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Objectives: Given the inevitable trend of domestic imaging center mergers and

the current lack of comprehensive imaging evaluation guidelines for non-mass

breast lesions, we have developed a novel BI-RADS risk prediction and

stratification system for non-mass breast lesions that integrates clinical

characteristics with imaging features from ultrasound, mammography, and

MRI, with the aim of assisting clinicians in interpreting imaging reports.

Methods: This study enrolled 350 patients with non-mass breast lesions (NMLs),

randomly assigning them to a training set of 245 cases (70%) and a test set of 105

cases (30%). Radiologists conducted comprehensive evaluations of the lesions

using ultrasound, mammography, andMRI. Independent predictors were identified

using LASSO logistic regression, and a predictive risk model was constructed using

a nomogram generated with R software, with subsequent validation in both sets.

Results: LASSO logistic regression identified a set of independent predictors,

encompassing age, clinical palpation hardness, distribution and morphology of

calcifications, peripheral blood supply as depicted by color Doppler imaging,

maximum lesion diameter, patterns of internal enhancement, distribution of

non-mass lesions, time–intensity curve (TIC), and apparent diffusion coefficient

(ADC) values. The predictive model achieved area under the curve (AUC) values of

0.873 for the training group and 0.877 for the testing group. The model’s positive

predictive values were as follows: BI-RADS 2 = 0%, BI-RADS 3 = 0%, BI-RADS 4A =

6.25%, BI-RADS 4B = 26.13%, BI-RADS 4C = 80.84%, and BI-RADS 5 = 97.33%.

Conclusion: The creation of a risk-predictive BI-RADS stratification, specifically

designed for non-mass breast lesions and integrating clinical and imaging data

from multiple modalities, significantly enhances the precision of diagnostic

categorization for these lesions.
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1 Introduction

The magnetic resonance Breast Imaging Reporting and Data

System (BI-RADS) lexicon of the American College of Radiology

classifies breast lesions as mass, non-mass, and foci. Non-mass

enhancement (NME) on breast magnetic resonance imaging (MRI)

is characterized by distinct internal enhancement features that set it

apart from the surrounding normal breast parenchyma in the

absence of an associated mass, as per the BI-RADS lexicon (1).

NME on breast ultrasound (US) is characterized as a

sonographic finding that is identifiable in at least two imaging

planes but does not exhibit the three-dimensionality or the distinct

visibility of a mass, as defined by the Radiological Society of North

America (RSNA, 2023). While imaging modalities are generally

adept at detecting mass lesions and facilitating accurate diagnoses,

NME poses distinct clinical challenges. This is because the

conventional morphological and kinetic features that are

indicative of mass lesions may not be as effective for NME

lesions. The presence of various benign and malignant lesions

that exhibit non-specific enhancement on breast MRI may lead to

an elevated false-positive rate when compared to mass lesions (2–4).

Previous research has predominantly focused on differentiating

non-mass lesions (NMLs) from mass lesions, employing a range of

machine-learning techniques to boost diagnostic accuracy within

individual imaging modalities or to evaluate the diagnostic efficacy

of specific imagingmethods for NMLs (5–7). However, there has been

a paucity of studies exploring the BI-RADS classification for NMLs,

with some suggesting that the existing classification system has limited

applicability in categorizing NMLs identified by MRI imaging (8).

Conversely, other studies have highlighted the significance of

ultrasound in the diagnosis of non-mass breast lesions, proposing

classification systems that rely on imaging features to interpret

NMLs detected via US and to stratify their cancer risk (9–11).

Despite these efforts, there remains a lack of consistency in the

description of lesion characteristics across different studies (12), and

to date, no standardized classification system for NMLs on

ultrasound has been universally adopted (13). The advent of

improved resolution in breast ultrasonography, coupled with the

integration of innovative diagnostic techniques such as strain

elastography and shear wave elastography, has led to a

progressive enhancement in the diagnostic value of ultrasound for

the assessment of non-mass lesions.

