
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Avtar Singh Meena,
All India Institute of Medical Sciences, India

REVIEWED BY

Aditya Yashwant Sarode,
Columbia University, United States
Johid Malik,
University of Nebraska Medical Center,
United States

*CORRESPONDENCE

Weijian Sun

fame198288@126.com

Shangrui Rao

rsr120@126.com

†These authors have contributed equally to
this work

RECEIVED 11 November 2023
ACCEPTED 14 February 2024

PUBLISHED 20 March 2024

CITATION

Khamis SSS, Lu J, Yi Y, Rao S and Sun W
(2024) Pyroptosis-related gene signature for
predicting gastric cancer prognosis.
Front. Oncol. 14:1336734.
doi: 10.3389/fonc.2024.1336734

COPYRIGHT

© 2024 Khamis, Lu, Yi, Rao and Sun. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 20 March 2024

DOI 10.3389/fonc.2024.1336734
Pyroptosis-related gene
signature for predicting
gastric cancer prognosis
Salem Saeed Saad Khamis1†, Jianhua Lu1†, Yongdong Yi1†,
Shangrui Rao1* and Weijian Sun2*

1The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University,
Wenzhou, Zhejiang, China, 2Department of General Surgery, Wenzhou Medical University First
Affiliated Hospital, Wenzhou, Zhejiang, China
Gastric cancer (GC) is a prevalent form of malignancy characterized by significant

heterogeneity. The development of a specific prediction model is of utmost

importance to improve therapy alternatives. The presence of H. pylori can elicit

pyroptosis, a notable carcinogenic process. Furthermore, the administration of

chemotherapeutic drugs is often employed as a therapeutic approach to

addressing this condition. In the present investigation, it was observed that

there were variations in the production of 17 pyroptosis-regulating proteins

between stomach tissue with tumor development and GC cells. The predictive

relevance of each gene associated with pyroptosis was assessed using the cohort

from the cancer genome atlas (TCGA). The least absolute shrinkage and selection

operator (LASSO) was utilized to enhance the outcomes of the regression

approach. Patients with gastric cancer GC in the cohort from the TCGA were

categorized into low-risk or high-risk groups based on their gene expression

profiles. Patients with a low risk of gastric cancer had a higher likelihood of

survival compared to persons classified as high risk (P<0.0001). A subset of

patients diagnosed with GC from a Genes Expression Omnibus (GEO) cohort was

stratified according to their overall survival (OS) duration. The statistical analysis

revealed a higher significance level (P=0.0063) regarding OS time among low-

risk individuals. The study revealed that the GC risk score emerged as a significant

independent prognostic factor for OS in patients diagnosed with GC. The results

of Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG)

research revealed that genes associated with a high-risk group had significantly

elevated levels of immune system-related activity. Furthermore, it was found that

the state of immunity was diminished within this particular group. The

relationship between the immune response to cancer and pyroptosis genes is

highly interconnected, suggesting that these genes have the potential to serve as

prognostic indicators for GC.
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Background

