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Objective: The aim of this study was to develop and validate a series of breast

cancer-related lymphoedema risk prediction models using machine learning

algorithms for early identification of high-risk individuals to reduce the incidence

of postoperative breast cancer lymphoedema.

Methods: This was a retrospective study conducted from January 2012 to July

2022 in a tertiary oncology hospital. Subsequent to the collection of clinical data,

variables with predictive capacity for breast cancer-related lymphoedema (BCRL)

were subjected to scrutiny utilizing the Least Absolute Shrinkage and Selection

Operator (LASSO) technique. The entire dataset underwent a randomized

partition into training and test subsets, adhering to a 7:3 distribution. Nine

classification models were developed, and the model performance was

evaluated based on accuracy, sensitivity, specificity, recall, precision, F-score,

and area under curve (AUC) of the ROC curve. Ultimately, the selection of the

optimal model hinged upon the AUC value. Grid search and 10-fold cross-

validation was used to determine the best parameter setting for each algorithm.

Results: A total of 670 patients were investigated, of which 469 were in the

modeling group and 201 in the validation group. A total of 174 had BCRL (25.97%).

The LASSO regression model screened for the 13 features most valuable in

predicting BCRL. The range of eachmetric in the test set for the ninemodels was,

in order: accuracy (0.75–0.84), sensitivity (0.50–0.79), specificity (0.79–0.93),

recall (0.50–0.79), precision (0.51–0.70), F score (0.56–0.69), and AUC value

(0.71–0.87). Overall, LR achieved the best performance in terms of accuracy

(0.81), precision (0.60), sensitivity (0.79), specificity (0.82), recall (0.79), F-score

(0.68), and AUC value (0.87) for predicting BCRL.

Conclusion: The study established that the constructed logistic regression (LR)

model exhibits a more favorable amalgamation of accuracy, sensitivity,
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specificity, recall, and AUC value. This configuration adeptly discerns patients

who are at an elevated risk of BCRL. Consequently, this precise identification

equips nurses with themeans to undertake timely and tailored interventions, thus

averting the onset of BCRL.
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Introduction

The most recent data derived from GLOBOCAN 2020 (1)showed

that breast cancer, for the first time, has surpassed lung cancer as the

most prevalent malignancy among women, with an estimated 2.3

million new cases globally, accounting for 11.7% of overall cancer

incidence. Notably, advancements in early detection methods and

therapeutic interventions have contributed to a notable enhancement

in the 5-year relative survival rate for breast cancer patients. Over the

span of the last three decades, this rate has surged from 79% to 91% (2).

As the survival prospects for breast cancer patients continue to

improve, there arises an imperative to elevate the quality of life for

women grappling with the complications of this ailment. Breast

cancer-related lymphoedema (BCRL) emerges as a frequent chronic

complication after breast cancer surgery. This condition typically

arises due to the accumulation of protein-rich fluids within tissue

interstitial spaces, occasioned by deficient lymphatic drainage (3).

Lymphedema engenders swelling, distortion, and impaired

functionality within the affected limbs, profoundly influencing

both physical and psychological well-being, and the overall

quality of life (4). However, investigations into the authentic

prevalence of BCRL exhibit disparities, with reported incidence

rates spanning from 6% to 83% (5). Despite recent trends indicating

a decline in the occurrence of BCRL, the challenge of its treatment

remains formidable. Effective management strategies for

lymphoedema are still lacking, thereby underscoring the

importance of a preventative approach to mitigate its onset.

A disease risk prediction model constitutes a statistical

methodology rooted in the evaluation of various disease-

associated risk factors. These factors are assigned scores in

correspondence with their impact magnitude, and subsequently,

the likelihood of an impending event is computed through a

mathematical formulation (6). This model yields a more refined

assessment of the likelihood of a particular outcome transpiring.

This, in turn, facilitates the implementation of precisely tailored

interventions targeting diverse risk cohorts, thus yielding a

pronounced impact on augmenting patient prognosis (7).

