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Astragalus polysaccharides
Qian Yang, Dandan Meng, Qinyuan Zhang* and Jin Wang*

School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
The dry root of the soybean plant Astragalus membranaceus (Fisch) Bge. var.

mongholicus (Bge) Hsiao or A. membranaceus (Fisch) Bge, Astragali Radix (AR)

has a long medicinal history. Astragalus polysaccharide (APS), the natural

macromolecule that exhibits immune regulatory, anti-inflammatory, anti-

tumor, and other pharmacological activities, is an important active ingredient

extracted from AR. Recently, APS has been increasingly used in cancer therapy

owing to its anti-tumor ability as it prevents the progression of prostate, liver,

cervical, ovarian, and non-small-cell lung cancer by suppressing tumor cell

growth and invasion and enhancing apoptosis. In addition, APS enhances the

sensitivity of tumors to antineoplastic agents and improves the body’s immunity.

This macromolecule has prospects for broad application in tumor therapy

through various pathways. In this article, we present the latest progress in the

research on the anti-tumor effects of APS and its underlying mechanisms, aiming

to provide novel theoretical support and reference for its use in cancer therapy.
KEYWORDS
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1 Introduction

According to the 2020 Global Cancer Statistical Report, cancer is the second leading

cause of death globally, with an increase in incidence in recent years (1, 2). Malignant

tumors are the primary reason for chronic noninfectious disease-related deaths and are the

chief obstacle to a better life expectancy (3). Both gene mutation and epigenetic changes are

important factors that lead to cancer occurrence and progression (4). Epigenetics refers to

the reversible and heritable changes in gene function without changes in the nuclear DNA.

Epigenetic changes include histone modification, DNA methylation, chromatin

remodeling, and non-coding RNA regulation, which can affect the expression and

silencing of oncogenes and tumor suppressor genes, respectively (4–7). Therefore,

epigenetic regulation offers a promising direction and strategy for the development of
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anti-tumor therapeutics. However, as the pathogenesis of cancer

remains unclear, the development of effective treatment methods is

limited. Currently, cancer treatment primarily involves surgical

resection, radiotherapy, chemotherapy, or a combination of two

or all three approaches. During treatment, both cancerous and

normal cells are killed, triggering a series of adverse reactions and

toxic side effects with varying degrees of impact on prognosis and

patients’ quality of life (QOL). Recently, with advancements in

tumor microenvironment research, immunotherapy has emerged as

a promising therapeutic approach (8, 9). Tumor immunotherapies,

such as the use of immune checkpoint inhibitors (targeting

programmed cell death protein-1, programmed cell death ligand-

1, cytotoxic T lymphocyte-associated antigen 4, etc.) and adoptive

cell transfer (such as chimeric antigen receptor T-cell therapy, T cell

receptor-engineered T cells therapy, tumor-infiltrating lymphocytes

therapy, etc.) (10–13), have demonstrated promising outcomes;

however, their efficacy must be validated using clinical trial.

Traditional Chinese medicine has been essential in tumor

prevention and management, with significant advantages,

particularly in improving and managing clinical symptoms,

enhancing the efficacy of anti-cancer drugs, reducing the toxicity

of radio- and chemotherapies, enhancing the patient’s immunity

and QOL, and effectively prolonging survival time (14), making it a

critical strategy for tumor prevention and management. Astragali

Radix (AR), a common traditional Chinese herbal medicine used in

China for over 2,000 years, is also extensively used in numerous

countries and has been included in the pharmacopeias of the United

States, Japan, and South Korea (15). Medical research shows that

AR exhibits various therapeutic activities, including anti-tumor

(16–19), anti-aging (20), immune regulatory (21), anti-fibrosis

(22), antibacterial (23), antiviral (24, 25), and anti-radiation (26)

effects. Astragalus polysaccharide (APS), a major active component

of AR (27–30), is extensively used in medicine as it demonstrates

beneficial activities and low toxicity (31).

APS is a mixture of macromolecules, mainly composed of

glucans (both water-soluble and water-insoluble) and

heteropolysaccharides (mostly water-soluble and acidic), with

molecular weights ranging from 8.7×103 to 4.8×106 Da (31–34).

According to recent pharmacological studies, APS has a wide

spectrum of biological activities, such as anti-inflammatory (35–

37), immune regulation (38, 39), anti-fiber (40), anti-radiation (41,

42), anti-aging (21), anti-metabolic disorders (43), protective effects

on the cardiovascular system (44, 45), anti-diabetes (46), anti-tumor

(47, 48), and anti-infection (49).

Owing to its high efficacy and low toxicity, the role and value of

APS in the management of malignancies have garnered increasing

research attention in recent years. The anti-cancer mechanism of

APS involves inducing the apoptosis of tumor cells by regulating

various pathways; inhibiting proliferation, migration, and invasion

of tumor cells; regulating immune function and autophagy; and

enhancing the efficacy of chemotherapeutic or targeted drugs by

reducing their toxicity. However, a comprehensive understanding

of how APS works has not been put into perspective. In this study,

the anti-tumor mechanisms of APS and its targets are

comprehensively reviewed to render a new theoretical basis for

cancer treatment.
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2 Anti-tumor mechanism of APS

2.1 Role of APS in inducing tumor
cells apoptosis

Apoptosis, also referred to as programmed cell death, plays a

key role in maintaining internal environment homeostasis (50, 51).

Induction of cell death is a major mechanism underlying the activity

of anti-tumor drugs (52).

2.1.1 B-cell lymphoma-2 (Bcl-2) family
The Bcl-2 family contains a class of molecules involved in

apoptosis-associated pathway modulation. Bcl-2 is an anti-

apoptosis gene highly expressed in various tumors (53, 54),

whereas Bcl-2-associated X (Bax) is a pro-apoptotic gene (55).