Gastric cancer ranks as the third leading cause of cancer-related

mortalities globally (1). Approximately one million novel cases of GC

are reported annually basis (2) The disease frequently only becomes

apparent in its advanced stages when the Tumor microenvironment

(TME), which contributes to its diversity has changed. The responses

to treatments among GC patients vary significantly, resulting in a

poor prognosis (3). Restoring GSDME expression in gastric cancer

cells was shown to enhance their sensitivity to chemotherapy and

promote tumor shrinkage. Therefore, GSDME is considered a

promising therapeutic target in GC. Moreover, its participation in

pyroptosis presents an opportunity for the development of novel

therapeutic strategies that use the immunogenic cell death process to

tackle this dissease (4). Pyroptosis, an atypical form of programmed

cell death distinguished by cell inflammation and necrosis. However,

skin bulge stem cells have been notably observed in mice with

Gsdma3 mutations (5). Abnormal DNA methylation was linked to

colorectal cancer in the genome-wide profiling investigation. The

study used regression analysis to examine GSDME methylation and

expression, finding that CpG methylation affects expression

differently. The study also found CpGs that predict tumor and

non-tumor tissue states. The data show that GSDME methylation

analysis may be a promising colorectal cancer biomarker for clinical

practice (6). Pyroptotic cells exhibit bubble-like extensions and

undergo expansion, with electron microscopy revealing the creation

of numerous vesicles before the cell membrane breaks down and

releases cellular matter (7). Cardiolipin, a member of the gasdermin

protein family, has structural domains and phosphatidylinositol. Its

N-terminal activating domain becomes inactive upon attachment to

the membrane and localization at cell membrane holes (8, 9).

Members of the gasdermin family promote the formation of pores

in the cell membrane, allowing cellular content to leak out and

triggering a mild inflammatory response (10, 11). Considering the

link between pyroptosis genes and the immune response to cancer,

these genes could serve as prognostic indicators for GC.

Both infection and tumorigenesis have been associated with

pyroptosis, involving gasdermin proteins, proinflammatory

cytokines, and inflammatory vesicles (12). Studies have shown that

transgenic mice are at higher susceptibility to colon cancer in

comparison to their wild-type counterparts. Unlike apoptosis,

which triggers a passive immune response (13). pyroptosis activates
Abbreviations: GC, Gastric cancer; TCGA, The Cancer Genome Atlas; OS,

Overall survival; KEGG, Kyoto Encyclopaedia of Genes and Genomes; GO, Gene

Ontology; ssGSEA, Single-sample gene set enrichment approach; TME, Tumor

microenvironment; RNA-seq, RNA sequencing; DEG, Differentially expressed

Gene; FDR, False discovery rate; IL-6, Interleukin-6; LASSO, Least absolute

shrinkage and selection operator; PCA, Principal component analysis; ROC,

Receiver operating characteristic; GEO, Genes and Expression Omnibus; Treg,

Regulatory T cell; PYD, N-terminal PYD domain; CARD,C-terminal CARD

domain; PIP2, Phosphatidylinositol 4,5-bisphosphate; GEO,Genes Expression

Omnibus; NK, Natural Killer; MAL, MyD88 Adapter-Like; (PBD), Binding

domain; CARD, C-terminal CARD domain.
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and releases signaling molecules and cytokines associated with

danger. The objective of this study is to ascertain the specific genes

implicated in pyroptosis and assess their expression levels and

predictive significance in both healthy gastric tissues and GC tissues.