Building upon these observations, this study aims to construct a

classification model based on the clinical and imaging features of

NMLs on ultrasound, mammography, and breast MRI. The authors

have meticulously defined the imaging features of NMLs and

consolidated redundant indicators. By selecting the most sensitive

indicators, a new non-mass BI-RADS risk stratification using a

nomogram was created. We developed a novel risk-predicted BI-

RADS stratification system for non-mass breast lesions that
Abbreviations: NME, non-mass enhancement; BI-RADS, Breast Imaging

Reporting, and Data System; NMLs, non-mass lesions; DWI, diffusion-

weighted imaging; ADC, apparent diffusion coefficient; TIC, time–signal

intensity curve; SE, strain elasticity; BPE, background parenchymal

enhancement; FGT, amount of fibroglandular tissue.
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integrates clinical characteristics with imaging features from

ultrasound, mammography, and MRI. This endeavor seeks to

address the challenge of the high false-positive rate of NMLs,

enhance diagnostic accuracy, and aid radiologists in effectively

managing all NMLs detected in the breast.

2 Materials and methods

This retrospective analysis was granted approval by the Ethics

Committee of Ruijin Hospital, which is affiliated with Shanghai Jiao

Tong University School of Medicine, with a waiver for the

requirement of written informed consent from the participants.
2.1 Study sample

From August 2019 to September 2020, a total of 6,312 patients

with final pathological results obtained via surgery or core needle

biopsy were enrolled. Of these, 2,067 patients underwent the three

primary imaging examinations—ultrasound, mammography, and

MRI—at our hospital prior to surgery and fulfilled the inclusion

criteria. This group comprised 1,717 patients with mass breast

lesions and 350 patients with NMLs. The exclusion criteria were

as follows: a) poor image quality or incomplete imaging

examinations (n = 3,174); b) incomplete clinical data (n = 315);

c) lesions classified as BI-RADS 6 (n = 341), indicating known

malignant lesions; d) a time interval exceeding 1 month between the

imaging examinations (n = 415); and e) mass lesions conforming to

the definition in the fifth edition of BI-RADS 2013 (n = 1,717).

Ultimately, 350 cases of NML were included in the study. All

patients were women with a mean age of 52 years (age range: 19–

90 years), including 117 benign cases and 233 malignant cases. A

flowchart depicting the number of participants included and the

reasons for exclusion is presented in Figure 1, while Table 1 outlines

the pathological types of the patients.
2.2 Acquisition system

The mammography was performed using the American

Hologic mammography machine: the projection positions were

mainly in the MLO position and the CC position. If necessary,

local compression-magnified irradiation and special body position

irradiation were given.

The ultrasound examination was performed with a Mindray

Resona 7 system, a linear array probe, and the frequency was 10.0 to

14.0 MHz. Ultrasound examination of the entire breast should be

performed from the posterior axillary line to the parasternal line,

with the nipple as the center, the nipple–areola complex area, and

the axillary lymph nodes. The transducer is to be lightly supported

on the skin, without pressing the skin to avoid an underestimation

of the vascularization. Elastography is converted to the SE (strain

elasticity) model when the longest axis view of the lesions is

displayed on the 2D image, and the probe should be handled gently.

All the breast MRI examinations were performed on a 1.5-T

unit (MAGNETOM Aera; Siemens Healthcare, Erlangen,
frontiersin.org
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Germany) with a dedicated 18-channel phased-array breast coil.

The protocol included axial T1-weighted, T2-weighted fat-

suppressed diffusion-weighted imaging (DWI, b value is 1,000 s/

mm2), T1-weighted fat-suppressed dynamic enhancement scan: 1

stage enhancement 90 s + 5 stage enhancement (90 s × 5) after

injection of 20 mL gadolinium meglumine, and then the images

were uploaded to the Picture Archiving and Communication

System (PACS). Post-processing included T1-weighted

subtraction, T1-weighted maximum intensity projection, and

subtracted sagittal reconstruction. The apparent diffusion

coefficient (ADC) was measured, and the time–signal intensity

curve (TIC) was obtained.
2.3 Image analysis

Using this methodology, images were downloaded from the

hospital PACS in Digital Imaging and Communications in
Frontiers in Oncology 03
Medicine (DICOM) format. Two radiologists (XXZ and YMX,

with 10 and 4 years of experience in breast diagnosis,

respectively) reviewed the images that included ultrasound,

mammography, and MRI without knowing the pathological results.