Huang et al. proposed that APS induces H22 (a hepatocellular

cancer [HCC] cell line) apoptosis by downregulating Bcl-2 and

upregulating Bax expression (56). Similarly, Lv et al. reported that

after APS treatment, the apoptosis of HepG2 cells is accelerated

(57). Specifically, APS decreased the levels of Bcl-2, b-catenin, c-
myc, and Cyclin D1 in cells, suggesting that the mechanism of

tumor suppression may be related to the inhibition of Bcl-2

expression by downregulating the Wnt/b-catenin signaling

pathway. Xie et al. provided additional data demonstrating that

APS effectively inhibited the growth of MDA-MB-231 (a human

breast cancer [BC] cell line) graft tumor (58). In terms of

mechanism, APS concentration-dependently increased Bax

protein expression and decreased Bcl-2 protein expression, thus

inducing MDA-MB-231 apoptosis.

2.1.2 miRNA pathway
miRNAs, endogenous non-coding small RNAs that are critical

in regulating almost all signaling pathways in eukaryotic cells (59),

have recently been found to participate in tumor occurrence and

progression by regulating apoptotic signaling pathways (60–63).

miR-27a is over-expressed in various tumor cells (64–66). Guo et al.

found that APS significantly and dose-dependently reduced miR-

27a levels in cells, subsequently upregulating the expression of the

tumor suppressor gene FBXW7, thereby inhibiting OV-90 and

SKOV-3 proliferation and significantly increasing apoptosis (67).

miR-133a, which inhibits cancer cell growth in multiple tumors, is

considered a tumor suppressor molecule (68–70). According to Chu

et al., after APS treatment, the apoptosis rate of human

osteosarcoma MG63 cells increased owing to the upregulation of

miR-133a and inactivation of the JNK signaling pathways (71).
2.1.3 Extrinsic apoptosis pathways
Extrinsic apoptosis, one of the major pathways of apoptosis, is

mediated by death receptors on the cell surface (72). The binding of

Fas ligands to Fas receptors or tumor necrosis factor (TNF)

receptors to TNF ligands is the primary way of initiating this

apoptotic pathway (73–75). Fas and its ligands, a class of

important apoptosis-inducing molecules, exist in various tumor

cells (76, 77). In an in vitro study of colon cancer CD133+/CD44+

cells, Li and Shen found that APS can induce apoptosis by activating
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the Fas death receptor pathway. Specifically, APS increases Fas

expression and induces apoptosis in a concentration-dependent

manner (78).

2.1.4 p53 protein
The p53 protein is a vital tumor suppressor, and its loss of

function is a prerequisite for cancer development (79). In various

cancers, p53 is a dominant force promoting apoptosis, cell cycle

arrest, and DNA repair (80–83). Zhang et al. showed that APS could

activate p53 and p21 and inhibit the expression of Notch1 and

Notch3 in vitro, ultimately inhibiting cell proliferation and

promoting their apoptosis (84) (Table 1).
2.2 Suppression of cancer cell proliferation

Tumors promote abnormal cell proliferation and metabolic

activity by disrupting the regulation of growth-promoting signals

(85); therefore, suppressing tumor cell proliferation is a vital

strategy in the treatment of tumors.

2.2.1 Promotion of cell cycle arrest
Cell cycle regulation is coordinated by a complex network of

interactions between enzymes, cytokines, and cell cycle signaling

pathways. This regulation is essential for cell proliferation, growth,

and repair (86). Abnormal regulation of the cell proliferation cycle

is a major cause of tumor initiation (87). In an in vitro experiment,

by inhibiting the JAK2/STAT3 pathway, Liu et al. found that APS

induced the cell cycle of bladder cancer UM-UC-3 to stop in the G0/

G1 phase, thus inhibiting its proliferation (88). Additionally, Yu

et al. provided new evidence demonstrating that APS promotes

mouse solid tumor S180 cell apoptosis in a dose-dependent manner

through S-phase arrest (89). An in vitro study of APS against the

proliferation of HCC cells established that APS increased the G1

phase arrest of human hepatoma HepG2 cells, enhanced their

autophagic activity, suppressed proliferation, and enhanced

apoptosis by inhibiting the AKT axis (90). Yan et al. showed that
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APS could inhibit the proliferation of colon cancer SW620 cells

through cell cycle arrest, with G2/M phase arrest playing a

dominant role (91).

2.2.2 Others
Abnormal activation of cell signal transduction pathways is

closely related to the occurrence and development of malignant

tumors (92, 93). In an in vitro experiment, APS was found to inhibit

RT4 and T24 proliferation and migration by inducing the

accumulation of Fe2+ and malondialdehyde in cells, and

ferrostatin, an iron ptosis inhibitor, reversed this reaction (94).

Furthermore, APS was found to reduce GPX4 expression, inhibit

the activity of the light chain subunit SLC7A11 (xCT), and promote

the formation of BECN1-xCT complex by activating AMPK/

BECN1 signaling. These findings demonstrated the ability of APS

to inhibit urothelial carcinoma progression by inducing iron ptosis.

According to Guo et al., APS attenuated the proliferative and

invading capacities of prostate cancer cells (PC3 and DU145) in

vitro and inhibited PC3 xenograft growth in vivo, time- and dose-

dependently (95). Moreover, APS significantly inhibited tumor

development by upregulating miR-138-5p expression and

inhibiting SIRT1 and SREBP1 expression. Furthermore, APS

significantly suppresses HeLa cell growth, invasion, and migration

(96). This may be achieved by increasing SHP2 and SOCS3 protein

levels in cells and inhibiting JAK-STAT pathway overactivation.