Additionally, we aim to investigate how pyroptosis relates to the

immune microenvironment of tumors. Previous studies have

shown that pyroptosis changes the immune environment around

a tumor. For example, the population and functional engagement of

CD8+ T lymphocytes lacking GSDMD are decreased (14). fatty acid

adipocyte migration and triacylglycerol production. PolyclonC3a

and C5a, immune-related complement proteins, are downregulated

by ASP (15). Complement system effector C3a activates and

survives T lymphocytes and stimulates angiogenesis, chemotaxis,

mast cell degranulation, and macrophages. It neutralises the

proinflammatory effects of C5a and produces pro- and anti-

inflammatory responses. C3a controls leukocyte growth in

adaptive immunity. Human C3a impacts B cell and monocyte IL-

6 and TNF-a production, lowering polyclonal immune response via

dose-dependent B cell molecule synthesis (16). C3aR signaling on

CD28 and CD40L pathways, antigen-presenting cells, affects T cell

proliferation and differentiation. Regulatory T cell synthesis is

increased by dendritic cell C3aR loss, but TH1 cell creation and

IL-10 expression rely on it (17). while an absence of active C3aR on

dendritic cells upregulates the production of T cells. C3a

counteracts C5a, leading to diminished inflammation. C3a also

blocks neutrophil migration and degranulation. C3a anaphylatoxins

contain C-terminal arginine. Serum carboxypeptidase B cleaves the

arginine residue of C3a to create desArg, an acylation-stimulating

protein (17). Recent research has emphasized the significance of

pyroptosis in the anti-tumor function of natural killer (NK) cells

(18). Despite its acknowledged role in tumor growth and

chemotherapy, the precise impact of pyroptosis in gastric cancer

GC has not been thoroughly examined, thus requiring additional

research in the present study.
Methods and processes

Datasets

We utilized TCGA data (https://portal.gdc.cancer.gov/) which

comprised (RNA-seq) results and related clinical features for 375

GC patients. The RNA-seq data are available through Xenabrowser

(https://xenabrowser.net/datapages/). Additionally, we used the GEO

database (GSE62254) for data derived fromRNA-seq experiments and

corroborated clinical data from other sources. The follow-up duration

for the GSE62254 cohort spanned up to 6 years, whereas the TCGA

cohort had a minimum follow-up duration of 2 years.
Genes differentially expressed in pyroptosis

We gathered data on 17 pyroptosis-related genes and compared

their expression between tumors and normal tissues in the TCGA

dataset, which comprises 32 normal gastric samples. For comparison,
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“limma” software identified genes with a P 0.05 significance level after

normalizing FPKM data. The levels of significance were indicated as

follows: *P < 0.05; **P < 0.01; ***P < 0.001. PPI networks were built

using STRING Version 11.0, an interactive tool for retrieving

interacting genes, accessible at https://string-db.org/.
Gene prediction model development and
validation for pyroptosis

In these experiments, we examined if pyroptotic-related genes

could predict survival outcomes. We carried out a Cox regression

analysis on the TCGA cohort, setting a cut-off of 0.2 for excluding.

The aforementioned procedure resulted in the discovery of seven

genes associated with survival. We used the LASSO Cox regression

model from the R package ‘glmnet’ to refine our gene selection and

build the prognostic model. Even after removing six genes and their

coefficients, we kept the penalty parameter (l) below the lowest

qualification. To assess the TCGA dataset’s expression information,

we utilized the R language’s scale function. Then, we calculated risk

by multiplying each gene’s coefficient by its expression level. After

analyzing the median risk score, we classified the TCGA cohort as

either low-risk or high-risk. Using the Kaplan-Meier method, we

evaluated the median duration of OS for each subgroup. We

conducted PCA using the ‘prcomp’ function from the ‘stats’

package in the R programming language. Our analysis specifically

focused on a six-gene signature.

In addition, we used the R packages’survminer,’’ survival,’ and

‘time ROC’ to conduct a six-year ROC curve analysis. To

corroborate our research, we referred to the GEO database and

employed the GC cohort (GSE62254). Consistent with the TCGA

cohort, each gene involved in pyroptosis has its expression level

standardized using the scale’ command. Following that, the risk

score was computed using the same methodology. Participants

from the GSE62254 cohort the individuals comprising the

GSE62254 cohort were classified into two discrete groups based

on their level of risk: low-risk and high-risk. A comparison

investigation was undertaken to validate the accuracy and efficacy

of the gene model.
Independent predictive risk analysis

The TCGA and GEO cohorts were used for an independent

predictive risk study.

The present research included an investigation into the

relationship between patients’ ages and phases, revealing a collective

impact on the risk score. This studymade use of a variety of regression

techniques, including multivariate and univariate analyses.
DEG study for improved understanding of
low- and high-risk genetic associations

To augment our comprehension of the genetic connections

present in both low- and high-risk groups, research was done on
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DEG. Patients from the TCGA cohort with GC were divided into

“low risk” or “high risk. We then identified DEGs in each group

using additional criteria, including a mean log2FC of 1 and an FDR

of 0.05 or lower. The DEGs were analyzed for GO and KEGG using

the ‘cluster profile’ software. To assess the scores of invading

immune cells and investigate the activation of immune pathways,

we used the ‘give’ method to perform single-sample gene set

enrichment analysis (GSA).
Statistical analysis

Here, Gene expression was measured in normal and gastric

cancer GC tissues. The overall survival was compared among

subgroups using the Kaplan-Meier analysis with a log-rank test to

determine significance. We performed univariate and multivariate

Cox regression studies to gauge the risk model’s predictive power.

