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In-depth analysis of immune cell
landscapes reveals differences
between lung adenocarcinoma
and lung squamous
cell carcinoma
Xinfeng Wang, Keao Zheng and Zhiying Hao*

Department of Pharmacy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer
Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical
University, Taiyuan, Shanxi, China
Background: Lung cancer is the leading cause of cancer deaths globally, with

lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) being major

subtypes. Immunotherapy has emerged as a promising approach for the

treatment of lung cancer, but understanding the underlying mechanisms of

immune dysregulation is crucial for the development of effective therapies. This

study aimed to investigate the distinctive cellular features of LUAD and LUSC and

identify potential biomarkers associated with the pathogenesis and clinical

outcomes of each subtype.

Methods: We used digital cytometry techniques to analyze the RNA-Seq data of

1128 lung cancer patients from The Cancer Genome Atlas (TCGA) database. The

abundance of cell subtypes and ecotypes in LUAD and LUSC patients was

quantified. Univariate survival analysis was used to investigate their associations

with patient overall survival (OS). Differential gene expression analysis and gene

co-expression network construction were carried out to explore the gene

expression patterns of LUSC patients with distinct survival outcomes. Scratch

wound-healing assay, colony formation assay, and transwell assay were used to

validate the candidate drugs for LUSC treatment.

Results: We found differential expression of cell subtypes between LUAD and

LUSC, with certain cell subtypes being prognostic for survival in both subtypes.

We also identified differential gene expression and gene co-expression modules

associated with macrophages.3/PCs.2 ratio in LUSC patients with distinct survival

outcomes. Furthermore, ecotype ratios were found to be prognostic in both

subtypes and machine learning models showed that certain cell subtypes, such

as epithelial.cells.1, epithelial.cells.5, and endothelial.cells.2 are important for

predicting LUSC. Ginkgolide B and triamterene can inhibit the proliferation,

invasion, and migration of LUSC cell lines.
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Conclusion: We provide insight into the distinctive cellular features of LUAD

and LUSC, and identify potential biomarkers associated with the

pathogenesis and clinical outcomes of each subtype. Ginkgolide B and

triamterene could be promising drugs for LUSC treatment.
KEYWORDS

lung adenocarcinoma, squamous cell carcinoma, biomarkers, digital cytometry,
machine learning
Introduction

Lung cancer is one of the most common and deadliest cancers

worldwide (1). With an estimated 2.2 million new cases and 1.8

million deaths in 2020, lung cancer is currently the leading cause of

cancer deaths globally (2). Non-small-cell lung cancer (NSCLC)

accounts for approximately 85% of all cases (3). Among the

different types of NSCLC, lung adenocarcinoma (LUAD) and

squamous cell carcinoma (LUSC) are the two major histological

subtypes (3). LUAD is more prevalent among non-smokers, while

LUSC is strongly associated with a history of smoking, particularly

among current or former heavy smokers. Despite sharing a

common origin in the lung, LUAD and LUSC differ in their

biological and clinical characteristics, including their molecular

profiles, cell origins, histological features, prognosis, and

responses to treatment (3). LUAD mainly arises from the

glandular cells and has a glandular or acinar structure. LUSC

originates from the squamous cells lining the airways and appears

as sheets of flat cells. LUAD component could transform to LUSC

by transdifferentiation (4). Common genetic alterations include

mutations in EGFR, KRAS, BRAF, and P53 genes, which are

important targets for drug therapy and prognosis (5). The

survival rate for LUAD is generally higher than for LUSC (6).

Compared to LUAD patients, individuals with LUSC exhibited a

higher prevalence of symptoms such as cough, fever, and abundant

sputum, and a greater incidence of bacterial and fungal infections

(3). The efficacy of targeted therapies, such as immune checkpoint

inhibitors and EGFR and BRAF inhibitors in LUAD, has been well

established (5). However, there is limited availability of targeted

therapies for LUSC, and the treatment often involves surgery,

radiation, and platinum-based chemotherapy (7). Therefore,

understanding the key differences between these two subtypes and

their underlying mechanisms is critical for developing effective

personalized therapies and improving patient outcomes.