Wu et al. demonstrated that APS could control the proliferation of

lung cancer cells (A549 and NCI-H358 cells) by inhibiting the NF-

kB signaling pathway (97) (Table 2).
2.3 Role of APS in inhibiting tumor invasion
and metastases

Tumor invasion and metastases are strongly correlated with

adverse prognoses, and the invasion of tumor cells is a prerequisite

for metastases. Tumor metastasis is a complicated process involving

multiple stages, genes, and gene products. Inhibiting tumor
TABLE 1 Effects of APS on the signaling pathways of apoptosis.

Test
type

Cancer types Cell type/Animal model Dosage/
concentrations

Signaling pathways
(↑upregulation, ↓downregulation)

REF

in vitro Hepatocellular
carcinoma

H22 cells 0.1, 0.5, 1 mg/mL Bcl-2↓ and Bax↑ (56)

Liver cancer HepG2 cells 100, 200 mg/L Bcl-2↓, b-catenin↓, c-myc↓, Cyclin D1↓ and
Wnt/b-catenin↓

(57)

Ovarian cancer OV-90 cells and SKOV-3 cells 0–2 mg/mL miR-27a↓ and FBXW7↑ (67)

Osteosarcoma MG63 cells 10 mg/mL miR-133a ↑and JNK↓ (71)

Colon cancer RKO cells 12.5, 25, 50 mg/mL Fas↑ (78)

Non-small cell
lung cancer

H460 cells 0–30 mg/mL p53↑, p21↑, Notch1↓and Notch3↓ (84)

in vivo Breast cancer BALB/c-nu nude mice♀, MDA-MB-
231 cells

200, 400 mg/kg bw Bax↑ and Bcl-2↓ (58)
frontier
Bcl-2, B-cell lymphoma-2; Bax, Bcl-2-associated X; Cyclin D1, G1/S-Specific cyclin-D1; c-myc, Myelocytomatosis viral oncogene homolog; Wnt/b-catenin , Wnt/b-catenin signaling pathway;
FBXW7, F-box/WD repeat-containing protein 7; JNK, c-Jun N-terminal kinases; Fas, Fas transmembrane glycoprotein; p53, p53 protein; p21, p21 protein.
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metastasis can prevent tumor cell spread to other body sites, thereby

mitigating tumor progression (98).
2.3.1 Epithelial–mesenchymal transition
(EMT) pathway

Multiple studies have linked EMT to tumor progression,

invasion, and metastases (99, 100). Yang et al. found through in

vitro experiments that APS significantly prevents human BC cells,

MCF-7 and Mda-MB-231, from invasion and migration (101).

Further research demonstrated the ability of APS to inhibit BC

cell invasiveness and migration by regulating the Wnt/b-catenin
axis. In addition, macrophage migration inhibitory factor (MIF), a

pro-inflammatory factor that is critical in the onset and progression

of intestinal, breast, and prostate carcinoma among other malignant

tumors (102–104), induces EMT in cancer cells (105, 106). Liao

et al. found that an injectable preparation of APS (PG2) dose-

dependently inhibited the migratory and invasive activities of lung

adenoma A549 cells (107). For specific performance, APS treatment

led to reduced EMT markers (vimentin, AXL) and MIF levels

in cells.
2.3.2 Regulation of miRNA expression
miRNAs contribute to the proliferation, invasion, and

migration of tumor cells by regulating gene transcription (108)

and play a key regulatory role in the pathological process of various

human tumors. In vitro experiments utilizing A549 and NCI-H1299

by Tao et al. substantiated that APS treatment markedly attenuated

the migration and invasiveness of non-small-cell lung cancer

(NSCLC) cells compared to that seen with the control, and the

underlying mechanism may be related to the APS-related increase

in cellular miR-195-5p levels (109). Notably, the increased

expression of miR-133a in cells after APS treatment effectively

prevents the proliferation, migration, and invasion of prostate

cancer cells (DU145) (110).
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2.3.3 Vascular endothelial growth factor
(VEGF) pathway

Tumor angiogenesis is the direct path of tumor cell metastasis

(111). VEGF can promote tumor progression in patients with

cancer by regulating angiogenesis in cancer tissues (112, 113).

Recent studies have shown that the downregulation of VEGF is a

positive signal during tumor therapy (114). Zhao et al. reported that

APS inhibits Lewis lung cancer growth and metastasis in mice by

significantly reducing VEGF and EGFR expression in cancerous

tissues (115). Additionally, in vitro studies by Tang and Li

demonstrated that APS inhibits the metastasis of gastric cancer

cells (SGC7901) induced by vascular endothelial cells (HUVECs)

(116) (Table 3).
2.4 Nano-drug delivery systems can
increase efficiency and reduce toxicity

APS is a mixture of hydrophilic macromolecules (117) that

cannot easily penetrate cell membranes, with only a small portion

absorbed through the intercellular space (118), limiting its clinical

application. Nano-drug delivery systems are highly selective and

can deliver drugs to specific sites to enhance therapeutic effects and

reduce adverse reactions (119, 120). Therefore, they show great

potential for the development and application of anti-tumor drug

delivery to improve the therapeutic effects.

Selenium nanoparticles, by virtue of having high bioavailability,

potent bioactivity, and low toxicity (121–123), exert significant

inhibitory effects on various malignant tumors (124–126). Ji et al.

prepared a novel functionalized nanocomposite using alcohol-

soluble APS and selenium nanoparticles and found that it was

effective in suppressing HepG2 proliferation and accelerating

apoptosis by triggering S-phase arrest, thereby stimulating DYm

(mitochondrial membrane potential) depletion, increasing the Bax/

Bcl-2 ratio, and promoting intracellular reactive oxygen species
TABLE 2 Effects of APS on the signaling pathways of proliferation.

