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Background: Tumor lysis syndrome (TLS) often occurs early after induction

chemotherapy for acute lymphoblastic leukemia (ALL) and can rapidly

progress. This study aimed to construct a machine learning model to predict

the risk of TLS using clinical indicators at the time of ALL diagnosis.

Methods: This observational cohort study was conducted at the National Clinical

Research Center for Child Health and Disease. Data were collected from

pediatric ALL patients diagnosed between December 2008 and December

2021. Four machine learning models were constructed using the Least

Absolute Shrinkage and Selection Operator (LASSO) to select key clinical

indicators for model construction.

Results: The study included 2,243 pediatric ALL patients, and the occurrence of

TLS was 8.87%. A total of 33 indicators with missing values ≤30% were collected,

and 12 risk factors were selected through LASSO regression analysis. The

CatBoost model with the best performance after feature screening was

selected to predict the TLS of ALL patients. The CatBoost model had an AUC

of 0.832 and an accuracy of 0.758. The risk factors most associated with TLS

were the absence of potassium, phosphorus, aspartate transaminase (AST), white

blood cell count (WBC), and urea levels.

Conclusion: We developed the first TLS prediction model for pediatric ALL to

assist clinicians in risk stratification at diagnosis and in developing personalized

treatment protocols. This study is registered on the China Clinical Trials Registry

platform (ChiCTR2200060616).

Clinical trial registration: https://www.chictr.org.cn/, identifier ChiCTR2200060616.
KEYWORDS

machine learning, predictive modeling, acute lymphoblastic leukemia, tumor lysis
syndrome, treatment toxicity
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1 Introduction

Acute lymphoblastic leukemia (ALL) is a malignant tumor of

the hematopoietic system caused by the abnormal proliferation of

bone marrow T- or B-lineage lymphocytes, and it is the most

common malignant disease in children, accounting for about one-

third of all childhood malignancies (1). The incidence rate of ALL is

about (3~5)/100,000 (2), and the age of onset is mostly before 15

years old (3, 4). The male-to-female ratio is about 1.2:1 (5). In recent

years, chemotherapy based on risk factor stratification has

significantly improved the prognosis of children with ALL. In

developed countries, the 5-year event-free survival (EFS) of

pediatric ALL can reach more than 85%, and the overall survival

(OS) can reach more than 90% (1, 6, 7). In China, the 5-year EFS of

pediatric ALL reaches 80%, and the OS reaches more than 85% (8).

However, about 20% of ALL patients face treatment failure, mainly

due to recurrence, secondary tumors, chemotherapy toxicity, or

severe complications (9). Several studies have reported that 30% to

47% of ALL patients die from treatment-related deaths (8, 10, 11),

with infection and bleeding being the main causes. Among these

serious complications, tumor lysis syndrome (TLS) often occurs

early after induction chemotherapy in patients with ALL, and most

of them progress rapidly. Acute kidney injury (AKI), cardiac

arrhythmia, seizures, and even death may occur at the time of

diagnosis. An in-depth understanding of TLS is beneficial to

optimize the efficacy of ALL and provide a reference for TLS

prevention and treatment.

TLS is an oncologic emergency caused by the massive lysis of

tumor cells and the release of large amounts of potassium,

phosphate, and nucleic acids into the systemic circulation.

Clinical manifestations are characterized by hyperuricemia,

hyperkalemia, hyperphosphatemia, and hypocalcemia (12, 13).

Standard treatment for TLS includes massive hydration,

allopurinol, and labyrinthine for hyperuricemia, and renal

replacement therapy may be required in severe cases (14) Clinical

observations suggest that TLS tends to occur in highly proliferative

malignancies with heavy tumor loads or sensitive responses to

initial therapy, such as Burkitt’s lymphoma and ALL (15). Thus,

TLS is a great challenge in pediatric ALL. The analysis of

independent risk factors for the development of TLS in children

with ALL in the early stage of induction chemotherapy based on

laboratory tests and clinical presentation at the time of initial

diagnosis and the construction of a predictive model are crucial

for the timely adoption of stronger interventions and close

monitoring of high-risk patients to improve patient survival.