In lung cancer, immune dysregulation is a prominent feature

(8). Immune cells within the tumor microenvironment can play a

dual role in promoting and inhibiting tumor growth, and the

imbalance between these opposing forces can impact the outcome

of the disease. Immunotherapy has emerged as a promising

approach for the treatment of lung cancer in recent years, and
02
understanding the underlying mechanisms of immune

dysregulation in this disease is crucial for the development of

effective therapies (9). Therefore, an in-depth investigation of the

role of immune dysregulation in lung cancer has significant

clinical implications.

Digital cytometry techniques have emerged as a complementary

tool to scRNA-seq, which necessitates using antibodies for

physically isolating tissue cells from fresh specimens (10).

Ecotyper, based on CIBERSORTx, holds advantages such as

identifying cell states, estimating their relative abundance in each

sample, retrieving them in external expression datasets, and

discovering co-association patterns between cell states that make

up the cancer ecosystems (11). Currently, few studies investigated

the differences between the two non-small cell lung cancer (NSCLC)

subtypes LUAD and LUSC (8, 9, 12). The cell subtypes, cell ratios,

and ecotypes have not been comprehensively investigated in LUAD

and LUSC. Therefore, we aim to analyze the prognostic value of cell

subtypes, cell ratios, and ecotypes in LUAD and LUSC survival.

In this study, we aim to investigate and compare the distinctive

clinical and molecular features of LUAD and LUSC, and to identify

potential biomarkers associated with the pathogenesis and clinical

outcomes of each subtype. The analysis framework is shown in

Figure 1. Our analysis could offer valuable insights that might be

useful in real-world medical applications.
Materials and methods

Dataset preparation

Lung cancer RNA-Seq and survival data were downloaded from

the TCGA database at https://portal.gdc.cancer.gov/. A total of 1128

lung cancer patients from TCGA were used for analysis. The

expression matrix with gene symbols as the first column was

up l o ad ed t o th e on l i n e Eco t yp e r t oo l a t h t t p s : / /

ecotyper.stanford.edu/carcinoma/ (11). The resulting files for cell

states and ecotypes were downloaded and merged into one file for

downstream analysis. Protein expression data were extracted from

the UALCAN database (https://ualcan.path.uab.edu/) (13, 14). Two

additional datasets were downloaded from the NCBI GEO database
frontiersin.org
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for drug treatment validation. GSE85871 contains gene expression

profiles of MCF7 cells treated with 10 mM Ginkgolide B (two

replicates) and DMSO (six replicates) (15). GSE193855 contains

gene expression profiles of diffuse intrinsic pontine glioma cells

treated with triamterene (three replicates) and DMSO (three

replicates) (16). GSE154286 contains profiles of a panel of 201

genes from NSCLC patient biopsies before and after platinum-

based chemotherapy (7).
Survival analysis

The associations of cell subtypes, subtype ratios, ecotypes,

ecotype ratios, or gene expression with patient overall survival

(OS) were analyzed by univariate survival analysis in the R

survival package. Multivariate analysis was used to validate the

significance with adjustment for smoking or copy number

alterations of BRAF, EGFR, KRAS, and P53. The patients were

divided into two groups split at the median values of independent

variables. Kaplan-Meier survival curves were plotted by ggsurvplot

in the R survminer package. The significance of the survival rate
Frontiers in Oncology 03
difference between the two groups was calculated by the log-rank

test. Unless otherwise stated, a P value of less than 0.05 was

considered significant. Survival plots for cell subtype marker

genes were derived from the Kaplan-Meier plotter database

(https://kmplot.com/) (17).
Differential gene expression analysis and
gene co-expression network construction

The differential gene expression in macrophages.3/PCs.2-high

samples and other samples were analyzed by the R limma package.