Test
type

Cancer types Cell type/
Animal model

Dosage/
concentrations

Signaling pathways
(↑upregulation, ↓downregulation)

REF

in vitro Bladder cancer UM-UC-3 cells 500, 1000 mg/mL G0/G1 phase arrest and JAK2/ STAT3↓ (88)

Liver cancer HepG2 cells 25, 50, 100 mg/mL G1 phase arrest, AKT↓ and p-AKT↓ (90)

Colon cancer SW620 cells 1 g/L G2 /M phase arrest (91)

Urothelial carcinoma RT4 cells and T24 cells 10, 15 mm Fe2+↑, BECN1-xCT↑, GPX4↓, xCT↓ and
AMPK/BECN1↑

(94)

Prostate cancer PC3 cells and DU145 cells 0-40 mg/mL miR-138-5p↑, SIRT1↓ and SREBP1↓ (95)

Cervical cancer Hela cells 0–16 mg/mL SHP2↑, SOCS3↑ and JAK-STAT↓ (96)

Non-small cell
lung cancer

A549 cells and NCI-
H358 cells

20, 40 mg/mL NF-kB↓ (97)

in vivo Ascites tumor Kunming mice
, S180 cells

150, 300 mg/kg bw S phase arrest (89)
frontier
JAK2, anus kinase 2; STAT3, Signal transducer of activators of transcription; AKT, Protein kinase B; p-AKT, phospho- Protein kinase B; BECN1, Beclin-1; GPX4, Glutathione peroxidase 4; xCT,
Light chain subunit SLC7A11; AMPK, Adenosine monophosphate activated protein kinase; SIRT1, Silent mating type information regulation 2 homolog- 1; SREBP1, Recombinant Sterol
Regulatory Element Binding Transcription Factor 1; SHP2, SH2 domain-containing protein tyrosine phosphatase 2; SOCS3, Suppressor of cy-tokine signaling proteins; NF-kB, Nuclear factor
kappa-B.
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accumulation (127). Jiao et al. developed selenium nanoparticles

modified with macromolecular weight APS and observed positive

results in hepatoma treatment, as indicated by the induction of

apoptosis and inhibition of proliferation of HepG2 cells (128). The

mechanism involved may be related to the increasing S-phase block,

the significant enhancement of Bax levels, and the marked

reduction of Bcl-2 levels and DYm value. Studies have shown that

the selenium nanoparticles modified by APS are cytotoxic to MCF-7

cells. This cytotoxicity is achieved by the induction of apoptosis

through the mitochondrial pathway and the activation of autophagy

at an early stage and inhibiting it at a late stage (129). Moreover,

Huang et al. successfully constructed APS superparamagnetic iron-

oxide nanocomposites and demonstrated that they could effectively

induce M1 polarization of mouse monocytic macrophage

RAW264.7 and improve the killing ability of macrophages against

HepG2 cells in vitro. Furthermore, no inhibitory effect on

macrophage proliferation was observed (130).
2.5 Combination of APS with anti-tumor
drugs improves effectiveness and
reduces toxicities

Resistance to chemotherapy is the primary reason for treatment

failure and poor prognoses. Therefore, focusing on the mechanism

of drug resistance and inhibiting it in tumor cells is essential to

reducing drug resistance and optimizing effectiveness while

improving patient survival rates.

2.5.1 Cisplatin (CDDP)
CDDP is widely used as an initial medication in cancer therapy

owing to its exceptional ability to combat cancer and its broad

spectrum of effectiveness against various cancer types. However, the

prolonged utilization of this drug may result in the development of

resistance, thereby restricting its practical implementation in

clinical settings. The PI3K/AKT axis is crucial for tumorigenesis
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and progression (131). As indicated by Gong et al., APS reversed the

acquired CDDP resistance in melanoma cell lines B16 in vivo by

inhibiting the PD-L1/PI3K/AKT axis (132). Liu and Chen showed

that APS was able to overcome the resistance of A549/CDDP cells

to CDDP in vitro (133). Subsequent investigations revealed that

APS can decrease the DYm values and Bcl-2, p-PI3K, P-gp, and p-

AKT levels while elevating Bax expression. This finding implies that

the potential mechanism of action could encompass the inhibition

of the PI3K/AKT pathway and stimulation of the mitochondrial

apoptosis pathway. Lu et al. further demonstrated that APS

combined with CDDP effectively inhibits proliferation, migration,

and EMT progression of CDDP-resistant SW620 cells by inhibiting

miR-10b-5p expression and upregulating AGPAT3 expression

(134). The combination of APS and CDDP synergistically inhibits

the invasion and metastasis of CNE-1 (a human nasopharyngeal

carcinoma cell line). It is associated with the induction of G0/G1

and S phase arrest, downregulation of MMP-9 expression, and

upregulation of p53 expression (135). Li et al. observed that APS

could enhance the sensitivity of SKOV3 ovarian cancer cells to

CDDP treatment by activating the mitochondrial apoptosis

pathway and JNK1/2 signaling pathway (136).

2.5.2 Other drugs
In addition to CDDP, the application of APS can potentially

augment the chemosensitivity of tumors to other medications. Li

et al. showed that APS enhanced the sensitivity of HCC cells to

doxorubicin chemotherapy and induced cancer cell apoptosis (137).

In vitro tests have shown that by downregulating OGT (O-GlcNAc

transferase) and upregulating OGA (O-GlcNAc transferase)

expression in Hep3B cells, APS reduced O-GlcNAcylation and

intensified endoplasmic reticulum stress responses. According to

in vivo experiments, APS combined with doxorubicin inhibited

xenograft tumor growth in mice, suggesting that APS can

potentially be an optional sensitizer in HCC chemotherapy. A

previous study demonstrated that APS effectively reversed the

resistance of lung adenocarcinoma (PC9 and HCC827) cells to
TABLE 3 Effects of APS on the signaling pathways of invasion.