The characteristics of each lesion were described and recorded

according to the fifth edition of the ACR BI-RADS lexicon and

according to the associated imaging variables on ultrasound of non-

mass in the literature published by Park et al. (14), and when the

conclusions were different, a consensus was reached after discussion

with a third radiologist (MWC, with ≥10 years of experience in

breast diagnosis).

On MRI, enhancement patterns can be classified as mass, non-

mass, or foci-enhancing lesions. In this study, the identification of

NMLs on MRI means that the lesions do not belong to a 3D mass or

have distinct features of a mass. On mammography, the

identification of NMLs relies on differences in glandular density

or distribution of microcalcifications due to the absence of an

occupying effect. To date, there is still no standardized approach
FIGURE 1

Flowchart showing the number of participants included and the reasons for exclusion from the study.
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to classify and evaluate non-mass findings on US. An NME on

breast US is defined as a sonographic finding that is identified in

two or more imaging planes but lacks the three-dimensionality or

conspicuity of a mass (RSNA, 2023). The “maximum diameter of

the lesion” was taken as the largest value on MRI, and the

“associated features” were only cited in the MRI and ultrasound

examination, because MRI and ultrasound can better depict lesions

due to their superior soft tissue contrast. At the same time, the

clinical information of the patients was collected online.
2.4 Methods and statistical analysis

Statistical analysis was conducted using SPSS Statistics (version

26.0, USA), while R software (version 4.0.5) was employed for

comprehensive data analysis. Continuous variables were expressed

as mean ± standard deviation. Univariable analyses were executed

with Student’s t-test or one-way ANOVA for normally distributed

data, and the Mann–Whitney U test was applied for data that were

not normally distributed. Categorical variables were presented as

frequencies and percentages, with the chi-square test or Fisher’s exact

probability analysis utilized for assessment. The LASSO logistic

regression algorithm, facilitated by the glmnet R package, was

implemented to diminish the feature dimension and to discern the

imaging and clinical information pertinent to the differential

diagnosis of benign and malignant conditions. Participants were

randomly allocated into two cohorts using R software: 245 cases

(70%) formed the training set, and 105 cases (30%) constituted the

test set. The ROC curve analysis was conducted to appraise the

diagnostic efficacy of both sets in distinguishing between benign and

malignant lesions. For each predictive factor depicted in the

nomogram, scores were assigned, and the aggregate score was

calculated to determine the total score. Subsequently, the model

was used to derive the probability of malignancy for each patient.

Lesions were reassigned to categories in accordance with the positive

predictive values outlined in the BI-RADS guidelines. A p-value of

less than 0.05 was set as the threshold for statistical significance.
3 Results

3.1 Patient clinical information and
imaging indicators

Of the 350 NMLs examined, 233 cases (66.6%) were identified

as malignant, while 117 cases (32.4%) were benign. A detailed

breakdown of these results is presented in Table 1. The patient

cohort was entirely female, with an average age of 52 years and an

age range of 19 to 90 years.

Univariate analysis revealed statistically significant differences

across several parameters: the maximum diameter of the lesions,

menstrual status, hardness determined by clinical palpation,

distribution and morphology of calcifications, posterior echo,

peripheral vascularity as indicated by color Doppler flow imaging

(CDFI), strain elasticity (SE) assessed via ultrasound, internal

enhancement patterns and distribution of NME, TIC, ADC
Frontiers in Oncology 04
values, and associated MRI features. A comprehensive

presentation of these detailed results can be found in Table 2.
3.2 Selection of parameters by LASSO
logistic regression