The Mann-Whitney test was used to assess the degree of immune

cell infiltration and activation of the immune system in both

cohorts. R (v4.0.2), a free and open-source statistical analysis

program, was used for all studies.
Results

We conducted an analysis of differential gene expression in both

normal and cancerous tissues. Seventeen genes associated with

pyroptosis were identified in this study with significantly different

expressions (P < 0.01) in the TCGA dataset, which comprises 375

tumors and 32 normal tissues. The genes showing decreased

expression included NOD1, PLCG1, ELANE, IL18, SCAF11,

NLRC4, AIM2, TNF, and GSDMC. On the other hand, there

were more PRKACA, PYCARD, GSDMB, GSDMD, CASP3,

CASP6, CASP5, and CASP8 in the tumor group (Figure 1A). To

visualize these RNA levels, we created gene expression heatmaps,

using green to indicate low expression and red for high expression.

Our study of how proteins interact with each other showed that

genes related to pyroptosis, such as GSDMC, NLRC4, SCAF11,

CASP8, ELANE, PLCG1, and NOD1, are involved in many

biological processes. The present investigation utilized a particular

input parameter to ascertain the minimum permissible interaction

score which we set at 0.9 for the PPI analysis (Figure 1B). This

analysis included all genes associated with pyroptotic, forming a

network of associations (Figure 1C). We denoted positive

correlations with the color red and negative correlations with the

color blue.
Categorization of tumors using DEGs

This study examined the relationship between pyroptosis-

related DEGs and gastric cancer varieties. analysis was conducted

on a dataset comprising 375 members from the TCGA, utilizing

consensus clustering for comparison. From the 31 identified DEGs,

the 375 GC patients were effectively segregated into two unique

groups (Figure 2A). A heatmap showed patient gene expression and
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clinical features. The variables incorporated in this study were

tumor differentiation (graded as G1–G3), age (divided into either

67 years old or >67 years old), and the status of survival (categorized

as being alive or dying). There were no statistically significant

variations in clinical characteristics between the two groups

(Figure 2B). The OS time showed no statistically significant

difference between the two groups (P = 0.41) (Figure 2C).
Gene prognostic model analysis of the
TCGA cohort

We conducted an analysis of 375 genotyped gastric cancer

samples, along with the corresponding patient survival data. The

initial screening for genes associated with survival was carried out

using univariate Cox regression analysis. A total of six genes,

namely IL6, ELANE, GSDME, TIRAP, PYCARD, and CASP3,
Frontiers in Oncology 04
were selected for further investigation as they met the criterion of

P < 0.01.

There was a significant association between IL6, ELANE, and

GSDME and an increased chance of developing GC (HR > 1), while

TIRAP, PYCARD, and CASP3 were shown to be associated with a

reduced risk (HR < 1) (Figure 3A). To determine the best

parameters with which to build a 6-gene signature (Figures 3B,

C), we utilized LASSO Cox regression analysis. The risk score was

computed via the subsequent mathematical expression: The

expression may be written as follows: (0.060 multiplied by the

exponential of IL6) + (0.018 multiplied by the exponential of

ELANE) + (0.122 multiplied by the exponential of GSDME) +

(0.015 multiplied by the exponential of TIRAP) + (0.175 multiplied

by the exponential of PYCARD) + (-0.126 multiplied by the

exponential of CASP3).

The 375 patients were classified into low-risk and high-risk

categories, respectively, based on their median risk score
A

B C

FIGURE 1

Expression and interactions of 33 pyroptosis-related genes. (A) Heat map illustrating the expression levels of pyroptosis-related genes in normal
tissues (N, brilliant blue) and tumor tissues (T, red). The colors represent expression levels, with green indicating low expression and red indicating
high expression (*P < 0.01; **P < 0.001; ***P < 0.0001). (B) Protein-Protein Interaction (PPI) network showcasing connections between pyroptosis-
related genes with an interaction score of 0.9. (C). Graph depicting the expression of genes positively (red line) and negatively (blue line) associated
with pyroptosis. The intensity of the color reflects the strength of the association.
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(Figure 3D). The use of PCA. successfully classified patients with

varying risk levels into these two categories (Figure 3E). Statistically

significant disparities were seen in the overall survival durations

between the low-risk and high-risk cohorts (P = 0.0063, Figure 3F).