Test type Cancer types Cell type/Animal model Dosage/
concentrations

Signaling pathways
(↑upregulation,
↓downregulation)

REF

in vitro Breast cancer MCF-7 cells and Mda-MB-231 cells 200, 400, 800 mg/mL Cyclin D1↓, c-myc ↓and Wnt/
b-catenin↓

(101)

Non-small cell
lung cancer

A549 cells and NCI-H1299 cells 5, 10, 20 mg/mL miR-195-5p↑ (109)

Prostate cancer DU145 cells 1, 2.5, 5 mg/mL miR-133a↑ (110)

Gastric cancer SGC7901 cells 2.5, 5, 10, 20, 40 mg/mL E-cadherin↑, Vimentin↓, MMP-13↓ and
MMP-9↓

(116)

in vivo Lung cancer C57BL/6J mice and lung cancer Lewis
tumor cells

25, 50, 100 mg/kg bw VEGF↓ and EGFR↓ (115)

in vitro and
in vivo

Adenocarcinoma
of lung

A549 cells;
NOD/SCID mice♂

0-1000mg/mL;
10, 40, 160 mg/kg bw

E-cadherin↑, Vimentin↓, AXL↓
and MIF↓

(107)
frontier
Cyclin D1, G1/S-Specific cyclin-D1; c-myc, Myelocytomatosis viral oncogene homolog; Wnt/b-catenin , Wnt/b-catenin signaling pathway; MMP-13, Matrix metalloproteinase-13; MMP-9,
Matrix metalloproteinase-9; VEGF, Vascular endothelial growth factor; EGFR, Epidermal growth factor receptor; MIF, Macrophage migration inhibitor factor; AXL, Recombinant AXL Receptor
Tyrosine Kinase.
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gefitinib by inhibiting the PD-L1/SREBP-1/EMT axis (138). In a

mouse BC model, Bao et al. (139) found that APS effectively

alleviated paclitaxel-induced cytotoxicity in mouse monocyte–

macrophage RAW264.7 cells. The mechanism for this action is

attributable to changes in the cell cycle and apoptosis. When

studying the role of APS plus apatinib in human pancreatic

cancer cell (ASPC-1 and PANC-1) proliferation and apoptosis,

Wu et al. found that the combination therapy contributed to higher

cell migration and invasion inhibition rates and apoptosis and

lowered p-AKT, MMP-9, and p-ERK levels than those in the

control group (140), suggesting that APS plus apatinib is a

promising strategy for treating pancreatic cancer (Table 4).
2.6 Immunomodulation

The body’s immune system, through various pathways,

identifies and removes mutated tumor cells under normal

circumstances, which inhibits tumor cell growth to some extent.

Recent evidence has indicated that immune suppression in the

microenvironment before tumor metastasis is a key link in the

initiation of tumor metastasis (141). Owing to its strong

immunomodulating properties (142), APS can enhance the body’s

immunity to treat various cancers.

Bamodu et al. reported that APS can downregulate the

expression of interleukin (IL)-6/10, markedly increase the M1/M2

macrophage polarization ratio, contribute to the functional

maturity of DC, enhance T cell-medicated anti-tumoral immune
Frontiers in Oncology 06
responses, improve the accuracy of tumor cell killing, and inhibit

the growth of tumor cells (143). Wei et al. reported that, through the

Notch signaling pathway, APS significantly promoted the

production of cytokines such as IL-6 and TNF-a; increased the

iNOS levels and polarization rate of M1/M2 macrophages; activated

M1 macrophages; and inhibited M2 macrophages, thereby

enhancing the killing and phagocytosis of tumor 4T1 cells and

the inhibition of tumor growth and metastasis (144). Li et al.

observed that the presence of APS can elevate the percentage of

M1 macrophages within liver cancer tissues while simultaneously

reducing the proportion of M2 macrophages, thereby inhibiting the

growth of liver cancer tumor cells (145). Furthermore, APS activates

the release of NO and TNF-a by macrophages, thus reinforcing the

suppressive and killing impact of the immune system onMCF-7 BC

cells (146).

Ding et al. showed that APS inhibits tumor growth in

melanoma-bearing mice (147). Specifically, by regulating the

composition of the intestinal flora and altering fecal metabolites,

APS reduces the MDSC (Myeloid-derived suppressor cell) count,

downregulates IL-10, arginase-1, and TGF-b expression, and

decreases the immunosuppressive activity of MDSCs in mice with

melanoma, thereby enhancing the killing ability of CD8+ T cells on

tumors. Yu et al. prepared a novel APS using water at 4°C (148) and

demonstrated that it activated anti-tumoral immune responses and

enhanced anaerobic metabol i sm in the so l id tumor

microenvironment through the HIF-1 axis, ultimately promoting

mouse S180 (a cancer cell line) apoptosis (89). He et al. injected APS

into HCC BALB/c mice (100, 200, and 400 mg/kg per day for 12
TABLE 4 APS acts synergically with other chemotherapeutic drugs.

Test
type

Standard
anti-cancer
drugs

Cancer
types

Cell type/Animal model Dosage/
concentrations

Signaling pathways
(↑upregulation,
↓downregulation)

REF

in vitro Cisplatin Lung cancer A549/CDDP cells 100 mg/L Bax↑, DYm↓, Bcl-2↓, P-gp↓, and
PI3K/AKT↓

(133)

Colorectal cancer SW620 cells, SW620/CDDP cells 1 mg/mL miR-10b-5p↓ and AGPAT3↑ (134)

Nasopharyngeal
carcinoma

CNE-1 cells 200 mg/mL MMP-9↓, p53↑, G0/G1 phase arrest
and S phase arrest

(135)

Ovarian cancer SKOV3 cells 800 mg/mL Bcl-2↓, Bax↑, caspase-3↑, and
JNK1/2↑

(136)

Gefitinib Adenocarcinoma
of lung

PC9 cells and HCC827 cells 200 mg/L PD-L1/SREBP-1/EMT↓ (138)

Apatinib Pancreatic cancer ASPC-1 cells and PANC-1 cells 200 mg/mL p-AKT↓, p-ERK↓ and MMP-9↓ (140)

in vivo Taxol Breast cancer 4T1 cells, mouse mononuclear
macrophage RAW264.7 and
BALB/C mice