The LASSO regression method was used to select the indicators

to avoid overfitting and to solve the problem of serious collinearity

(Figure 2). In this study, the standard error l of the minimum

distance was selected as 0.047, and the selected variables of the

corresponding model were as follows: age, ADC value, calcification

distribution, calcification morphology, peripheral vascular supply

displayed by CDFI, maximum diameter of the lesion, NME internal

enhancement pattern, NME distribution, TIC curve, and clinical

palpation hardness.
3.3 Construction and verification of
the nomogram

Based on the final screened variables, 10 indicators were finally

used to construct a nomogram to predict the likelihood of

malignancy in NMLs (Figure 3). The model assigns the score

according to the weight of the covariates, then a straight line is

drawn upward, to the point of the axis at the top to obtain the score

based on each covariate. Total points are calculated by adding all the

points obtained from each covariate. The final sum was placed on

the total score axis, and a straight line was drawn downward from

there to obtain the probability of cancer risk. The pathological

results were used as the “gold standard.” The test set consisting of
TABLE 1 The pathological types of patients.

Group Number (%)

Malignant Total n = 233

Pathological type

Invasive ductal carcinoma 34 (14.59)

Ductal carcinoma in situ 86 (36.91)

Mixed carcinoma 45 (19.31)

Invasive lobular carcinoma 7 (3.00)

Papillary carcinoma 22 (9.44)

Other invasive carcinoma 39 (16.74)

Benign Total n = 117

Fibrocystic changes 57 (48.72)

Intraductal papilloma 13 (11.11)

Fibroadenoma 9 (7.69)

Adenosis+intraductal
papilloma/fibroadenoma

28 (23.93)

Adenosis with
ductal dilatation

10 (8.54)
Unless otherwise indicated, the value represents the number of patients, with the percentage
shown in parentheses.
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TABLE 2 Comparison of relevant clinical symptoms and imaging features of benign and malignant patients.

Parameters Characteristics Malignant (%) Benign (%) p PPV

Clinical symptom

Tenderness No 198 (84.98) 104 (88.89) 0.316 65.6%

Yes 35 (15.02) 13 (11.11) 72.9%

Clinical palpation hardness Hardness 180 (77.25) 60 (51.28) <0.001 75%

Soft 53 (22.75) 57 (48.72) 48.2%

Nipple discharge No 208 (89.27) 111 (94.87) 0.082 65.2%

Yes 25 (10.73) 6 (5.13) 80.6%

Menstrual status Premenopausal 107 (45.92) 77 (65.81) <0.001 58.2%

Postmenopausal 126 (54.08) 40 (34.19) 75.9%

Hormone therapy No 213 (91.42) 108 (92.31) 0.775 66.4%

Yes 20 (8.58) 9 (7.69) 69.0%

Family history of breast cancer No 208 (89.27) 101 (86.33) 0.419 67.3%

Yes 25 (10.73) 16 (13.68) 61.0%

Previous breast surgery No 212 (90.99) 104 (88.89) 0.532 67.1%

Yes 21 (9.01) 13 (11.11) 61.8%

Age 40–60 years 138 (59.23) 70 (59.83) 0.038 66.3%

<40 years 35 (15.02) 28 (23.93) 55.6%

>60 years 60 (25.75) 19 (16.24) 75.9%

MRI features

Internal enhancement patterns Unenhanced/homogeneous 78 (33.48) 72 (61.54) <0.001 52%

Heterogeneous/clumped/
clustered ring

155 (66.52) 45 (38.46) 77.5%

Distribution Regional 41 (17.60) 12 (10.26) <0.001 77.4%

Multiple regions 11 (4.72) 3 (2.56) 78.6%

Focal/linear 65 (27.90) 86 (73.50) 43.0%

Diffuse 9 (3.86) 1 (0.86) 90.0%

Segmental 107 (45.92) 15 (12.82) 87.7%

TIC Plateau/washout 137 (58.80) 29 (24.79) <0.001 82.5%

Unenhancement/persistent 96 (41.20) 88 (75.21) 52.2%

ADC, median [IQR] 1.00 (0.88, 1.20) 1.28 (1.00, 1.48) <0.001

BPE Moderate/marked 16 (6.87) 13 (11.11) 0.174 55.2%

Minimal/mild 217 (93.13) 104 (88.89) 67.6%

FGT
Heterogeneous fibroglandular

tissue/extreme
fibroglandular tissue

129 (55.37) 73 (62.39) 0.209 63.9%

Almost entirely fatty/scattered
fibroglandular tissue

104 (44.64) 44 (37.61) 70.3%

Associated features Dilated duct 53 (22.75) 28 (23.93) <0.001 65.4%

No associated features 85 (36.48) 72 (61.54) 54.1%

Skin changes (thickening,
nipple retraction)