The high-ratio samples had longer survival and were treated as

control. The log2(fold change) and P values were set as 0.5 and 0.05

and the P value adjustment method is “BH”. For gene co-expression

module identification, the differential expression genes matrix was

analyzed according to manuals (18, 19). The parameters were set as

softPower =14, corFnc = “cor”, Networktype = “signed”,

minModuleSize = 10, deepSplit = 4. For module functional

annotation, clusterProfiler was used to get the significant terms

and related bubble plots (20).
FIGURE 1

A schematic diagram illustrates the study workflow.
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Scratch wound-healing assay, colony
formation assay, and transwell assay

LUSC cell line HCC95 was obtained from the American Type

Culture Collection (ATCC) and was cultured in RPMI-1640

medium (Keygen Biotech, China) supplemented with 10% fetal

bovine serum (FBS, Gibco, Grand Island, USA). The cells were

maintained in a humidified incubator at 37°C with 5% CO2.

Ginkgolide B (CAS No. 15291-76-6, BN52022) was acquired from

Tauto Biotech Co., Ltd. (Shanghai, China) and triamterene (CAS

No. 396-01-0, T4143) was purchased from Sigma-Aldrich. We did a

preliminary experiment to find a proper concentration for

treatment. We used the two concentrations 100 mg/L for

triamterene and 200 mg/L for ginkgolide B as they approached

the half-maximal inhibitory concentration (IC50) at 96 h.

Therefore, the following assays used the two concentrations.

The scratch wound-healing assay, colony formation assay, and

transwell assay were employed to investigate the impact of Ginkgolide

B and triamterene on the survival, invasion, and migration of LUSC

cell line HCC95. The scratch wound-healing assay provides insights

into cell migration dynamics, the colony formation assay evaluates

long-term proliferation capacity, and the transwell assay measures

invasion potential. Moreover, the choice of these assays aligns with the

need for a comprehensive understanding of the effects of the tested

compounds on different facets of cancer cell behavior.

To assess cell survival, the cells were seeded in a 96-well plate at

a density of 3×103 cells per well with 200 mg/L Ginkgolide B, 100

mg/L triamterene or DMSO (n= 5 each group). The cells were

subsequently incubated at 37°C in a medium containing 10% Cell

Counting Kit-8 (CCK-8; Dojindo Inc., Kumamoto, Japan). Survival

rates were assessed at 0, 24, 48, 72, and 96 hours by measuring the

absorbance at 450 nm.

For the invasion assay, Transwell Matrigel invasion chambers in

two 24-well plates (pore size, 8 µm; BD Biosciences, San Jose, CA,

USA) were used according to the published procedure (21). Briefly,

the cells were serum-starved for 6 h in RPMI-1640 containing 0.1%

FBS. Serum-starved cells were trypsinized and resuspended in

RPMI-1640 containing 0.1% FBS, and 200 µL serum-free medium

containing 3×105 cells from each subgroup was added to the upper

chamber of each well coated with 50 mg/L Matrigel (BD

Biosciences). A volume of 0.6 mL 15% FBS-containing medium

was then added to the lower chamber as a chemoattractant. After

24 h at 37°C, the cells on the upper membrane surface were

removed with a cotton swab. The inserts were fixed by treatment

with 95% ethanol for 30 min and stained with 0.1% crystal violet

solution (Beyotime Institute of Biotechnology, Shanghai, China) at

37°C for 30 min. The cells on the bottom of the membrane were

counted from three different light microscopic fields, and the mean

number of cells was calculated.

Anchorage-dependent (liquid) colony formation assays were

conducted according to the published procedure (22). Briefly, 3×102

cells were seeded in each well of a 6-well plate and cultured in

RPMI-1640 medium supplemented with 10% FBS and with 200 mg/

L Ginkgolide B, 100 mg/L triamterene or DMSO for 10 days. Cells

were washed twice with phosphate buffered saline (PBS), then fixed

with 4% paraformaldehyde in PBS, and stained with 200 uL 0.1%
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sulforhodamine-B (Sigma) dissolved in 1% acetic acid for 30 min at

room temperature. The dye was aspirated, and the wells were

washed three times with 1% acetic acid to remove unbound stain.