The term “Machine Learning” (ML) was introduced by Arthur

Samuel (8) in 1959. It denotes an assemblage of algorithmic

techniques designed for the purpose of data representation and

analysis, a domain that has found widespread application in the
02
realm of cancer care research (9). ML methodologies demonstrate

enhanced efficacy in addressing problems characterized by a

profusion of potential predictors, in contrast to conventional

statistical paradigms (10). While many studies within the domain

of China have sought to devise predictive models for BCRL, a

considerable subset of these inquiries have predominantly relied

upon classical approaches such as logistic regression. These

methodologies may deviate from ML algorithms with respect to

key metrics such as accuracy, sensitivity, and specificity. It is pertinent

to underscore that the arena of machine learning encompasses

diverse algorithmic classifications, encompassing entities like

support vector machines (SVM), decision trees (DT), and random

forests (RF). The efficacy of predictive models forged through

disparate algorithmic classifications inherently exhibits discrepancy.

It is imperative to undertake intermodel comparisons for the problem

of BCRL.

The objective of this study was to formulate and subsequently

validate an array of predictive models with a specific focus on

predicting the risk of BCRL, and to validate the model using data

from a large sample retrospective cohort study. These models possess

the potential to aid clinical practitioners in the identification of

individuals who are predisposed to a heightened risk profile, which

enable the timely implementation of targeted interventions, thereby

contributing to a reduction in the occurrence of BCRL.
Materials and methods

This was a cross-sectional study of consecutive cases diagnosed

with breast cancer during the period 2021–2022. Ethical approval

was obtained from Sichuan Cancer Hospital (Approval No.

SCCHEC-02-2022-005).
Study design

We conducted a survey-based cross-sectional study in a tertiary

oncology hospital (Sichuan Cancer Hospital & Research Institute), the

largest oncology hospital in Southwestern China, which guaranteed a

sufficient sample size. Participants were recruited using the following

criteria: (1) ≥18 years of age at the time of surgery; (2) patient
frontiersin.org
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diagnosed with breast cancer by histopathology and received surgical

treatment for breast cancer; (3) patients with normal reading,

comprehension, and expression skills; and (5) agreed to participate

in the study. Exclusion criteria were as follows: (1) patients with other

serious diseases, such as severe heart, cardiogenic, and renal failure; (2)

surgical history and injury history of the affected upper limb before

breast cancer surgery; (3) bilateral breast cancer; (4) lymphedema

caused by other reasons, such as nephrogenic, cardiogenic,

hypoproteinemia, deep vein thrombosis, and so on.
Data collection procedures

The demographic, clinical, disease, treatment, and behavioral

particulars of the patients were procured through the

questionnaires and retrieval from the electronic medical record

system (Table 1). The items of the lymphedema risk-reduction

behavior checklist are shown in Table 2. Prior to the distribution of

questionnaires, a comprehensive explanation regarding the study’s

objectives and significance was conveyed to the patients and their

families. Upon securing the patients’ consent, the individuals

independently completed the demographic and behavioral data

questionnaires. To ensure meticulous accuracy in information

collection, a diverse array of methods was employed for data

collection, including the retrieval of data from electronic medical

records, utilization of the WeChat (a messaging application), and

telephone interview.
Evaluation of outcome

Diagnostic criteria for upper limb lymphedema: objective indexes

were measured by circumferential measurement, and the

circumferential diameters of the transverse carpal stripe, 10 cm above
Frontiers in Oncology 03
the transverse carpal stripe, elbow fossa, and 10 cm above the elbow

fossa of the upper limbs of the bilateral upper limbs were measured with

a non-elastic soft ruler. A difference of ≥2.0 cm between any point of the

affected and healthy upper limbs was determined as breast cancer-

related lymphedema. A difference of 6 cmwas considered severe edema.
Statistical analysis

Statistical analysis was performed using python (version: 3.7.0) and

tableone package (version: 0.7.10) software. Because the data were

obtained by standardized Z-scoring, they conformed to a normal
TABLE 1 The study’s variable and their corresponding categories utilized
in predicting BCRL.