20 (8.58) 5 (4.27) 80%

Pectoralis muscle invasion 2 (0.86) 0 (0.000) 100%

Axillary adenopathy 65 (27.90) 6 (5.13) 91.5%

(Continued)
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N = 105 cases (30.00%) was randomly selected from the overall

sample, the remaining samples were used as the training set for five-

fold cross-validation (Figures 4A, B), and the areas under the ROC

curves (AUCs) of the training set and the test set were compared.

The training set AUCs were 0.873 (0.820–0.927), and the test set

AUCs were 0.877 (0.804–0.949). The model calibration curve

showed floating around the baseline, indicating that the model is

a good fit (Figure 4C). The model results were interpreted by

calculating the contribution of each feature to the predicted

results (Figure 4D).

Utilizing the final set of screened variables, we constructed a

nomogram with 10 indicators to predict the probability of

malignancy for NMLs, as illustrated in Figure 3. The model assigns

scores to each covariate based on its weight. Users draw a straight line

upward from each covariate’s score to the top axis to determine the

points for each factor. The total score is calculated by summing the

points of all the covariates. This total is then placed on the total score

axis, and a straight line is drawn downward to ascertain the

individual’s probability of developing cancer. Pathological outcomes

served as the definitive “gold standard” for comparison.
Frontiers in Oncology 06
3.4 BI-RADS classification of NMLs based
on the nomogram predicting the
malignant probability

The total score was obtained by adding the scores corresponding to

each index, and the vertical line was drawn downward to obtain the

corresponding malignancy probability. Finally, a total score of 0 was

classified as category 2; a total score of fewer than 25 points was

classified as category 3; 190 points ≤ total score < 330 points

were classified as category 4C; and a total score ≥330 points

was classified as category 5. The positive predictive values of the

original BI-RADS category and the new BI-RADS category were

obtained (Table 3).
4 Discussion

Breast MRI is acknowledged for its superior sensitivity in women

with an increased risk of breast cancer, and its use in screening

programs is steadily growing (15). Particularly for NMLs, MRI stands
TABLE 2 Continued

Parameters Characteristics Malignant (%) Benign (%) p PPV

Architectural distortion 8 (3.43) 6 (5.13) 57.1%

Maximum diameter <1 cm 23 (9.87) 48 (41.03) <0.001 32.4%

1–2 cm 54 (23.18) 34 (29.06) 64.3%

≥2 cm 156 (66.95) 35 (29.92) 81.7%

Mammography
features

Density Low density 1 (0.43) 1 (0.86) 0.818 50%

Equal density 188 (80.69) 96 (82.05) 66.2%

High density 44 (18.88) 20 (17.09) 68.8%

Calcification distribution Suspicious 175 (75.11) 49 (41.88) <0.001 78.1%

No/alone 58 (24.89) 68 (58.12) 46.0%

Calcification morphology Suspicious 177 (75.97) 45 (38.46) <0.001 79.3%

No/benign coarse calcification 56 (24.03) 72 (61.54) 43.8%

Ultrasound features

Echo pattern Hypoechoic/heterogeneous 216 (92.70) 103 (88.03) 0.147 67.8%

Isoechoic/hyperechoic 17 (7.30) 14 (11.97) 54.8%

Posterior features No posterior features 146 (62.66) 98 (83.76) <0.001 59.8%

Shadowing 87 (37.34) 19 (16.24) 82.1%

CDFI peripheral vascularity Poor 43 (18.46) 61 (52.14) <0.001 41.3%

Rich 190 (81.55) 56 (47.86) 77.2%

Strain elasticity (5 points) 2 points 69 (29.61) 66 (56.41) <0.001 51.1%

3 points 126 (54.08) 38 (32.48) 76.9%

4 points 35 (15.02) 13 (11.11) 72.9%

5 points 3 (1.29) 0 (0.00) 100%
fro
Unless otherwise indicated, the value represents the number of patients, with the percentage shown in parentheses.
BPE, background parenchymal enhancement; FGT, amount of fibroglandular tissue; TIC, time signal intensity curve.
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out as the most sensitive imaging modality. Dynamic contrast-