Currently, machine learning is widely used in the fields of

disease diagnosis, prediction of prognosis, design of treatment

plans, and individualized healthcare (16). Previous studies have

reported the prediction models for the occurrence of TLS in AML in

adults and ALL in children abroad (17–19). However, machine

learning-based TLS prediction models for childhood ALL have not

been reported at home or abroad. Relying on the clinical research

big data platform of the National Clinical Medical Research Center

for Children’s Health and Diseases, this study intends to construct a

machine learning model to predict the probability of TLS in ALL
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patients by analyzing the clinical characteristics of real-world

patients with ALL to provide a basis for decision-making for the

early identification and intervention of TLS.
2 Materials and methods

2.1 Study population and design

This observational retrospective cohort study was conducted at

the Children’s Hospital of Chongqing Medical University, one of

two national clinical research centers for child health and disease in

China that completed the Clinical Science Research Big Data

Platform (CSRBDP) in 2021, which is available to clinical

researchers and includes more than 750,000 pediatric outpatients

and inpatients as of January 2022. To establish and validate the

prediction model, the subjects were randomly divided into a

training set (n = 1,570) and a validation set (n = 673) in a 7:3

ratio. The inclusion criteria were as follows: (1) age between 0 and

18 years; (2) diagnosis made between December 2008 and

December 2021; (3) newly diagnosed ALL patients or out-of-

hospital-diagnosed patients who did not receive steroids and

whose bone marrow smear showed a ratio of primitive/naïve

lymphocytes ≥20%. The exclusion criteria were as follows: (1)

patients with secondary tumors or immunodeficiency diseases

and (2) patients who did not have uric acid (UA), potassium,

phosphorus, and calcium indexes detected within the 3 days before

and 7 days after baseline time, where the baseline time was defined

as the time of the first steroid administration at the time

of hospitalization.

The study followed the Transparent Reporting of Individual

Prognostic or Diagnostic Multivariate Predictive Models (TRIPOD)

specifications for model development and validation (20).

Multidimensional clinical data were collected from the CSRBDP,

and the study outcome was whether TLS occurred after

chemotherapy. The study was registered on the Chinese clinical

trial registration platform (clinicaltrials.gov, identifier:

ChiCTR2200060616) and was approved by the Ethics Committee

of the Children’s Hospital of Chongqing Medical University with a

waiver of the informed consent requirement (File No. 2022,98).

Figure 1 presents an overview of the study design.
2.2 Data collection

A total of 33 clinically relevant indicators of ALL were collected

in this study, including demographic information (e.g., age at

diagnosis, gender), laboratory indicators (e.g., blood counts, liver

and kidney function, electrolytes, and coagulation), and the type of

steroids used at the time of the initial induction chemotherapy.

Clinical and laboratory data were collected from all visits, starting

with the patient’s initial diagnosis of ALL. In cases where this

information was not available, data collected during the patient’s

hospital stay were used instead.
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2.3 Chemotherapy regimen

The chemotherapy regimen is based on international and

national treatment protocols for childhood ALL (21–23). It

stratifies chemotherapy according to the risk level (low risk,

intermediate risk, and high risk). The main chemotherapeutic

regimens include window-phase treatment, VDLP(Pred+VCR

+DNR+L-ASP/PEG-ASP) induction chemotherapy, CAM(CTX

+Ara-C+6-MP) early intensive therapy, high-dose MTX

(HDMTX) consolidation therapy, reinduction therapy, and

maintenance chemotherapy. TLS mainly occurs during the

window-phase treatment and induction of remission therapy

phases of the initial treatment. The main drugs used in

remission-induction therapy include steroids (Pred/Dex), VCR,

DNR, L-ASP/PEG-ASP, and intrathecal injections (steroids,

MTX, Ara-C). BCR-ABL1-posit ive children are given

chemotherapy combined with tyrosine kinase inhibitors (TKI).
2.4 Prevention of TLS

Routine preventive measures for TLS include the following: (1)

Hydration therapy: adequate hydration therapy and maintaining

the balance offluid and output is the most important measure in the

prevention and treatment of TLS (24). The recommended dose of
Frontiers in Oncology 03
hydration solution for children is 2,000~3,000 mL/(m2/day), and

for infants with a body mass less than 10 kg, it is 200 mL/(kg/day)

(25). Infants should maintain a urine output of more than 4 mL/

(kg/h), while children (excluding infants) should have a urine

output of more than 100 mL/(m2/h) to ensure proper renal

perfusion and excretion of related metabolites (19). Hourly

monitoring of urine output is essential for hydrated children to

detect and treat circulatory overload promptly to avoid circulatory

failure. If urine output is insufficient, non-thiazide diuretics (such as

furosemide 0.5–1.0 mg/kg) can be used for diuresis, although they

may impair renal function and promote the deposition of uric acid

in the kidneys (26). (2) Correction of hyperuricemia: treatment

options for hyperuricemia include xanthine oxidase inhibitors (such

as allopurinol) and uric acid oxidase (such as acrylate). Allopurinol

may be the initial drug of choice for low-risk TLS and intermediate-

risk patients with normal serum uric acid levels. In the absence of

high serum uric acid levels, prophylactic treatment with allopurinol

is recommended for patients at intermediate risk for TLS, starting

24–48 h before chemotherapy initiation with a routine oral dosage

of 10 mg/(kg/day) in three divided doses (the maximum daily dose

should not exceed 800 mg). Meanwhile, diuretics should be

discontinued, and the dosage of drugs such as cyclosporine

should be adjusted. Patients with G-6-PD negative can be given

uric acid oxidase at a dosage of 1.5 mg every other day until WBC is

less than 50 × 109/L, LDH is within two times the normal upper

limit, and UA levels are normal. (3)Symptomatic support:

correcting electrolyte disturbances and hemodialysis in

emergencies can be used to treat oliguric renal failure or life-

threatening metabolic disorders.
2.5 Definition of TLS

The recent international guidelines for the diagnosis of TLS

include the ASCO guidelines of 2008 (27), the 2010 International

Expert Consensus (25), and the 2015 BCSH guidelines (28). These

guidelines primarily apply to adults. In 2021, the Pediatric Tumor

Committee of the Chinese Anti-Cancer Association published

guidelines for the diagnosis and treatment of TLS in Chinese

children. The 2004 Cairo–Bishop definition has been widely

adopted by international guidelines (29). According to the Cairo–

Bishop criteria, laboratory TLS (LTLS) is diagnosed when there is a

specified absolute or 25% increase/decrease from baseline in serum

levels of UA, potassium, phosphorus, and/or calcium. The specified

absolute serum levels are as follows: uric acid, ≥8 mg/dL; potassium,

≥6 mmol/L; phosphorus, ≥6.5 mg/dL in children and ≥4.5 mg/dL in

adults; and calcium, ≤7 mg/dL. TLS is diagnosed when two or more

of the proposed criteria are met, either 3 days before or 7 days after

chemotherapy administration, regardless of hydration status and

the use of hyperuricemic agents. Clinical TLS (CTLS) is defined as

the presence of LTLS and at least one complication associated with

TLS, without any other identifiable cause, such as an increase in

serum creatinine (Crea) of ≥1.5 times the upper limit of normal

(ULN), cardiac arrhythmia, sudden death, hand and foot cramps,

or seizures.
FIGURE 1

Machine learning model construction process.
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2.6 Model development

In this study, indicators with missing rates >30% were excluded,

and for indicators with missing rates ≤30%, the Random Forest-

based iterative interpolation method (Miss Forest) (30) was used to

fill in the missing values. The Least Absolute Shrinkage and

Selection Operator (LASSO) was applied to identify influential

clinical variables (predictor variables with p < 0.05) to remove

irrelevant and redundant information, select the best predictor

variables, and improve the predictive power of machine

learning models.

Random stratified sampling divided the patients into training

and validation sets in a ratio of 7:3, with the former being used to

train the machine learning models and the latter being used to

evaluate the model performance. Four machine learning models

were constructed based on the training set, including Support

Vector Machine (SVM), Random Forest (RF), CatBoost Classifier

(CatBoost), and Logistic Regression (Logistic). The training set was

preprocessed using random undersampling combined with the

SMOTE oversampling technique to deal with sample imbalance.

Hyperparameter tuning of machine learning models uses fivefold

cross-validation grid search, and model construction in the training

set uses fivefold cross-validation (31). The best-performing model

was chosen for risk prediction based on its combined metrics of

AUC, recall, specificity, and accuracy. The predictive power of the

best machine learning models was explained using Shapley additive

explanations (SHAP) (32).
2.7 Statistical methods

Statistical analyses were performed using R (version 4.3.0),

while predictive model construction and evaluation were

conducted using Python (version 3.7). Continuous variables were

assessed for normality using the Shapiro–Wilk test, and nonnormal

continuous variables were presented as median with interquartile

range (IQR). Categorical variables were presented as frequencies

and percentages (n, %). The Mann–Whitney U-test was used for

continuous variables, and the Chi-square test was used for

categorical variables to compare the differences in variable

distribution between the training and validation cohorts.