Finally, we used time-dependent ROC analysis to assess the

prognostic model’s sensitivity and specificity. The ROC curves

AUCs indicated 2-, 4-, and 6-year survival rates of 0.58, 0.61, and

0.63, respectively (Figure 3G).
The risk signature’s
independent verification

The risk signature was verified externally using the Genes and

Expression Omnibus cohort, specifically applying the GSE62254
Frontiers in Oncology 05
dataset. The ‘Scale’ tool was used to normalize the gene

expression data before further investigation. Based on the

median risk score of the TCGA cohort, the mean risk score

was determined.

Out of the individuals in the validation cohort, 273 were

categorized as low risk while 77 surpassed the threshold, resulting

in a high-risk classification. As seen by the solid line on the graph’s

left, the low-risk category, demonstrated longer survival spans and

decreased mortality rates compared to the high-risk group

(Figure 4A). Principal Component Analysis showcased a distinct

division between the two risk categories (Figure 4B). The low-risk and

high-risk groups had significantly different survival rates (P = 0.011,

HR = 1.63; 95% CI (1.16-2.27) (Figure 4C). AUC values of 0.62, 0.63,

and 0.63 for 2-year, 4-year, and 6-year survival indicated strong

prediction accuracy for the risk signature (Figure 4D).
A

B

C

FIGURE 2

Apoptosis-related DEGs classify tumors. (A) An analysis classified 375 patients with gastric cancer (GC) into two groups using a consensus clustering
matrix. (B) Heatmap of DEGs and clinicopathological characteristics of the clusters (G1, G2, and G3 represent tumor differentiation levels: G1 for
highly differentiated, G2 for moderately differentiated, and G3 for poorly differentiated). (C) Kaplan-Meier plot illustrating overall survival (OS)
development in the clusters.
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Risk model indicates independent
prognostic value

We performed univariate and multivariate Cox regression

analyses to determine the utility of the risk score generated by the

gene signature model. The independent variable in the univariate

Cox regression analysis was the recognized risk score. Low survival

rates were expected in the TCGA and GEO cohorts (HR = 4.520,

95% CI: 1.7873-11.432 and HR: 6.000, 95% CI: 2.316-15.544,
Frontiers in Oncology 06
(Figures 5A, B). Our multivariate analysis demonstrated that the

risk score has prognostic predictive value after controlling for other

confounding factors (HR = 2.213, 95% CI: 1.589-3.083 and HR =

1.947, 95% CI: 1.391-2.726, (Figures 5C, D). for patients diagnosed

with gastric cancer in both study groups. Additionally, A heatmap

was developed to visually represent the clinical features of the

TCGA cohort, as shown in (Figure 5E). Notable differences in age

and survival status were apparent between patients categorized in

the low- and high-risk groups (P < 0.05).
A B

D

E

F

G

C

FIGURE 3

Risk signature for the TCGA cohort. (A) Univariate Cox regression analysis was performed on each pyroptosis-related gene and six other genes, with
a P-value cutoff of 0.2. (B) LASSO regression was used to analyze the six genes associated with overall survival (OS). (C) LASSO regression
parameters were adjusted through cross-validation. (D) Risk scores for the low-risk group are displayed on the left side of the dotted line, while
those for the high-risk group are on the right side. (E) PCA plot for GCs based on the risk score. (F) Kaplan-Meier curves illustrate the risk categories
and overall survival (OS) of patients (P = 0.0063). (G) ROC curve demonstrates the predictive ability of the risk score.
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Functional risk assessments

To investigate how risk model subgroups might differ in gene

function and pathway, we identified DEGs using the ‘limma’

package in R, setting the FDR at 0.05 and the log2FC at 1. We

performed GO enrichment analysis and KEGG pathway analysis

based on the identified DEGs. Our research revealed that these

DEGs primarily contribute to immune system signaling pathways,

inflammatory cells, and chemokines (Figures 6A–D).
Levels of immune activity in
different subgroups

Using the TCGA and GEO cohorts, Using the ssGSEA, we

analyzed the variance in array scores for immune cells (19–23).