enhanced magnetic resonance imaging (DCE-MRI) enables a

thorough and systematic evaluation of breast lesions, including the

assessment of vascular characteristics. NME can exhibit intense

enhancement, which helps to make the lesions more conspicuous

(16, 17). While MRI studies have reported high sensitivity rates of

approximately 90% or higher, they are also associated with elevated

false-positive rates (4, 18, 19). In mammography, the detection of

NMLs is contingent upon variations in glandular density or the

distribution of microcalcifications, given the lack of a space-

occupying effect. Asian women, who often have denser breast

tissue, may experience more false negatives in mammography. A

prospective multicenter study has confirmed the diagnostic value of

contrast-enhanced MRI in the decision-making process for breast

lesions with microcalcifications. The sensitivity, specificity, PPV, and

NPV of DCE-MRI for detecting suspicious microcalcifications on

mammography are 95.2%, 40.2%, 49.2%, and 93.3%, respectively

(20). The synergistic use of ultrasound and mammography has been

shown to markedly enhance the diagnostic accuracy of breast lesions

(21–23). On mammography, NMLs can present as calcifications,

asymmetries, or architectural distortions. Asymmetry on

mammograms, stemming from increased glandular density,

appears as a local echo that differs from the surrounding tissue on

ultrasound. Architectural distortion is often visualized as an

entanglement of Cooper’s ligaments on ultrasound. While

mammography excels at identifying calcifications, the combined

use of ultrasound and mammography significantly improves the

diagnostic yield of calcifications in breast lesions (24). If a lesion is

clearly identified as a mass by any of the imaging modalities, it is

classified as a mass lesion; otherwise, it is categorized as an NML. This

approach also compensates for missed diagnoses of NMLs that may

occur due to glandular overlap on mammograms. On ultrasound,
Frontiers in Oncology 07
NMLs can manifest as hypoechoic areas or regions with blurred,

altered echogenic texture, which can be difficult to differentiate from

fat echoes. The use of color Doppler has been shown to increase the

specificity of ultrasound in identifying malignant NMLs in the breast

without reducing sensitivity (25).

Malignant lesions, including ductal carcinoma in situ (DCIS),

invasive ductal carcinoma (IDC), and invasive lobular carcinoma

(ILC), can present as NMLs, whereas benign conditions such as

fibrocystic changes, breast adenosis, intraductal papilloma, and

inflammatory processes can also exhibit non-mass-like enhancement

(26, 27). The majority of NMLs are characterized by their complex

histopathological composition (28). In our study, the most prevalent

malignant histopathological type was DCIS (36.91%), followed by

mixed carcinoma (19.31%). Within the benign group, adenopathy or

fibrocystic degeneration was themost common, representing 48.72% of

the cases. These findings are corroborated by Bartels et al. (27), who

also noted a predominance of DCIS and a majority of benign NMLs

manifesting as adenopathy or fibrocystic degeneration. Our analysis of

the imaging features of NMLs disclosed a significant overlap between

malignant and benign presentations, with NME being more frequently

associated with malignancy according to the BI-RADS classification,

aligning with our findings. Importantly, NME has been linked to an

increased rate of false positives in breast MRI and a consequent rise in

unnecessary biopsies, as noted in some studies (3).

LASSO regression, a technique for variable selection in high-

dimensional generalized linear models, was employed in this study

to identify significant indicators through LASSO logistic regression.