Statistical significance was defined as a two-sided p-value < 0.05.
3 Results

3.1 General patient characteristics

A total of 2,243 patients diagnosed with ALL were included in

this study, including 1,332 male (59%) and 911 female (41%)

patients, with an incidence of TLS of 8.87% (199/2243). A total of

33 metrics were analyzed after excluding metrics with missing

values >30%. Table 1 presents a comparison of clinical and

laboratory characteristics between patients in the training and
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validation cohorts at diagnosis. The results indicate that there

were no significant differences between the two cohorts (p >

0.05). We conducted a comparison of the basic characteristics of

patients with or without the TLS. The analysis revealed that gender,

immunophenotypes, French–American–British classification

systems (FAB), white blood cell count (WBC), creatinine (Crea),

urea, phosphorus, potassium, uric acid (UA), lactate dehydrogenase

(LDH), aspartate transaminase (AST), alanine transaminase (ALT),

total bilirubin (TBil), fibrinogen (Fib), prothrombin time (PT),

primitive immature cells, the occurrence of hemorrhage, cardiac

arrhythmia, AKI, and splenomegaly had a statistically significant

relationship with the occurrence of TLS (p < 0.05), as shown in

Supplementary Table S1.
3.2 Feature screening

In the LASSO regression for feature screening, 33 candidate

predictor variables were included. By adjusting l, the number of

variables was reduced, which resulted in a simplified model. The

number of clinical characteristics of pediatric ALL patients

decreased continuously with increasing log (l) (Figure 2A). By

performing 10-fold cross-validation to find the optimal l value,

LASSO selected 12 variables with nonzero regression coefficients at

l = 0.007 and log (l) = −2.176 (Figure 2B). The 12 predictor

variables that were ultimately included in the follow-up study were

FAB type, WBC, phosphorus, calcium, potassium, UA, AST, blood

glucose, occurrence of infection, AKI, cardiac arrhythmia, and the

type of steroid used in initial induction chemotherapy.
3.3 Model development and screening

The optimal parameters for developing the TLS prediction

model for ALL in children through grid search and cross-

validation are presented in Supplementary Table S2. Four

postscreening prediction models that included 12 variables using

LASSO regression feature screening were included. Among the four

predictive models constructed after LASSO regression screening, the

CatBoost model has the best prediction with AUC = 0.832 (95% CI:

0.810–0.854) (Figure 3A), while the Logistic model has AUC = 0.812

(95% CI: 0.777–0.847) (Figure 3B); the AUC = 0.829 (95% CI: 0.807–

0.851) for the Random Forest model (Figure 3C); AUC = 0.815 (95%

CI: 0.782–0.848) for the SVM model (Figure 3D). To

comprehensively evaluate the prediction performance of each

model, the accuracy, specificity, recall, and Brier scores of the four

models were also calculated in this study. Table 2 shows the

performance parameters of the four models constructed after

LASSO feature screening. The CatBoost model has an accuracy of

0.758, a recall of 0.684, and a specificity of 0.825. After the screening

of the LASSO regression features, we finally selected the CatBoost

model as the optimal model, and the optimal model, CatBoost, was

evaluated in the validation set, with an AUC of 0.803 (95% CI: 0.735–

0.865, accuracy: 0.807, recall: 0.667, specificity: 0.821(Figure 4).
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TABLE 1 Comparison of demographic and clinical indicators in the
training cohort and validation cohort of patients with ALL.

Characteristic

Group

P-
value

Overall,
N =
2,243

Trainset,
N= 1,570

Testset,
N = 673

TLS, n(%) 0.661

No 2,044 (91%) 1,428 (91%) 616 (92%)

Yes 199 (8.9%) 142 (9.0%) 57 (8.5%)

Gender, n(%) 0.472

Male 1,332 (59%) 940 (60%) 392 (58%)

Female 911 (41%) 630 (40%) 281 (42%)

Age, n(%) 0.491

<1 years 47 (2.1%) 30 (1.9%) 17 (2.5%)

1~10 years 1,808 (81%) 1,274 (81%) 534 (79%)

≥10 years 388 (17%) 266 (17%) 122 (18%)

immunophenotype,
n (%)

0.188

Common B-cell 2,041 (91%) 1,422 (91%) 619 (92%)

Precursor B-cell 107 (4.8%) 73 (4.6%) 34 (5.1%)

T-cell 89 (4.0%) 71 (4.5%) 18 (2.7%)

Other
(biphenotypic)

6 (0.3%) 4 (0.3%) 2 (0.3%)

FAB, n (%) 0.489

L1 830 (37%) 595 (38%) 235 (35%)

L2 1,191 (53%) 817 (52%) 374 (56%)

L3 148 (6.6%) 106 (6.8%) 42 (6.2%)

Unclassified 74 (3.3%) 52 (3.3%) 22 (3.3%)

regimen, n (%) 0.800

CCCG-2008 758 (34%) 525 (33%) 233 (35%)

CCCG-2015 1,040 (46%) 735 (47%) 305 (45%)

CCCG-2020 445 (20%) 310 (20%) 135 (20%)

WBC, n (%) 0.927

<50 x109/L 1,876 (84%) 1,310 (83%) 566 (84%)

50~100 x109/L 165 (7.4%) 117 (7.5%) 48 (7.1%)