Thirteen immune-related pathways were activated in the low-risk

and high-risk TCGA cohort groups, as shown by the ssGSEA

technique (Figure 7A). High-risk individuals had fewer infiltrating

immune cells such as CD8+ T cells, neutrophils, (NK) cells, and T

helper cells (Tfh, Th1, and Th2 cells), In addition, the analysis of the

TCGA cohort demonstrated that the high-risk group had decreased

activity levels in 12 immune pathways, except the type-2 IFN

response pathway, in comparison to the low-risk group
Frontiers in Oncology 07
(Figure 7B). Similar findings were seen during the evaluation of

the immunological state of the GEO cohort. Notably, the low-risk

group showed an abundance of IDCs and macrophages, while the

expression of type-2 interferon (IFN) responses was significantly

reduced (Figures 7C, D).
Discussion

The present investigation revealed substantial disparities in the

levels of expression of 33 genes related to pyroptosis in GC cells

compared to normal tissues. Nevertheless, the consensus clustering

analysis conducted on the DEGs did not reveal any statistically

significant distinctions in the clinical features between the two

groups. To evaluate the predictive value of these findings, we

created a set of six regulators consisting of pyroptosis-related

regulating genes. We utilized LASSO Cox regression analysis to

gather the necessary data for this study, and an external dataset was

further subjected to Cox univariate analysis.

The results of the functional analyses revealed statistically

significant disparities in DEGs linked to immune-related

pathways when comparing the low-risk and high-risk groups.

Despite comparable levels of immune cell infiltration, Immune

system activation was much lower in the high-risk group than in
A

B D

C

FIGURE 4

Survival status. (A) Survival status of each patient (low-risk population: left side of the dotted line; high-risk population: right side of the dotted line).
(B) PCA plot of GC. (C) Kaplan–Meier curves for the comparison of the OS of low- and high-risk groups. P < 0.011. HR=1.63;95%CI(1.16-2.27)
(D) Time-dependent ROC curves of GC.
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the low-risk group. Pyroptosis, an exceptional kind of controlled

cellular demise, has garnered recent attention due to its pivotal

involvement in both neoplastic proliferation and therapeutic

interventions. The initiation of this process is prompted by

heightened concentrations of inflammatory chemicals, hence

potentially resulting in the genesis of malignant cells (24). As a

result, focusing on tumor cell pyroptosis might pave the way for

novel cancer treatments (25). However, the relationship between

genes related to pyroptosis and patient survival in GC is still

ambiguous. In this study, we constructed a pyroptosis signature

composed of six genes including IL6, ELANE, GSDME, TIRAP,

PYCARD, and CASP3 to predict the overall survival rate of GC

patients. IL-6, a kind of cytokine recognized for its ability to induce

inflammatory responses, is synthesized by several cell types, such as

lymphocytes and monocytes. Autoimmune disorders have been

shown to correlate with heightened levels of IL-6 and its

corresponding receptor (26). Research has indicated that IL-6 can

foster the growth of T-helper type 17 cells (25).

Recent research has provided valuable insights into the

prominent involvement of IL-6 in several physiological

mechanisms. These include cell proliferation, programmed cell
Frontiers in Oncology 08
death apoptosis, EMT, invasion, and cell migration. Collectively,

these actions contribute to the progression and evolution of cancer.

IL-6 plays a key role in numerous protein kinase signaling

pathways, the specifics of which depend on the cell type involved.