Category Variables

Demographics Occupation, hypertension, diabetes, menstrual history, average
monthly household income, mode of payment, residence,
marital status, ethnicity, education level, weight, height, age

Clinical data Tumor stage, pathological type, TNM stage of the tumor,
axillary lymph node status, location of the tumor, hormone
receptor status, HER-2 test status, Ki67 test status, recurrence
of the tumor

Treatment
types

Type of surgical incision, the number of lymph node positives,
and the number of lymph nodes removed, level of axillary
lymph node dissection (ALND), whether the affected side was
the primary hand, endocrine therapy, adjuvant chemotherapy,
postoperative radiotherapy, postoperative complications,
lymph node surgical approach, breast surgical approach

Behavior-
related

information

The survey adhered to the “National Lymphedema Network
(NLN)” as outlined by the NLN. These guidelines encompass a
compilation of 18 preventive measures that are categorized
into four distinct domains: mitigation of extreme temperature
exposure, mitigation of compression on the upper extremities,
lifestyle adjustments, and practices pertaining to skin care.
TABLE 2 Lymphedema risk-reduction behavior checklist.

No. Item

Entry
1

Minor increases in edema of the upper extremities or chest should
never be ignored, and edema of the upper extremities should be
reported promptly.

Entry
2

No blood draws or injections in the affected limb and wearing
lymphedema markers.

Entry
3

Avoid measuring blood pressure in the affected extremity; if bilateral
upper extremity lymphedema is present, measure blood pressure in the
lower extremity.

Entry
4

Keep the skin of the affected limbs clean and dry, pay attention to
folds and finger gaps, and rub moisturizing lotion after bathing.

Entry
5

Avoid strenuous repetitive movements that increase resistance in the
affected limb, such as scrubbing or pushing or pulling.

Entry
6

No lifting of excessively heavy objects (more than 5 pounds) and
crossbody bags on the healthy side.

Entry
7

Do not wear necklaces or elastic bracelets that are too tight.

Entry
8

Avoid excessive temperature changes when drenching and washing
dishes, avoid saunas or hot baths, and use sunscreen products.

Entry
9

Avoid injuries to the affected limbs, such as cuts, burns, sports injuries,
insect bites and scratches.

Entry
10

Wear gloves when doing housework or planting flowers.

Entry
11

Avoid any injury when trimming nails.

Entry
12

Avoid excessive fatigue of the affected limb, rest and elevate the limb
when it feels pain.

Entry
13

Wear elastic cuffs when flying with lymphedema patients, and use
elastic bandages when flying long distances to increase fluid intake.

Entry
14

Wear light-weight breast implants or suitable bras without steel bra.

Entry
15

Shaving armpit hair with an electric shaver

Entry
16

Lymphedema patients are required to wear an elastic cuff during the
day and are examined by the treating physician once every 4–
6 months.

Entry
17

Report any signs of infection such as rash, itching, redness, pain, high
skin temperature, or fever to your doctor.

Entry
18

Maintain an ideal body weight, eat a low-salt, high-protein, easy-to-
digest diet, and avoid smoking and drinking alcohol.
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distribution, where measures were described using mean ± standard

deviation and counts were described using frequencies and percentages.

An independent-samples T test was used to conduct the between-

group comparisons. LASSO analysis was used to select the predictive

variables. Before constructing the ML model, the input data are

randomly divided into training and test sets. About 70% of the data

is used for the training of the predictive model, and nearly 30% of the

data is used for the validation of the test dataset. Recall, precision,

accuracy, F-score, area under curve (AUC), sensitivity, and specificity

based on the confusion matrix were used as the indicators for

evaluating the predictive performance of the model.