≥100 x109/L 202 (9.0%) 143 (9.1%) 59 (8.8%)

PLT, n (%) 0.864

<100 x109/L 1,524 (68%) 1,065 (68%) 459 (68%)

≥100 x109/L 719 (32%) 505 (32%) 214 (32%)

Hb, n (%) 0.638

<30 g/L 9 (0.4%) 7 (0.4%) 2 (0.3%)

30~60 g/L 255 (11%) 170 (11%) 85 (13%)

60~90 g/L 1,208 (54%) 849 (54%) 359 (53%)

(Continued)
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TABLE 1 Continued

Characteristic

Group

P-
value

Overall,
N =
2,243

Trainset,
N= 1,570

Testset,
N = 673

90~120 g/L 619 (28%) 432 (28%) 187 (28%)

≥120 g/L 152 (6.8%) 112 (7.1%) 40 (5.9%)

Cr, n (%) 0.393

<69.7 umol/L 2,155 (96%) 1,512 (96%) 643 (96%)

≥69.7 umol/L 88 (3.9%) 58 (3.7%) 30 (4.5%)

Urea, n (%) 0.457

<6.5 mmol/L 2,003 (89%) 1,407 (90%) 596 (89%)

≥6.5 mmol/L 240 (11%) 163 (10%) 77 (11%)

Ca, n (%) >0.999

<1.12 mmol/L 2 (<0.1%) 2 (0.1%) 0 (0%)

≥1.12 mmol/L 2,241
(100%)

1,568 (100%) 673 (100%)

P, n (%) 0.855

<2.1 mmol/L 2,147 (96%) 1,502 (96%) 645 (96%)

≥2.1 mmol/L 96 (4.3%) 68 (4.3%) 28 (4.2%)

K, n (%) 0.410

<3.5 mmol/L 201 (9.0%) 144 (9.2%) 57 (8.5%)

3.5~5.5 mmol/L 2,028 (90%) 1,414 (90%) 614 (91%)

≥5.5 mmol/L 14 (0.6%) 12 (0.8%) 2 (0.3%)

Uric, n (%) 0.960

<476 umol/L 1,825 (81%) 1,277 (81%) 548 (81%)

≥476 umol/L 418 (19%) 293 (19%) 125 (19%)

LDH, n (%) 0.323

<245 U/L 469 (21%) 337 (21%) 132 (20%)

≥245 U/L 1,774 (79%) 1,233 (79%) 541 (80%)

AST, n (%) 0.400

<50 U/L 1,609 (72%) 1,118 (71%) 491 (73%)

≥50 U/L 634 (28%) 452 (29%) 182 (27%)

ALT, n (%) 0.396

<40 U/L 1,768 (79%) 1,230 (78%) 538 (80%)

≥40 U/L 475 (21%) 340 (22%) 135 (20%)

TBil, n (%) 0.276

<17.1 umol/L 2,104 (94%) 1,467 (93%) 637 (95%)

≥17.1 umol/L 139 (6.2%) 103 (6.6%) 36 (5.3%)

Fib, n (%) 0.378

<2 g/L 510 (23%) 365 (23%) 145 (22%)

≥2 g/L 1,733 (77%) 1,205 (77%) 528 (78%)

(Continued)
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3.4 Interpretation of
personalized predictions

To visually explain the selected variables, this study used SHAP

to illustrate how these variables affect TLS in the model. The feature

importance ranking of the CatBoost is shown in Supplementary

Figure S1. The factors most associated with TLS were potassium,

phosphorus, AST, WBC, and UA.

In this study, an analysis was conducted to enhance the

interpretability of the CatBoost model by importing the SHAP

package into the Tree-Explainer class. Figure 5A displays the

importance ranking of 12 risk factors evaluated by the average

absolute SHAP value, while Figure 5B shows the distribution of the

impact of each feature on the model output results. The feature

ordering (y-axis) indicates the importance of the predictors, and the

SHAP value (x-axis) is a unity index showing the impact of a

particular variable on the model output results. Each dot in each

row represents a patient, and the color of the dot represents the

feature value: red for higher values and blue for lower values. Red

and blue bars represent risk factors and protective factors,

respectively; the longer bars indicate more significant feature

importance. We observe that potassium has the most critical

influence, with lower potassium exhibiting a positive SHAP value

(dots extending to the right becoming increasingly blue) and higher

blood potassium exhibiting a negative SHAP value (dots extending

to the left becoming increasingly red). This suggests that when

potassium concentrations are very low, it increases the risk of TLS

in children. The opposite is true for WBC—the higher the WBC, the

higher the predictive value for TLS. The distribution of dots can also

provide valuable insights, such as in the case of UA, where we can

see a dense cluster of low UA (blue dots) associated with a negative

SHAP value. The instances of high uric acid (red dots) extend
TABLE 1 Continued

Characteristic

Group

P-
value

Overall,
N =
2,243

Trainset,
N= 1,570

Testset,
N = 673

Blasts, n (%) 0.487

<5% 2,203 (98%) 1,544 (98%) 659 (98%)