40 mg/kg bw G2/M phase arrest↓, Taxol-
induced cytotoxicity↓

(139)

in vitro
and
in vivo

Cisplatin Melanoma A375/CDDP cells, B16/CDDP
cells;
C57BL/6/SCID mice♂

200 mg/kg bw PD-L1/PI3K/AKT↓ (132)

Doxorubicin Hepatocellular
carcinoma

Hep3B cells;
BALB/c nude mice♂

0-50 mg/L OGT↓, OGA↑, O-GlcNAcylation↓ (137)
frontier
Bax, Bcl-2-associated X; DYm, Mitochondrial membrane potential; Bcl-2, B-cell lymphoma-2; PI3K, Phosphatidylinositol-3-kinase; P-gp, P-glycoprotein; AKT, Protein kinase B; Fas, Fas
transmembrane glycoprotein; AGPAT3, 1-acylglycerol-3-phosphate O-acyltransferase 3; MMP-9, Matrix metalloproteinase-9; p53, p53 protein; JNK, c-Jun N-terminal kinases1/2; PD-L1,
Programmed cell death protein-ligand 1; SREBP1, Recombinant Sterol Regulatory Element Binding Transcription Factor 1; EMT, Epithelial-mesenchymal transition; p-AKT, phospho-Protein
kinase B; p-ERK; phospho-Extracellular Regulated Protein Kinases; OGT, O-GlcNAc transferase; OGA, O-GlcNAcase;O-GlcNAcylation, Methods to detect the expression of O-GlcNAc.
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consecutive days) and observed increased CD8+ T cell count,

decreased PD-L1 levels, and reduced tumor size, weight, and

volume. Furthermore, by upregulating miR-133a-3p and

downregulating MSN, APS attenuated PD-L1-mediated

immunosuppression, thereby suppressing tumors (149). Chang

et al. found that APS downregulates PD-L1 protein levels by

inhibiting the AKT/mToR/p70S6K axis, thereby enhancing the

immune capacity of 4T1 (mouse BC) and CT26 (mouse colorectal

cancer) cells (150) (Table 5).

Chang et al. revealed that APS enhances immune responses in

4T1 and CT26 tumor-bearing mice by downregulating PD-L1

protein levels by inhibiting the AKT/mTOR/p70S6K axis (140).
2.7 Other anti-tumorigenic effects of APS

2.7.1 Lipid metabolism
Lipid metabolism is a major pathway of cellular energy

metabolism. Abnormal lipid metabolism can promote tumor

progression (151, 152), which is an indicator of human

cancer (153).

Lipid metabolism is a complex regulatory process that provides

energy, lipid chains, and a large amount of fats required for the

formation of new cell membranes for rapidly dividing and

proliferating cancer cells (154). Abnormal lipid metabolism is

often accompanied by the anomalous overexpression of related

enzymes (155), abnormal transcription of related non-coding RNA

(156), and activation of carcinogenic signaling pathways (157).

Cholesterol and its metabolites are signaling molecules that
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promote tumor development (158). Triglycerides are closely

related to the growth of various tumor cells (159, 160). APS

effectively lowers cholesterol and triglycerides (161, 162).

As indicated by a recent study, APS inhibits prostate cancer

growth and lipid metabolism in vivo and in vitro (95). By

upregulating miR-138-5p, APS significantly suppressed SIRT1

and SREBP1 expression, decreased cholesterol and triglyceride

levels in PC3 and DU145, and attenuated cell proliferation.

Therefore, the role played by APS in mediating lipid metabolism

is important for the prevention of cancer progression.

2.7.2 Autophagy
Autophagy refers to the biological process by which cells

undergo intracellular degradation via lysosomes to protect cell

integrity and maintain homeostasis under the influence of

external environmental stimuli and metabolic pressures (163,

164). It is strongly linked to carcinogenesis and progression of

various cancers and plays a dual role in the tumor process

(165–167).

Zhi et al. found that after APS treatment, the expression of

LC3B-II/I was significantly increased in colorectal cancer HCT-116

cells, while the expression levels of p-PI3K/PI3K, p-AKT/AKT, p-

mTOR/mTOR, and p62 were significantly decreased (168).

Therefore, they proposed that APS can induce autophagy in

colorectal cancer cells by inhibiting the PI3K/AKT/mTOR axis

and the development of cancer cells. The proportions of Beclin1

and LC3B in EC109 esophageal cancer cells increased significantly

after APS treatment (169). Based on these findings, Chang et al.

believed that the anti-tumor mechanism of APS was related to the
TABLE 5 Immunomodulatory effects of APS.

Test type Cancer
types

Cell type/
Animal model

Dosage/
concentrations

Signaling pathways
(↑upregulation, ↓downregulation)

REF

in vitro Breast cancer MCF-7 cells and
RAW264.7 cells

200-1000 mg/mL TNF-a↑and NO↑ (146)

in vivo Melanoma B16-F10 cells and C57BL/
6 mice♂

200 mg/kg bw MDSC↓, Arginase-1↓, interleukin-10↓, transforming growth
factor-b↓ and CD8+T cells↑

(147)

Ascites tumor Kunming mice, S180 cells 150, 300 mg/kg bw HIF-1↑, CD3+ cells↑, CD4+ cells↑ and CD8+T cells↑ (89)

in vitro and
in vivo

Non-small cell
lung cancer

H441 cells, H299 cells,
LLC1 cells;
C57BL/6 mice♂

16 mg/ml;
3 mg/kg bw

IL-6/10↓, M1/M2 macrophage polarization ratio↑ and DC
functions mature↑

(143)

Breast cancer 4T1 cells, RAW264.7 cells;
BALB/c mice♀

30, 100, 300 mg/mL IL-6↑, TNF-a↑, iNOS↑ and M1/M2 macrophage
polarization ratio↑

(144)