Results

Patient participation and characteristics

On the basis of the circumferential measurements, 670

postoperative breast cancer patients were categorized into non-

lymphedema and lymphedema groups, of which 496 (74.03%) were

non-lymphedema patients and 174 (25.97%) were lymphedema
Frontiers in Oncology 04
patients. Comparisons between groups of the two groups of

patients in terms of demographic, disease, and treatment

information are shown in Table 3. The analytical outcomes

underscored the presence of statistical significance across different

categories of postoperative breast cancer patients in relation to

attributes including BMI, hypertension, clinical staging, T-stage, N-

stage, pathological type, age, type of surgery, type of lymph node

surgery, surgical side, level of lymph node dissection, number of

removed lymph nodes, number of positive lymph nodes, neoadjuvant

chemotherapy, adjuvant chemotherapy, postoperative radiotherapy,

endocrine therapy (P < 0.05).

Using LASSO regression for feature screening and cross-

validation method to select the optimal model parameters, the 13

predictive values for BCRL were finally screened out. The 13

characteristics were as follows: BMI, number of positive lymph

nodes, surgical side, N stage, neoadjuvant chemotherapy (NAC),

type of lymph node surgery, postoperative radiotherapy, type of

surgery, clinical staging, entry 1, entry 5, entry 6, and entry 12.The

ranking of the importance of the 13 features screened for the results

is shown in Figure 1.
TABLE 3 Comparison of demographic, disease, and treatment information of postoperative breast cancer patients between different groups.

Variable Variable hierarchy Total Non-lymphedema Lymphedema P value

(n=670) (n=496) (n=174)

BMI, mean (SD) 24.1 (3.0) 23.8 (3.0) 25.1 (3.2) <0.001

Hypertension, n (%) No 561 (83.7) 425 (85.7) 136 (78.2) 0.028

Yes 109 (16.3) 71 (14.3) 38 (21.8)

Clinical staging, n (%) 0 26 (3.9) 25 (5.0) 1 (0.6) <0.001

I 132 (19.7) 122 (24.6) 10 (5.7)

II 354 (52.8) 257 (51.8) 97 (55.7)

III 115 (17.2) 63 (12.7) 52 (29.9)

IV 43 (6.4) 29 (5.8) 14 (8.0)

Tumor stage, n (%) T0 1 (0.1) 1 (0.2) <0.001

T1 207 (30.9) 177 (35.7) 30 (17.2)

T2 389 (58.1) 264 (53.2) 125 (71.8)

T3 28 (4.2) 17 (3.4) 11 (6.3)

T4 19 (2.8) 12 (2.4) 7 (4.0)

Tis 26 (3.9) 25 (5.0) 1 (0.6)

N stage, n (%) 0 298 (44.5) 263 (53.0) 35 (20.1) <0.001

1 243 (36.3) 162 (32.7) 81 (46.6)

2 87 (13.0) 51 (10.3) 36 (20.7)

3 42 (6.3) 20 (4.0) 22 (12.6)

Pathological type, n (%) Invasive carcinoma 626 (93.4) 457 (92.1) 169 (97.1) 0.035

Non-invasive carcinoma 44 (6.6) 39 (7.9) 5 (2.9)

Age, mean (SD) 50.4 (10.0) 51.2 (9.7) 48.4 (10.6) 0.003

(Continued)
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The ML models’ prediction performance
In this study, support vector machines (SVM), stochastic

gradient descent (SGD), K-nearest neighbor (KNN), decision

trees (DT), random forests (RF), extra trees (ET), extreme

gradient boosting (XGBoost), light gradient boosting machine

(LightGBM), and logistic regression (LR) were used for modeling

in the training set and internally validated with the test set. This

study used a method combining grid search and 10-fold cross-

validation, which is realized by calling the GridSearchCV function

in sklearn library. After finding the optimal parameter through

GridSearchCV, it was directly brought into the model to observe the

performance of the model.

After analysis, the ROC curves for the nine models is shown in

Figure 2. Internal validation and external validation were performed

for each model category, followed by a comparison of the

performance indicators of the nine models combined, and finally

LR was found to have the best predictive performance based on the

AUC values (0.87), with 81% accuracy, 82% specificity, and 79%
Frontiers in Oncology 05
recall for BCRL. The performance characteristics of the nine ML

models for predicting BCRL are summarized in Table 4.
Discussion

Our study found that lymphedema occurs in 25.97% of breast

cancer patients, with consistent results in a review by Erickson et al.