Based on the contribution degree (the size of the regression

coefficients) of various influencing factors in the model to the

outcome variable, scores were assigned to each level of the

influencing factors. The total score was obtained by summing up

the scores of all the influencing factors. Finally, the predicted value
A B
FIGURE 2

Screening of discriminative imaging and clinical indicators using the LASSO regression algorithm. (A) The 10-fold cross-validation method is used in
the LASSO model to screen out the feature set with the best performance. The vertical dotted line represents the log(l) value corresponding to the
optimal input value. A total of 10 features were selected in this study. (B) Coefficient convergence graph of imaging indicators and clinical features
using 10-fold cross-validation in the LASSO model; each curve in the graph represents the trajectory of each .
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of the outcome event for that individual was calculated from the

functional transformation relationship between the total score and

the probability of the outcome event occurring. Nomograms are

often used to predict disease risks and to assess patient conditions
Frontiers in Oncology 08
and other aspects. The variables selected included calcification

morphology, distribution, clinical palpation hardness, ADC value,

TIC, maximum diameter of the lesion, internal enhancement

patterns and distribution of NME, peripheral vascularity as
A B

C D

E
FIGURE 3

A 57-year-old woman with high-grade ductal carcinoma in situ at 3 o’clock on the left breast (blue arrow). (A) The maximum diameter of the lesion is
4.89 cm. (B) Ultrasound CDFI showed a rich blood supply around the lesions. (C) MRI showed a segmental distribution, and the time signal intensity curve
showed a plateau shape. (D) Mammography showed fine pleomorphic calcifications with segmental distribution. (E) Adding the scores assigned by each
covariate to get a total score of 300 points, the probability of risk cancer is 90%–95%, and it is classified as BI-RADS 4C. IE, internal enhancement; NMD,
non-mass distribution; CD, calcification distribution; CM, calcification morphology; MDL, the maximum diameter of the lesion; PH, palpation hardness.
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indicated by CDFI, and age. This approach allowed us to develop a

more refined model by employing a penalty function that reduced

the number of variables and effectively mitigated overfitting. To

validate the clinical utility of the nomogram, patients were

randomly assigned to either the training or test group. As
Frontiers in Oncology 09
depicted in Figure 4, our model demonstrated a significant ability

to differentiate between benign and malignant lesions.

According to the variable contribution map depicted in

Figure 4D, the three most important variables were calcification

morphology, the maximum diameter of the lesion, and the
A

 
B

C D

FIGURE 4

The diagnostic performance of the model in predicting benign and malignant breast NMLs: (A) ROC curve of the training set; (B) ROC curve of the
test set; (C) model calibration curve graph; (D) variable contribution graph.
TABLE 3 Original BI-RADS category and model prediction BI-RADS category.

Benign, N (%) Malignant, N (%) Total p-value

Original BI-RADS category

3 1 (100.00) 0 (0.00) 11

p < 0.01

4A 15 (96.42) 11 (13.58) 81

4B 65 (37.80) 51 (62.20) 82

4C 32 (7.45) 87 (92.55) 94

5 0 (0.00) 82 (100.00) 82

Model prediction BI-RADS category

2 3 (100.00) 0 (0.00) 3

p < 0.01

3 1 (100.00) 0 (0.00) 1

4A 15 (93.75) 1 (6.25) 16

4B 65 (73.87) 23 (26.13) 88

4C 32 (19.16) 135 (80.84) 167

5 2 (2.67) 73 (97.33) 75
Unless otherwise indicated, the value represents the number of patients, with the percentage shown in parentheses.
BI-RADS, Breast Imaging Reporting and Data System.
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distribution of calcifications. Amorphous or coarse heterogeneous

calcifications are considered to be of intermediate concern, whereas

fine pleomorphic, fine linear, or fine linear branching calcifications

are associated with a higher probability of malignancy (29). In this

study, the calcification distribution was categorized into a

suspicious distribution group and a single or no calcification

group. It is widely accepted that clustered calcifications are the

most common and are associated with the lowest degree of

malignancy, whereas segmental distribution is considered to have

the highest degree of malignancy. When assessing the malignancy

of calcifications, both morphology and distribution are considered,

and the presence of microcalcifications in NMLs increases the

probability of malignancy by 5.9 times compared to cases with

only microcalcifications (30). Previous research has indicated that

lesion size can predict tumor malignancy, with the positive

predictive value rising significantly as lesion size increases (8, 31).