Hepatocellular
carcinoma

MHCC97H cells, Huh7
cells, THP1 cells;
BALB/c nude mice♂

8, 16 mg/mL;
50, 100, 200 mg/kg bw

M1 macrophages↑ and M2 macrophages↓ (146)

Hepatocellular
carcinoma

SMMC-7721 cells, Huh7
cells;
BALB/c mice

0.1, 0.5, 1 mg/mL;
100, 200, 400 mg/
kg bw

CD8+T cells↑, PD-L1↓, miR-133a-3p↑ and MSN↓ (149)

Breast cancer;
Colon cancer

4T1 cells and CT26 cells;
BALB/c mice

10,000 ng/ml;
50 mg/kg bw

PD-L1↓ and AKT/mTOR/p70S6K↓ (150)
frontier
TNF-a, Tumor necrosis factor-a; NO, Nitric oxide; MDSC, Myeloid-derived suppressor cells; HIF-1, Hypoxia-inducible factor-1; IL-6/10, Interleukin-6/10; IL-6, Interleukin-6; iNOS, Inducible
nitric oxide synthase; PD-L1, Programmed cell death protein-ligand 1; MSN, Moesin; AKT, Protein kinase B; mTOR, Mammalian rapamycin target protein; P70S6K, P70 ribosomal protein
S6 kinase.
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enhancement of autophagy induced by APS. Li and Shen found that

APS elevated caspase-9, caspase-3, and Bax protein levels, decreased

Bcl-2 protein expression, and inhibited CD133 and CD44 co-

positive colon cancer stem cell proliferation time- and
Frontiers in Oncology 08
concentration-dependently (78). Moreover, APS concentration-

dependently induced apoptosis and this effect was reversed by an

autophagy antagonist. These results suggest that APS can inhibit

proliferation and promote apoptosis by inducing autophagy in
TABLE 6 Clinical trials of APS'anti-tumor effect.

Cancer type Clinical
Study
Stage

Number
of
participants

Treatment plan Dosage and
treatment
courses

Observation Results
(↑upregulation,
↓downregulation)

REF

Lung cancer Already on
the market

53 Group 1: ICI
treatment
Group 2: ICI
combined with PG2

500mg/d, 6 weeks
(±2 weeks)

neutrophil-lymphocyte ratio↑ (170)

Non-small cell
lung cancer

Already on
the market

75 Group 1: CIK therapy
Group 2: CIK therapy
combined with PG2

250mg/d, 10d CD4+ cells↑, CD3+ cells↑, Symptom of
Qi deficiency↓

(171)

Non-small cell
lung cancer

Already on
the market

80 Group 1: Gefitinib
Group 2: Gefitinib
combined with PG2

250mg/d, 21d CD4+ cells↑, CD3+ cells↑, CD4+/CD8+

cells↑ and adverse reaction rate↓
(172)

Non-small cell
lung cancer

Already on
the market

61 Group 1: CT
Group 2: CT
combined with PG2

250mg/d, 10d Myelosuppression rate↓ (173)

Head and neck
squamous
cell carcinoma

Phase II
clinical study

17 Group 1: CCRT
Group 2: CCRT
combined with PG2

500mg, tiw adverse reaction rate↓, Pain relief and
improved appetite

(175)
frontier
ICI, Immune checkpoint inhibitors; CIK, Cytokine-induced killer cells; CT, Chemotherapy; CCRT, Concurrent chemoradiotherapy.
FIGURE 1

Anti-tumor pathways mediated by APS. APS, Astragalus polysaccharides; SIRT1, Silent mating type information regulation 2 homolog- 1; AMPK,
Adenosine monophosphate activated protein kinase; SREBP1, Recombinant Sterol Regulatory Element Binding Transcription Factor 1; BECN1,Beclin-
1; xCT, Light chain subunit SLC7A11; GPX4,Glutathione peroxidase 4; JAK, Janus kinase; STAT, Signal transducer of activators of transcription; SHP2,
SH2 domain-containing protein tyrosine phosphatase 2; SOCS3, Suppressor of cy-tokine signaling proteins; AKT, Protein kinase B; NF-kB, Nuclear
factor kappa-B; p53, p53 protein; p21, p21 protein; Cyt-c, Cytochrome c; Bcl-2, B-cell lymphoma-2; Bax, Bcl-2-associated X; FBXW7, F-box/WD
repeat-containing protein 7; JNK, c-Jun N-terminal kinases; EMT, Epithelial-mesenchymal transition; MIF, Macrophage migration inhibitor factor;
VEGF, Vascular endothelial growth factor; EGFR, Epidermal growth factor receptor; p63, p63 protein; PI3K, Phosphatidylinositol-3-kinase; mTOR,
Mammalian rapamycin target protein; LC3B, Microtubule-associated protein 1 light chain 3 Beta.
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colon cancer stem cells. However, given the dual role of autophagy

in tumorigenesis and cancer progression, its exact mechanism in

cancers requires further exploration.
2.8 Clinical trials on the anti-tumor effect
of APS

The elucidation of the efficacy, safety, and tolerability of drugs

administered to patients is the main focus of a clinical trial.

PG2 has recently been found to normalize the neutrophils-to-

lymphocytes ratio in patients with lung cancer on combined

immune checkpoint inhibitor therapy, suggesting that APS could

be used to supplement anti-tumor agents (170). A trial of PG2 plus

cytokine-induced killer cells for advanced NSCLC demonstrated

that PG2 notably increased the proportion of peripheral blood

CD4+ and CD3+ T lymphocytes (171), thus significantly improving

patients’ functional status and relieving symptoms of qi deficiency,

with remarkable clinical safety. A clinical study investigating PG2

plus gefitinib therapy for advanced lung cancer showed markedly

higher serum CD3+, CD4+, and CD4+/CD8+ cell counts in the

observation group than in the control group after treatment,

accompanied by a better QOL (higher KPS scores) and fewer

toxic and side effects (172). This study demonstrated that PG2

combined with gefitinib for advanced NSCLC can improve patients’

immunity, alleviate toxicity and side effects, and improve patients’

overall QOL. Zheng et al. showed that PG2 has a protective effect on

the bone marrow, which can reduce the myelotoxicity of platinum-

containing drugs combined with other drugs in patients with

NSCLC and improve patient tolerance to chemotherapy (173).