≥5% 40 (1.8%) 26 (1.7%) 14 (2.1%)

glucose, n (%) 0.862

<6.1 mmol/L 1,818 (81%) 1,274 (81%) 544 (81%)

≥6.1 mmol/L 425 (19%) 296 (19%) 129 (19%)

PT, n (%) 0.168

<13秒 1,632 (73%) 1,129 (72%) 503 (75%)

≥13秒 611 (27%) 441 (28%) 170 (25%)

CRP, n (%) 0.249

<8 mg/L 244 (11%) 163 (10%) 81 (12%)

≥8 mg/L 1,999 (89%) 1,407 (90%) 592 (88%)

hemorrhage, n (%) 0.654

No 1,217 (54%) 847 (54%) 370 (55%)

Yes 1,026 (46%) 723 (46%) 303 (45%)

epilepsy, n (%) 0.298

No
2,233
(100%)

1,561 (99%) 672 (100%)

Yes 10 (0.4%) 9 (0.6%) 1 (0.1%)

convulsions, n (%) >0.999

No 2,230 (99%) 1,561 (99%) 669 (99%)

Yes 13 (0.6%) 9 (0.6%) 4 (0.6%)

infection, n (%) 0.287

No 157 (7.0%) 104 (6.6%) 53 (7.9%)

Yes 2,086 (93%) 1,466 (93%) 620 (92%)

HF, n (%) 0.733

No
2,233
(100%)

1,562 (99%) 671 (100%)

Yes 10 (0.4%) 8 (0.5%) 2 (0.3%)

AKI, n (%) 0.704

No 2,216 (99%) 1,552 (99%) 664 (99%)

Yes 27 (1.2%) 18 (1.1%) 9 (1.3%)

arrhythmia, n (%) 0.206

No 1,595 (71%) 1,104 (70%) 491 (73%)

Yes 648 (29%) 466 (30%) 182 (27%)

hepatomegaly,
n (%)

0.301

No 476 (21%) 324 (21%) 152 (23%)

(Continued)
TABLE 1 Continued

Characteristic

Group

P-
value

Overall,
N =
2,243

Trainset,
N= 1,570

Testset,
N = 673

Yes 1,767 (79%) 1,246 (79%) 521 (77%)

splenomegaly,
n (%)

0.081

No 1,027 (46%) 700 (45%) 327 (49%)

Yes 1,216 (54%) 870 (55%) 346 (51%)

Steroid, n (%) 0.820

Pred 483 (22%) 337 (21%) 146 (22%)

Dex 1,614 (72%) 1,134 (72%) 480 (71%)

Unknown 146 (6.5%) 99 (6.3%) 47 (7.0%)
front
TLS, tumor lysis syndrome; FAB, French–American–British classification systems; WBC,
white blood cell count; Hb, hemoglobin; P, phosphorus; K, potassium; Uric, uric acid; Cr,
creatinine; LDH, lactate dehydrogenase; AST, aspartate transaminase; ALT, alanine
transaminase; TBil, total bilirubin; Fib, fibrinogen; Blasts, primitive immature cells; PT,
prothrombin time; CRP, C-reactive protein; HF, heart failure; AKI, acute kidney injury; Pred,
prednisone; Dex, dexamethasone.
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further to the right, indicating that high UA has a greater positive

impact on the occurrence of TLS than low UA.

Supplementary Figure S1 displays the SHAP scatter dependency

plots for the first five characteristics, revealing considerable

variation in the relationship between the SHAP values and the

values of the variables within each characteristic. Potassium and

phosphorus show a negative, nearly linear trend across the range of

values. The SHAP values for white blood cell count, uric acid, and

glutamic transaminase are comparable over a range of values but

then increase sharply. When potassium = 3.68 mmol/L, phosphorus

= 1.49 mmol/L, AST = 33.6 U/L, WBC = 16.6*109, and UA = 512

µmol/L, the resulting SHAP value is 0. The greater the SHAP value,

the higher the probability of TLS occurrence.

