitative results must be interpreted with caution. Further

prospective studies could validate these results; a stable method of

data extraction and analysis is important for developing a

reproducible AI model.
Conclusions

Overall, this meta-analysis demonstrated the value of AI models

in predicting PNETs grading. According to our result, diversity of the

samples, lack of external validation, imaging modalities,

inconsistencies with radiomics feature extraction across platforms,

different modeling algorithms and the choice of software all are

sources of heterogeneity. Thus, standardized imaging, as well as a

standardized, independent and robust set of features will be

important for future application. Multi-center, large-sample,

randomized clinical trials could be used to confirm the predictive

power of image-based AI systems in clinical practice. To sum, AI can

be considered as a potential tool to detect histological PNETs grades.
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