CAR-T treatment can cause toxicities such cytokine release

syndrome (CRS) and neurotoxici ty due to increased

immunological activation and inflammatory cytokines such as IL-

6 and IL-1b from monocytes/macrophages. Pyroptotic cells also

release DAMPs, which activate macrophages and produce

cytokines, activating endothelial cells and CARTOX. The results

emphasized the role of monocyte/macrophage in CARTOX and the

relevance of pyroptotic cell-generated DAMPs as key contributors

and therapeutic targets (27). The effects of chemokines on T cell

trafficking and tumor cell metastasis, TLR-DAMP interactions in

macrophages and dendritic cells, and cancer treatment targeting the

DAMP-TLR-cytokine axis are discussed (28).

The protein ELANE, sometimes referred to as eosinophil

cationic protein, is a crucial serine protease involved in the

synthesis of tumor necrosis factor-alpha, interleukin 1 beta, and

interleukin 18 (29, 30). The extensively established activation of

pyroptosis-inducing pathways by these cytokines underscores the
A B

D

E

C

FIGURE 5

Risk score for univariate and multivariate Cox regression. (A) Univariate analysis of the TCGA cohort (tumor differentiation grade stages: G1 to G3).
(B) Multivariate analysis of the TCGA cohort. (C) Univariate analysis of the GEO cohort (FIGO stage: I to IV). (D) Multivariate analysis of the GEO
cohort. (E) Heatmap (green: low expression; red: high expression) showing the connections between clinicopathological features and risk grouping
(*P < 0.05).
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A B

DC

FIGURE 6

Pathway, biological, and molecular function analyses. (A) All KEGG pathways. (B) Top 20 GO biological processes. (C) Top 20 GO cellular
components. (D) Top 20 GO molecular functions.
A

B D

C

FIGURE 7

Comparison of the ssGSEA scores of immune cells and immune pathways. (A, B) Low-risk participants in the TCGA cohort had greater enrichment
scores than those in the high-risk group based on the analysis of the 16 types of immune cells and 13 immune-related pathways. (C, D) Tumor
immunity of the low-risk group (blue box) compared with that of the high-risk group (yellow box) in the GEO cohort. Results are represented by P
values indicating that the data are nonsignificant; *P < 0.05; **P < 0.01; ***P < 0.001.
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significance of ELANE (31). The cleavage and activation of

GSDMD by this protein triggers pyroptosis in neutrophils.

Despite the high-risk group having a high neutrophil infiltration

score, the low-risk group has a much greater expression of

ELANE, potentially due to the role of ELANE in stimulating

pyroptosis in neutrophils.

GSDME/DFNA5, a member of the gasdermin superfamily (32,

33), is specifically expressed in various tissues such as skin and

gastrointestinal tract epithelium (34). GSDME has been shown to

serve as a tumor suppressor gene in several cases of stomach,

colorectal, and breast malignancies.

It undergoes cleavage and caspase-3 activation in response to

both intrinsic and extrinsic apoptotic therapies, leading to

pyroptosis, similar to the membrane perforation effects induced

by GSDMD (35, 36).

However, the role of GSDME in GC cells has yet to be fully

elucidated. GC cells have shown susceptibility to pyroptosis induced

by gastrin E GSDME under certain treatment circumstances (37).

The notable expression of GSDME could suggest its involvement in

widespread pyroptosis (38).

The adapter protein known as MyD88 adapter-like (MAL), or

TIRAP (38, 39), is associated with the activation of the host immune

response through receptor-mediated mechanisms. It is involved in

the innate immune system’s detection of microbial infections via

toll-like receptors (40, 41). The PIP2-binding domain (PBD) of

MAL allows it to interact with the plasma membrane. This process

entails the translocation of MAL to distinct regions on the cellular

membrane after the production of PIP2 mediated by PIP5Ka (42–

45). The protein known as MAL is comprised of two discrete

domains, namely the N-terminal PYD domain and the C-

terminal CARD domain, Extrinsic and intrinsic cell death

processes depend on these domains (46, 47). PYCARD, also

known as ASC, regulates inflammatory and apoptotic signaling

pathways. The PYCARD domain of the protein facilitates the

assembly of inflammasome complexes by interacting with sensor

proteins AIM2, NLRP3 and Caspase-1 (48).