No media change was performed during the assay.

In the scratch wound-healing assay, a total of 3×105 cells were

seeded into RPMI-1640 medium supplemented with 10% FBS in a

6-well tissue culture plate. After 48 hours, the cell monolayer

reached approximately 80% confluence. Subsequently, a straight

line scratch was created in one direction using a 20-µL pipette tip,

gently disrupting the cell monolayer. The well was then washed

twice with PBS to remove any detached cells. Fresh medium with

200 mg/L Ginkgolide B, 100 mg/L triamterene, or DMSO was added

to each well to replace the existing medium. Wound healing was

monitored by capturing images of the scratch at 0, 24, and 48 hours

post-wounding using an inverted light microscope with the same

settings. Three random representative images were taken for each

time point. The wound area was quantitatively analyzed using

ImageJ software by measuring the blank area in the images.
Protein docking

For drug screening, up-regulated differential genes were

submitted to the Connectivity Map, and significant results were

determined at a significance level of P < 0.01 (23). Protein-ligand

docking analysis was executed using SwissDock (24). For visualizing

the interactions between the protein and ligand, LigPlot+ was

employed to generate a pose view (25).
Statistical analysis

The statistical significance of the mean difference between the

two groups was calculated by the t-test. In all statistical analyses, a P

value of less than 0.05 was considered significant. Cell states

abundance matrix was input into R for machine learning

prediction. In the R caret package, the 71 cell states abundance

matrix of 1128 lung cancer samples were used to predict disease

type LUAD or LUSC. Stratified random sampling was used to

divide samples into 75% for training and 25% for validation. Five

popular machine learning methods were used including support

vector machines (svmLinear), feed-forward neural networks (nnet),

extreme gradient boosting (xgbTree), random forests (ranger), and

linear discriminant analysis with stepwise feature selection

(stepLDA) with default parameters. The differentially expressed

genes between the 31 paired patients of pre- and post-platinum-

based chemotherapy in GSE154286 were identified by paired t test.
Results

Cell subtypes are differentially expressed
between LUAD and LUSC

Ecotyper, a digital cytometry method, was used to identify cell

subtypes based on bulk transcriptome data and to quantify their
frontiersin.org
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relative abundance in each sample (11). Key marker genes for the

cell subtypes are provided in Supplementary Table 1. A total of 72

cell subtypes from 16 cell types were quantified (Supplementary

Table 2). These cell subtypes were assigned to 10 higher-level

carcinoma ecotypes (Figure 2A; Supplementary Table 3).

Differential analysis revealed the differences in cell subtypes

between LUAD and LUSC (Supplementary Table 4). For

example, CD4.T.cells.2, endothelial.cells.3, epithelial.cells.5,

fibroblasts.5, mast.cells.4, macropahges.1, and macropahges.9

were significantly down-regulated in LUSC compared to LUAD

(Figure 2B). Epithelial.cells.1, epithelial.cells.6, and fibroblasts.8

were significantly up-regulated in LUSC (Figure 2B). According

to Ecotyper, the annotation of the 11 differential cell subtypes is

listed in Table 1.
Differentially expressed cell subtypes are
prognostic for survival in LUAD and LUSC

The prognostic impact of cell subtypes in LUAD and LUSC has

not been fully explored, we used the abundance matrix of cell

subtypes to calculate their associations with patient survival. We

found that 10 of the 11 differential cell subtypes were significantly

associated with overall survival (Figure 3). CD4.T.cells.2 had the

most significant prognostic ability, which had a favorable effect on

survival, while CD4.T.cells.4 had an adverse prognosis (Figure 3).