In our study, for lesions with a maximum diameter of 2 cm or

greater, the malignancy rate was 81.7%.

The TIC for NMLs is less effective than for mass lesions, with

malignant NMLs typically not exhibiting the typical washout patterns

(32). Consequently, the diagnostic value of the TIC as a predictive

index in NMLs is somewhat limited. In this study, the weight of the

TIC ranked behind other parameters in the final set of 10 variables.

The authors categorized the TIC curve into enhancement/persistent

and plateau/washout groups, which may enhance the sensitivity of

this indicator to some extent. Some studies have reported high

diagnostic efficacy of ADC values in NME, with a sensitivity of up

to 96% and a specificity of 100% (33–37). Conversely, other studies

have suggested that the application of ADC values in non-mass

lesions is limited (38). The diagnostic accuracy of ADC

measurements is significantly influenced by lesion size and the

choice and placement of the region of interest (ROI). In our study,

lesions larger than 2 cm accounted for 54.6% of the total (191 out of

350), which may explain why the ADC value was retained.

Continuous variables were converted to categorical variables to

facilitate clinical interpretation and the construction of the final

nomogram. The optimal cutoff value was determined using the

Youden index (with an ADC value of 1.195 × 10−3 mm2/s). Patients

were stratified into three age groups in accordance with the United

States Cancer Screening Guidelines (39). The nomogram can be

utilized by assigning scores to each predictive factor, summing these

scores to obtain a total score, and then using this total to determine

the predicted risk. Pathological diagnoses served as the gold

standard for comparison. The BI-RADS classification was applied

to NML patients by stratifying cancer risk into BI-RADS categories

(as shown in Figure 3), with the results presented in Table 3. The

positive predictive value for each category was found to be within

the malignancy range recommended by the BI-RADS lexicon.

The objective of this study was to develop a practical classification

system for breast NMLs that leveraged the synergistic benefits of three

principal imagingmodalities: ultrasound, mammography, andMRI. By

integrating repetitive indicators and capitalizing on the intuitive nature

of visual nomograms, we aimed to predict the risk of malignancy across

various BI-RADS categories. Our initial application of the BI-RADS
Frontiers in Oncology 10
classification revealed a marginally elevated positive predictive value in

comparison to reference values for categories 4A and 4B. The revised

classification demonstrated a notable increase in the proportion of

category 4C lesions, with positive predictive values aligning within the

malignancy range as per the BI-RADS lexicon.

This study addressed the challenge of underestimation

by experienced radiologists and specialized breast researchers, and

overestimation by community clinics and primary care centers.

By introducing a nomogram, we proposed an objective method

for obtaining non-mass BI-RADS classifications, thereby

reducing interradiologist diagnostic variability and enhancing

clinical applicability.

In conclusion, our study demonstrated the potential of a risk-

predictive BI-RADS stratification model for non-mass breast

lesions, leveraging a combination of clinical and imaging

parameters . The model developed demonstrated good

performance in both the training and testing sets, with high AUC

values and positive predictive values for different BI-RADS

categories. Nomograms not only assist in assessing the patient’s

condition but also help doctors explain the severity and risk of

disease to patients. Across various fields, nomograms provide a

rapid, concise, and user-friendly calculation tool that contributes to

improving work efficiency and accuracy. In summary, nomograms

are powerful tools that transform complex mathematical

relationships into intuitive and easily understandable graphs,

providing strong support for research and practice in various

fields. However, it is important to acknowledge the limitations of

this study, such as the relatively small sample size and the need for

further validation in larger and more diverse populations.

Future extensions of this study could include the incorporation

of additional imaging modalities or biomarkers to improve the

accuracy of risk stratification for non-mass breast lesions.

Furthermore, prospective studies are needed to assess the clinical

utility of this new risk prediction model in guiding treatment

decisions and improving patient outcomes. Overall, this study

opens up avenues for further research and development in the

field of breast imaging and risk assessment.
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