The interaction between PYD and sensor proteins, as well as

between ASC and caspase-1, involves the binding of CARD

domains. The assembly of inflammasome complexes triggers

neutrophil inflammation, resulting in the cleavage, maturation,

and subsequent release of IL-1 via the activation of pro-caspase-1,

ultimately inducing inflammation (38, 49). Caspase 3, a regulatory

protein for cellular apoptosis, is typically dormant. However, the

initiation of apoptosis occurs through the activation of Caspase-3,

which leads to the cleavage of several structural and regulatory

proteins in both the nuclear and cytoplasmic compartments, thus

inducing apoptosis (50).

GSDME-N, preferentially cleaved by caspase 3, penetrates

membranes, thereby triggering pyroptosis (51). Patients with

longer survival periods have been found to have increased levels

of Caspase 3, indicating it may have a function in increasing

sensitivity to the pyroptosis generated by chemotherapeutic drugs.

In addition to boosting NLRP3, ASC, and Caspase 1 inflammasome

activation, Caspase 6 has been shown to induce GSDMD-induced

pyroptosis (52).
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In our model, TIRAP, Caspase 3, and PYCARD were identified

as genes promoting pyroptosis, while IL6, GSDME, and ELANE

were identified as genes executing pyroptosis. However, it is

important to note that modulating these genes did not improve

the condition of gastric cancer in our study. Further investigation is

required to have a comprehensive understanding of the molecular

interactions among these genes in the context of pyroptosis.

Biological process GO (BP, MF, and CC) annotations are shown

in Figure 6. while Figure D displays the KEGG pathway analysis of

the 20 most significant GO enrichment keywords for immune-

related DEGs between thoracic aortic aneurysm and dissection

(TAAD) and normal tissues.

While pyroptosis shares considerable similarities with

apoptosis, our understanding of the former remains limited.

Throughout the progression of a tumor, various cell death

mechanisms can concurrently exist. Our model includes TIRAP,

Casp3, and PYCARD, all of which play regulatory roles in apoptotic

pathways. Unlike apoptotic cells that maintain intact membranes

and don’t trigger inflammatory responses, pyroptotic cells rupture

their membranes and release their contents. The genes identified as

differentially expressed primarily contribute to the chemotaxis of

inflammatory cells and immune response, suggesting their possible

role in triggering cell death.

Given the limited research on pyroptosis, our investigation

primarily focused on its mechanism in GC. The three gastrin family

genes identified, which potentially induce pyroptosis in GC, along with

the other three regulatory genes, could also impact other disorders.

We performed an initial evaluation of these pyroptosis-related

genes’ predictive value, aiming to lay the groundwork for future

research. However, we have not yet confirmed the role of these

regulators in the pyroptosis pathways in GC, underscoring the need

for further investigation. Our research has shown a strong

correlation between pyroptosis and GCAs is apparent from the

observed variations in the expression of genes associated with

pyroptosis between normal and gastric cancer tissues. The risk

signature based on our six-gene pyroptosis-related panel accurately

predicted OS across multiple trials, with significant results.
Conclusions

We observed a notable correlation between tumor immunity and

DEGs in both low- and high-risk groups. To investigate GC immunity

and pyroptosis-related genes, we created a gene profile for people who

might react well to therapy. Our theory suggests that pyroptosis

influences tumor composition by triggering severe inflammatory

responses within an antibody and phagocyte-dependent

microenvironment. In the TCGA and GEO cohorts with high

cancer recurrence risks, immune systems appeared compromised.

Our findings revealed a higher prevalence of Treg cells in the low-

risk group than in the high-risk group. This discrepancy could be due

to the regulatory effect of Treg cells on the inflammatory responses

incited by pyroptosis within the TME. We identified Treg cells with

divergent functions in TME regulation and found two main subtypes

with contrasting regulatory activities. Therefore, insight into the
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various subtypes of Treg cells in GC is essential for understanding

their role in modulating the TME. Moreover, immune pathways in

the high-risk groups of both cohorts demonstrated reduced activity.

In conclusion, patients with high-risk GCs are more likely to have a

poor prognosis because of diminished antitumor immunity.
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