All the cell subtypes were still significant after adjusting for copy

number alterat ions of BRAF, EGFR, KRAS, and P53

except fibroblasts.8.
Marker genes of cell subtypes are
prognostic of survival in lung cancer

We validated the clinical relevance of cell subtypes by checking

the prognostic value of marker genes of each cell subtype. We found

that all the marker genes were prognostic for patient survival

(Figure 4). For example. K6C, a marker of epithelial.cells.1, is an

adverse gene in the LUAD. ARG2, a marker of epithelial.cells.5, is

an adverse gene in the LUSC. CA9, a marker of fibroblasts.8, is an

adverse gene in the LUAD. CCR2, a marker of macrophages.1, is a

favorable gene in the LUAD. However, genes PP1R32 and CCR7

were not significant after adjusting for smoking.
Ratios of cell subtype are prognostic in
lung cancer

As mentioned previously, the cell state is heterogeneous. We

questioned if ratios of different cell subtypes could also prognosis.

We found hundreds of cell ratios that can significantly separate

patients with high and low survival rates. For example,

macrophages.9/macrophages.7, epithelial.cells.1/B.cells.1, and

macrophages.3/PCs.2 were the most significantly associated with

survival in lung cancer, LUAD, and LUSC (Figures 5A).
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Macrophages.3 and macrophages.7 were annotated as Classical

M1 and M2-like proliferative macrophage subsets. B.cells.1 was

annotated as a classical naïve subset. PCs.2 was annotated as an

unknown subset. In an independent dataset (17), we validated the

cell ratios by the cell subtype marker gene ratios and confirmed

their roles in OS (Figure 5B). These results were significant after

adjusting for smoking and genetic background.
Differential gene expression analysis in
LUSC patients with a high and low ratio of
macrophages.3/PCs.2

We explored the gene expression patterns of the two groups of

LUSC patients with distinct survival outcomes identified by the

expression of macrophages.3/PCs.2. The differential expression

genes (DEGs) were identified by comparing samples with low and

high ratios of macrophages.3/PCs.2. A total of 392 DEGs were

identified (Figure 6A). The 10 most significant genes include

GINS1, TRAIP, AURKA, C9orf140, HJURP, CDC20, CCNB1,

MYBL2, CDCA8, and C16orf75, all of which were down-regulated

in macrophages.3/PCs.2 low expression samples. All of the 10 genes,

except HJURP, were identified as unfavorable prognostic factors in

LUAD. In LUSC, HJURP, CDC20, CCNB1, and MYBL2 were

unfavorable prognostic factors, while GINS1 and C16orf75 were

identified as favorable prognostic factors (data not shown). Cluster

analysis based on DEGs showed that macrophages.3/PCs.2 low

expression samples were under the same major branch

(Figure 6B). We performed gene co-expression analysis to check if

these genes are organized into functional modules. Only three

modules were identified with distinct biological functions and all

of the modules were significantly associated with macrophages.3/

PCs.2 ratio (Figures 6C, D). Mod1 was mainly associated with

nuclear division and cell cycle (Figure 6E). Mod2 was associated

with cell-substrate adhesion (Figure 6F). Mod3 was associated with

macrophage migration (Figure 6G). We confirmed three of the

significant differential genes GINS1, AURKA, and CDCA8 at the

protein level (Figure 7).
Cell subtypes are organized into ecotypes,
and ecotype ratios are prognostic in
lung cancer

It has been found that cell subtype abundance profiles across 16

carcinomas could organize into ten carcinoma ecotypes (CEs) (11).

We questioned if CEs and ratios of different CEs could also be

prognostic. We found six CEs and hundreds of CE ratios that can

significantly separate patients with high and low survival rates. For

example, CE1, CE2, and CE10 were prognostic in LUAD, while

CE3, CE5, and CE8 were prognostic in LUSC (Figure 8).