(11), which reported an overall incidence of upper extremity edema

of 26%. However, the incidence of BCRL was 33.82%, 19.77%, and

6.8% in the studies by Xiao Xu (12), Xie Danping et al. (13), and

Card et al. (14), respectively, which may be due to the variability of

results due to the diversity of the study sites, follow-up times,

diagnostic criteria, and measurement methods.

Since lymphedema is a chronic progressive disease, early detection

or prevention is very important for both patients and healthcare

professionals. By identifying risk factors for lymphedema, the

likelihood of its occurrence can be predicted and appropriate

strategies can be adopted to reduce these risk factors. In this study,

13 characteristics were screened by LASSO regression.
TABLE 3 Continued

Variable Variable hierarchy Total Non-lymphedema Lymphedema P value

(n=670) (n=496) (n=174)

Type_of_surgery, n (%) Mastectomy 509 (76.0) 357 (72.0) 152 (87.4) <0.001

Breast-conserving surgery 157 (23.4) 136 (27.4) 21 (12.1)

Breast reconstruction 4 (0.6) 3 (0.6) 1 (0.6)

Type_of_lymph_node_surgery, n (%) SLNB 248 (37.0) 231 (46.6) 17 (9.8) <0.001

ALND 422 (63.0) 265 (53.4) 157 (90.2)

Surgical_side, n (%) Non-dominant side surgery 336 (50.1) 266 (53.6) 70 (40.2) 0.003

Dominant side surgery 334 (49.9) 230 (46.4) 104 (59.8)

Level_of_lymph_node_dissection, n (%) 0 248 (37.0) 231 (46.6) 17 (9.8) <0.001

I level 11 (1.6) 8 (1.6) 3 (1.7)

I, II level 384 (57.3) 236 (47.6) 148 (85.1)

I, II, III levels 27 (4.0) 21 (4.2) 6 (3.4)

Number_of_removed_lymph_nodes, mean (SD) 13.2 (8.1) 11.8 (7.9) 17.0 (7.8) <0.001

Number_of positive_lymph_nodes, mean (SD) 1.8 (3.9) 1.2 (2.7) 3.3 (5.9) <0.001

Neoadjuvant_chemotherapy, n (%) No 415 (61.9) 322 (64.9) 93 (53.4) <0.001

Yes (with paclitaxel) 205 (30.6) 151 (30.4) 54 (31.0)

Yes (without paclitaxel) 50 (7.5) 23 (4.6) 27 (15.5)

Adjuvant_chemotherapy, n (%) No 180 (26.9) 151 (30.4) 29 (16.7) <0.001

Yes (with paclitaxel) 417 (62.2) 285 (57.5) 132 (75.9)

Yes (without paclitaxel) 73 (10.9) 60 (12.1) 13 (7.5)

Postoperative_radiotherapy, n (%) No 279 (41.6) 243 (49.0) 36 (20.7) <0.001

Yes 391 (58.4) 253 (51.0) 138 (79.3)

Endocrine_therapy, n (%) No 240 (35.8) 198 (39.9) 42 (24.1) <0.001

Yes 430 (64.2) 298 (60.1) 132 (75.9)
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FIGURE 1

Importance ranking of variables.
FIGURE 2

Receiver operating characteristic curve of the nine models in the validation set.
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The most important risk factor was the patient’s BMI. In Ahmed

and Dominick’s study of 1,287 and 2,431 breast cancer survivors (15,

16), BMI was also identified as a significant risk factor for lymphedema.

In a study by Park et al. (17), BMI ≥25 kg/m2 was an independent risk

factor for lymphedema in an analysis of 406 women who received

preoperative neoadjuvant chemotherapy. Although considered one of

the most important risk factors for BCRL, and despite the fact that

accumulation of lymphocytes is known to increase adipocyte

proliferation and differentiation (18), the mechanism by which

elevated BMI increases the risk of secondary lymphedema is unclear.