Concurrent radiotherapy and chemotherapy are standard

therapies for patients with advanced head and neck squamous cell

carcinoma; however, the resulting complications can affect patient

QOL. Moreover, its efficacy is low. Relapse and metastases are

found in half of the head and neck squamous cell carcinoma cases,

leading to a 5-year survival rate lesser than 40% (174). Hsieh et al.

showed that although compared to the placebo group, patients

administered PG2 did not show any difference in their tumor

response rate, disease-specific survival rate, or overall survival

rate, their QOL was significantly improved as indicated by the

reduction in pain and improvement in appetite (175) (Table 6).

Although these results are encouraging, owing to the limited

number of patients and the influence of other potential factors,

more comprehensive research is needed to ensure the optimal use of

APS and its clinical safety profile in cancer therapy.
3 Discussion

The rising morbidity and mortality due to cancer in recent years

have posed a serious threat to human health; however, its

pathogenesis has not been thoroughly understood. The

effectiveness of existing therapies is limited, and complete tumor

treatment is difficult. Radiotherapy and chemotherapy not only

cause pain and reduce the QOL but also increase the economic

burden on patients. Currently, effective agents with low toxicity and
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few side effects need to be explored for treatment or

adjuvant therapy.

As a natural product, APS has high medicinal value. It has

multi-pathway, multi-target, and multi-level anti-cancer

mechanisms. These include inducing apoptosis; regulating tumor

cell autophagy; inhibiting tumor cell proliferation, invasion, and

metastasis; tumor-related inflammatory microenvironment; and

synergism with anticancer drugs (Figure 1). These mechanisms

have broad research prospects, which warrant in-depth research.

Despite its promising benefits, the study of APS has some

limitations. First, the potential mechanisms and causality of its

active ingredients in complex cell signaling pathways are not

comprehensively understood, and consistent models and

evaluation criteria, particularly high-quality and large-sample

clinical data, are lacking. Second, the literature survey showed

that the APS dose used in related studies varied significantly.

Therefore, the safe and effective dose of APS in follow-up studies

should be determined, and a relatively safe regimen developed.

Moreover, current research on APS is primarily limited to in vitro

cell experiments and rodent models, and its optimal dose and safety

need to be verified. Additionally, because APS is a hydrophilic

macromolecular mixture, its bioavailability is low, and the

combination of APS and nanocarriers can overcome this obstacle

to achieve targeted drug delivery, effectively reduce drug dosage,

and improve bioavailability. However, research on APS-modified

nanocarriers to improve the specific targeting of tumor tissues

is lacking.

In conclusion, APS has great potential in cancer therapy,

particularly as nanoparticles obtained by APS processing. To

establish the effectiveness of APS in clinical treatment and its

broader anti-tumor mechanism and, thus, provide a more

efficacious treatment for patients with cancer, further

experimental exploration and research are essential.
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Glossary

APS Astragalus polysaccharides

Bcl-2 B-cell lymphoma-2

Bax Bcl-2-associated X

HCC Hepatocellular cancer

c-myc Myelocytomatosis viral oncogene homolog

Cyclin
D1

G1/S-Specific cyclin-D1

BC Breast cancer

JNK c-Jun N-terminal kinases

TNF Tumor necrosis factor

JAK Janus kinase

STAT Signal transducer of activators of transcription

AKT Protein kinase B

AMPK Adenosine monophosphate activated protein kinase

BECN1 Beclin-1

GPX4 Glutathione peroxidase 4

xCT Light chain subunit SLC7A11

SIRT1 Silent mating type information regulation 2 homolog- 1

SREBP1 Recombinant Sterol Regulatory Element Binding Transcription
Factor 1

SHP2 SH2 domain-containing protein tyrosine phosphatase 2

SOCS3 Suppressor of cy-tokine signaling proteins

NF-kB Nuclear factor kappa-B

EMT Epithelial-mesenchymal transition

MIF Macrophage migration inhibitor factor

PG2 APS for injection

AXL Recombinant AXL Receptor Tyrosine Kinase

NSCLC Non-small cell lung cancer

VEGF Vascular endothelial growth factor

EGFR Epidermal growth factor receptor

HUVECs Human umbilical vein endothelial cells

ROS Reactive oxygen species

ΔYm Mitochondrial membrane potential

CDDP Cisplatin

PD-L1 Programmed cell death protein-ligand 1

PI3K Phosphatidylinositol-3-kinase

P-gp P-glycoprotein

MMP Matrix metalloproteinase

OGT O-GlcNAc transferase

OGA O-GlcNAcase

(Continued)
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ERK Extracellular Regulated Protein Kinases

IL Interleukin

DC Dendritic Cells

iNOS Inducible nitric oxide synthase

NO Nitric oxide

TNF Tumor necrosis facto

MDSCs Myeloid-derived suppressor cells

CD Cluster of Differentiation

HIF-1 Hypoxia-inducible factor-1

MSN Moesin

mTOR Mammalian rapamycin target protein

P70S6K P70 ribosomal protein S6 kinase

LC3B Microtubule-associated protein 1 light chain 3 Beta

Beclin1 Bcl-2 interacting coiled-coil protein 1

ICI Immune checkpoint inhibitors

Cyt-c Cytochrome c

CIK Cytokine-induced killer cells
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