To illustrate the interpretability of the model, we present two

typical examples: Figure 5C represents a pediatric ALL patient with

phosphorus = 1.5 mmol/L, AST = 34.2 U/L, potassium = 4.52
Frontiers in Oncology 07
mmol/L, WBC = 4.29*109, and UA = 153.1 mmol/L. The CatBoost

model predicts a SHAP value of −1.05 for this patient, with a

25.92% probability of developing TLS. Figure 5D represents a

pediatric ALL patient with AST = 249.0 U/L, WBC = 128.06*109,

phosphorus = 0.36 mmol/L, and potassium = 4.38 mmol/L. Under

the prediction of the CatBoost model, this patient has a SHAP value

of 1.68 and an 84.29% probability of developing TLS.
4 Discussion

This study is the first to use machine learning algorithms to

identify risk factors for the development of TLS in pediatric ALL

patients and to construct machine learning models to assess the

probability of TLS in these patients. Several studies have shown that

models based on machine learning algorithms perform better than
A B

FIGURE 2

Screening of variables based on Lasso regression. (A) The variation characteristics of the coefficient of variables; (B) the selection process of the
optimum value of the parameter l in the Lasso regression model by cross-validation method.
A B

DC

FIGURE 3

Four machine learning-based predictive model ROC curves after feature screening. (A) CatBoost; (B) Logistic; (C) Random Forest; (D) SVM.
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predictive models using traditional logistic regression. In 2021,

Alabi et al. developed a machine-learning model to predict overall

survival in tongue cancer, and when compared to traditional logistic

regression using an externally validated dataset, the machine-

learning model had an accuracy of 88.7%, compared to logistic

regression’s accuracy of 60.4% (33). In 2022, Zhao et al. developed a

machine learning-based RF model to predict the maximum

creatinine value within 24 h after diagnosis of AKI patients as an

independent predictor of renal function prognosis, and the RF

model showed better ability in predicting the prognosis of patients

with AKI compared with traditional regression models (34).

Although several studies have examined the risk factors for TLS

in children with ALL (35, 36), traditional logistic prediction models

based on a single center for the occurrence of TLS in adults with

AML and children with ALL have also been established in previous

studies abroad, but machine learning-based risk models have not

been reported.

TLS is the most common disease-related hematologic cancer-

critical illness in children. TLS is most commonly seen in fast-

growing and chemotherapy-sensitive malignancies, such as non-

Hodgkin’s lymphoma, acute nonlymphoblastic leukemia, and acute

lymphoblastic leukemia among hematologic neoplasms, as well as

in certain solid tumors of epithelial origin, such as small-cell lung

carcinomas, advanced breast carcinomas, and neural tube cell

tumors (15). The incidence and prevalence of TLS are not well

defined because they depend on tumor type, treatment regimen,
Frontiers in Oncology 08
patient-related risk factors, and preventive measures taken. Most

epidemiologic data, mostly from the 1990s, show that up to 70% of

children with acute leukemia present with LTLS (37) and <10% had

clinical manifestations of LTLS (19, 38, 39). Early experience has led

to rigorous prophylaxis and step-dosing treatment strategies that

have significantly reduced the incidence of TLS (40). However, once

TLS occurs, the consequences can be fatal. A retrospective study of

patients with TLS from 2010 to 2013 found that the majority (58%)

of patients developed acute renal failure, often with comorbid

infections and sepsis, with a very low rate of seizures (1%), and

an overall mortality rate of 21 (13). The most common causes of

death in patients with clinical TLS are hemorrhage and renal failure

(19, 27, 41). Although TLS poses a challenge to treatment, it is

generally curable for most patients with TLS through early detection

and the use of appropriately designed prevention programs.

Regarding risk factors for developing TLS, known reports include

disease type, tumor volume (assessed by solid tumor size, LDH, or

white blood cell count), renal insufficiency, and dehydration

status (42).

In this study, the AUC of the CatBoost model constructed with

12 predictor variables screened by logistic LASSO regression was

0.803 (95% CI: 0.735–0.865). The factors used to construct the

model included FAB typing, white blood cell count at initial

diagnosis, blood phosphorus, blood calcium, blood potassium,

uric acid, glutamic acid aminotransferase, blood glucose, the

occurrence of infections, acute kidney injury, cardiac arrhythmia,
TABLE 2 Model performance (after feature screening).

Model AUC (95% confidence interval) Accuracy Recall rate Idiosyncrasy Brier

CatBoost 0.832 (0.810–0.854) 0.758 0.684 0.825 0.168

Random Forest 0.829 (0.807–0.851) 0.769 0.707 0.824 0.170

SVM 0.815 (0.782–0.848) 0.739 0.736 0.742 0.175

Logistic 0.812 (0.777–0.847) 0.747 0.650 0.835 0.175
frontie
FIGURE 4

The optimal model, CatBoost ROC curves, in the validation set.
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and the type of steroid used in the initial induction chemotherapy.