Green (19) suggested that a possible explanation for obesity-induced

lymphedema is the inability of the lymphatic system of the affected

limb to transport the amount of lymph produced, which can be

demonstrated by abnormal lymphatic scintigraphy. Therefore, health

education aimed at promoting dietary and lifestyle changes in breast

cancer patients with a high BMI is important to help reduce the risk of

postsurgical lymphoedema. This can be provided by specialized breast

nurses as part of a holistic and individualized care plan. Although the

primary impact of early dietary intervention on weight loss is beneficial

in reducing the risk of lymphedema, potential secondary outcomes

include a positive association with breast cancer recurrence, self-care,

and overall health (20). Individuals with comorbidities such as diabetes,

cardiovascular disease, or musculoskeletal disorders may benefit from

lower BMI through dietary interventions or exercise, thereby

improving quality of life.

The impact of lymph node status on the presence of LE is a topic of

ongoing debate. In this study, the second most significant risk factor

was the number of positive lymph nodes, aligning closely with the

findings of Wu et al. (21). In the multivariate analysis conducted by

Kwan et al. (22), the quantity of pathological lymph nodes

demonstrated statistically significant prognostic value for the severity

of lymphedema. A meta-analysis report suggests that an increased

number of metastatic lymph nodes elevated the incidence of LE (23). A

prospective survey on lymphedema involving 627 breast cancer

patients who underwent mastectomy revealed that with each

additional positive lymph node, the risk of developing BCRL

increased by 1.091 times (24). Huang et al. (25) assert that the status

of axillary lymph nodes significantly influenced the treatment and

prognosis of breast cancer patients. This may be attributed to a higher

number of positive lymph nodes leading to a broader scope of axillary
Frontiers in Oncology 07
lymph node dissection, resulting in prolonged radiation therapy and

potential damage to axillary lymph nodes, upper limbs, and chest

tissues. Conversely, a study comparing LE following SLNB and ALND

in lymph node-negative and lymph node-positive breast cancer

suggested that only ALND was associated with LE, regardless of

lymph node status (26).

This study indicated that NAC was also a significant risk factor for

the occurrence of BCRL. A prospective cohort study of 276 patients

found that compared to preoperative surgery, patients undergoing

ALND with NAC treatment had a twofold increased risk of BCRL

development (27). Another study involving 409 ALND patients also

discovered that NAC increased the risk of BCRL by 3.76 times and was

independently associated with BCRL (28). A recent retrospective

analysis of 596 breast cancer patients who underwent ALND and

chemotherapy revealed that, compared to preoperative surgery,

patients undergoing NAC with ALND had a 1.5-fold increased risk

of BCRL (29). This finding was consistent with another retrospective

study of 848 ALND patients, where NAC patients experienced more

prolonged BCRL events compared to those receiving adjuvant

chemotherapy (HR 1.39; 95% CI [1.05, 1.84]) (30). Similar

associations were observed in populations other than those

undergoing ALND. A retrospective analysis of 3,136 patients who

underwent breast excision surgery reported a BCRL incidence of

10.4%, with NAC (HR 1.42; 95% CI [1.10, 1.84]) increasing the

prevalence of BCRL (31).

The prevalence of most preventive behaviors is low due to

postoperative health education and patient adherence to

recommendations for preventive behaviors, such as sunburn, trauma,

injections, and ipsilateral blood draws.Mosquito bites on infected limbs

were the most common because they are not easily avoided; however,

they usually have a minimal impact on the patient and few relevant

studies have shown it to be a risk factor for BCRL. Air travel ranked

second in prevalence. Air travel has received relatively little attention,

hence its higher prevalence. Theoretically, air travel can have a

deleterious effect on lymphedema. It is hypothesized that changes in

cabin pressure during ascent and descent of the aircraft and the

relatively low cabin pressure at high altitudes are responsible for this

problem (32). However, there are conflicting indications in the

published literature (33, 34). In the present study, among these

behaviors, “do not ignore upper extremity edema,” “avoid strenuous
TABLE 4 Performance results for the machine learning models in the validation set.