Previous studies have shown that TLS occurs most frequently in

patients with acute lymphoblastic leukemia type L3, high initial

white blood cell counts, high uric acid levels, and renal insufficiency

(43, 44), which is the same as the results of our analysis. A few

patients with their own high baseline blood phosphorus, calcium,

potassium, and uric acid levels were prone to spontaneous tumor

lysis syndrome (45). In the present study, we found for the first time

that the patients’ glutamine aminotransferase, blood glucose, the

occurrence of infection, acute kidney injury, cardiac arrhythmia,

and the type of steroid used at the time of the initial induction

chemotherapy were associated with the development of TLS at the

time of the initial diagnosis.

It is well known that the typical clinical manifestations of TLS

are hyperuricemia, hyperkalemia, hyperphosphatemia, and

hypocalcemia (25, 46, 47). However, when we used SHAP to

interpret the optimal CatBoost model, the results suggested that

lower potassium and lower phosphorous were more likely to occur

in TLS. On the one hand, the data on potassium and phosphorus we

collected were at the time of the diagnosis of ALL, when the patients

had not yet started chemotherapy, and a large number of tumor

cells sensitive to the response to initial chemotherapy may not have

yet cracked in large numbers, and a very small number of patients

with spontaneous TLS were outside the scope of our study. On the

other hand, patients with initial ALL often present with fever,

mouth ulcers, sore throat, chest pain, cough, abdominal pain,

diarrhea, skin petechiae and ecchymosis, bleeding gums,

nosebleeds, nausea, vomiting, pallor, dizziness, and shortness of

breath. At this time, the patients often have poor appetite (48), and

the body’s potassium and phosphorus are mainly obtained through
Frontiers in Oncology 09
plant and animal foods. The most frequent electrolyte abnormality

with ALL patients was hypokalemia. Furthermore, hypokalemic

patients more frequently experienced concurrent electrolyte

disturbances (i.e., hyponatremia, hypocalcemia, hypophosphatemia,

and hypomagnesemia) (49). Therefore, low potassium and low

phosphorus are consistent with the state of the patients at the time of

initial diagnosis.

Arrhythmia refers to an abnormality in the frequency, rhythm,

site of origin, conduction velocity, or order of excitation of the

heart’s impulses (50). We retrieved all ECG reports for all patients

at the time of the initial ALL visit, and the results showed that the

incidence of arrhythmia in 2,243 patients was 28.89% (648/2,243),

of which the incidence of arrhythmia in patients with TLS was

37.19% (74/199), and the incidence of arrhythmia in patients

without TLS was 28.08% (574/2,044). Interestingly, existing

studies have found that patients with TLS always have electrolyte

and metabolic disturbances, and it can progress to clinical toxic

effects, including cardiac arrhythmias due to hyperkalemia and

hypocalcemia (51). In our study, a significant proportion of patients

with a diagnosis of ALL already had arrhythmias at the time of

diagnosis, regardless of whether or not TLS occurred after

starting chemotherapy.

However, this study has several limitations. Firstly, the

predictive model was constructed based on a retrospective study

conducted in a single center in China. Therefore, its predictive

validity needs to be further verified using external data, particularly

large-sample cohort studies involving multiple centers, different

regions, and diverse ethnicities. Secondly, the MissForest algorithm

used in this study has a missing value limit of <30% for

interpolating mixed missing data into good data. As a result,
A B

D

C

FIGURE 5

SHAP interpretation of the CatBoost model. (A) Importance ranking of features that have an impact on model prediction. (B) Impact of each feature
on model prediction; in each row, each dot represents a patient, and the color of the dot represents the feature value: red represents a larger value,
blue represents a lower value. (C, D) Individualized predictions of the model for two patients.
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variables with missing values exceeding 30% (such as BMI and

calcitoninogen) were not included in the analysis. Thirdly, the

analysis did not consider variables such as mutations in specific

genes due to the high cost and low prevalence of genetic testing in

the early stages. Despite these limitations, this study represents the

first attempt to develop a machine-learning model for predicting

the risk of TLS in children with ALL in China.
5 Conclusion

This study examined 12 risk factors associated with the

development of TLS using data from ALL patients. A risk

prediction model was established based on these factors. The

study results demonstrated the good predictive ability of the

CatBoost model. The CatBoost model can be incorporated into a

clinical decision support system to assist clinicians in making

effective diagnoses and treatment decisions. This can help prevent

or delay the occurrence of TLS in ALL patients, particularly high-

risk children, thereby reducing the economic burden on patients

and society. Additionally, the use of TLS risk alerts during clinic

visits for ALL patients can minimize missed diagnoses.
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