Model Accuracy Sensitivity Specificity Recall Precision F-score AUC

SVM 0.78 0.62 0.83 0.62 0.56 0.59 0.85

SGD 0.84 0.71 0.88 0.71 0.67 0.69 0.84

KNN 0.75 0.63 0.79 0.63 0.51 0.56 0.78

DT 0.78 0.56 0.85 0.56 0.57 0.56 0.71

RF 0.80 0.56 0.88 0.56 0.62 0.59 0.84

ET 0.82 0.50 0.93 0.50 0.70 0.58 0.80

XGBoost 0.82 0.58 0.91 0.58 0.68 0.62 0.85

LightGBM 0.82 0.60 0.89 0.60 0.66 0.63 0.86

LR 0.81 0.79 0.82 0.79 0.60 0.68 0.87
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exercise of the affected extremity,” “avoid heavy lifting of the affected

extremity,” and “avoiding excessive fatigue of the affected limb” were

associated with lymphedema. This may be due to overuse leading to

excessive muscle tension in the affected limb, which disrupts the

balance of lymphatic return and in turn induces lymphedema (35).

Preventive behaviors associated with the risk of lymphedema remain

controversial, and this uncertainty influences decision-making in very

different ways for people at risk of lymphedema or for people with

lymphedema. Further research is needed to determine whether they

exacerbate lymphedema in postoperative breast cancer patients.

In addition, we performed a comprehensive comparison of the

nine models. In terms of sensitivity, LR has the highest sensitivity,

which means that the model has a relatively high identification rate

for positive patients, and the specificity of LR is 0.82, which means

that the identification of negative patients is generally correct,

whereas SVM, SGD, KNN, DT, RF, ET, XGBoost, and LightGBM

were all generally stable and had lower overall effectiveness scores

than LR. In comparison with previous studies, Fu et al. (36) used

five machine learning classification algorithms: decision tree with

C4.5 and decision tree with C5.0, GBM, ANN, and SVM for

predicting BCRL. Out of the five trained classifiers, the artificial

neural network detected lymphedema with an accuracy of 93.75%,

sensitivity of 95.65%, and specificity of 91.03%. The use of real-time

symptom report that allows the use of web-and-mobile-based

mHealth system in detecting lymphedema status is a strength of

the study, which increases the predictive performance of the model

compared with the LR model in this study. Notash et al. (37) used

six classification algorithms including C5.0’s decision tree, KNN,

SVM, LDA, Bayesian, and MLP to construct the BCRL prediction

model, of which the SVM algorithm showed the highest sensitivity

and was found to be the best model for predicting lymphedema,

based on the accuracy obtained, the algorithm correctly detected the

presence or absence of lymphedema in newly diagnosed patients in

88% of cases, which was slightly higher than the AUC of the LR in

this study (0.87).Wei et al. (38) derived and evaluated six machine

learning models, and the results showed that the LR model

performed the best in the early detection of lymphedema with the

best performance, AUC = 0.889 (0.840–0.938), sensitivity = 0.771,

specificity = 0.883, accuracy = 0.825, and Brier score = 0.141, which

is slightly lower than the sensitivity of LR (0.79) in this study. In

summary, among the risk prediction models for upper limb

lymphedema in postoperative breast cancer patients, the model

constructed by the LR algorithm has a better predictive

performance, which can guide clinical medical personnel to

develop targeted BCRL prevention strategies.
Conclusion

In this study, using LASSO regression modeling, the 13 features

that were most valuable in predicting the occurrence of BCRL were
Frontiers in Oncology 08
screened and ranked in order of importance, and the results showed

that BMI was the most critical factor among them. Then, the dataset

was divided into training and test sets in the ratio of 7:3, and after

comparing the performance indicators of the nine models

combined, the LR model achieved the accuracy (0.81), precision

(0.60), sensitivity (0.79), specificity (0.82), recall (0.79), F-score

(0.68), and AUC value (0.87) of predicting BCRL with the

optimal performance and was able to identify patients at high risk

of BCRL more accurately. Overall, the findings emphasize the

importance of implementing holistic and comprehensive care for

patients with cancer, and nurses with expertise in lymphedema can

play a key role in this regard.
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