Interestingly, we found that CE2/CE10 had a smaller P value than

CE1 and CE10 in LUAD (Figure 8A). The ratio of prognostic CEs

was still prognostic in LUSC, such as CE3/CE8 and CE5/

CE8 (Figure 8B).
frontiersin.org

https://doi.org/10.3389/fonc.2024.1338634
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2024.1338634
B

A

FIGURE 2

Immune landscapes in lung cancer. (A) Heatmap depicting ten carcinoma ecotypes (CE) and 72 cell states identified from digitally purified lung
cancer transcriptomes. Patient samples (columns) are organized into CE clusters. (B) Box plots showing the differential expression of eleven cell
subtypes between LUAD and LUSC patients. The analysis was based on 1128 lung cancer patients from the TCGA database.
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Machine learning models to predict LUAD
and LUSC based on cell subtypes

We used several popular machine learning models to predict

LUAD and LUSC using the cell subtype profiles. Among the five
Frontiers in Oncology 07
popular methods, we found XGBOOST had the highest

performance in separating LUSC from LUAD (Figure 9A). The

variable importance analysis also indicated the cell subtype

d i ff e rences be tween LUAD and LUSC (F igure 9B) .

Epithelial.cells.1, epithelial.cells.5, endothelial.cells.2, and

fibroblasts.2 were among the top contributing variables in more

than two machine learning models. Endothelial.cell.2 was annotated

as tip-like ECs. Fibroblasts.2 was annotated as normal

enriched fibroblasts.
Candidate drugs screening based on
differentially expressed genes

To identify candidate drugs for LUSC, we submitted up-

regulated genes from DEGs to the Connectivity Map tool. We

identified ginkgolide B and triamterene as the two most significant

candidate durgs (P <0.01). Two additional datasets were used to

validate the treatment efficacy of the two drugs in vitro. We

identified differential genes in the two datasets and found an

overlap between the three gene lists (Figure 10A). Interestingly,

top DEGs such as GINS1, AURKA, CDC20, CCNB2, UBE2S,

KIF20A, and CDKN3 were among the overlapped genes and

significantly down-regulated by the two drugs. As platinum drug

is the standard chemo-drug for LUSC patients, we analyzed a
FIGURE 3

Overall survival (OS) for cell subtypes in LUAD and LUSC. The green and red lines indicate high and low expression of immune cells, respectively.
Significance was determined by a two-sided log-rank test. In multivariate analysis, all the cell subtypes were still significant after adjusting for copy
number alterations of BRAF, EGFR, KRAS, and P53 except fibroblasts.8.
TABLE 1 Annotation and marker gene for the differential expressed
cell subtypes.

Cell
subtypes

Annotation
(Marker gene)

Cell
subtypes

Annotation
(Marker
gene)

CD4.T.cells.2 Naïve/central
memory (CCR7)

Fibroblasts.5 Unknown
(PPP1R32)

CD4.T.cells.4 Resting (KLF2) Fibroblasts.8 Pro-migratory-
like (CA9)

Endothelial.cells.3 Unknown Mast.cells.4 Classical
(TPSAB1)

Epithelial.cells.1 Basal-like (K6C) Macropahges.1 Monocytes
(CCR2)

Epithelial.cells.3 Pro-
angiogenic (ITGA3)

Macropahges.9 Unknown
(DLEC1)

Epithelial.cells.5 Unknown (AGR2)

Epithelial.cells.6 Metabolic
(HP1-BETA)
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dataset of lung samples treated by platinum and found that genes

CDC20, CCNB2, and AURKA were also down-regulated (7).

Functional enrichment analysis confirmed that the two drugs may

target cell cycle related genes. Cell proliferation, invasion, and

migration analyses confirmed that the two drugs can decrease the

proliferation and invasion of the HCC95 cell line in vitro

(Figures 10B–E). As AURKA is a well-known drug target and is

prognostic for overall survival in LUSC (Figure 10F), we performed

protein-ligand docking analysis to reveal mechanisms. It showed

the potential interactions between AURKA and ginkgolide B and

triamterene (Figures 10G, H). Pose view analysis showed that the

interactions may occur at sites Lys258, Thr292, Glu170, and Tyr199

(Figures 10I, J).
Discussion

Precise dissection of tumor tissue transcriptome into the

cellular composition is an important method for tumor
Frontiers in Oncology 08
heterogeneity studies in lung cancer, which has the potential to

discover cancer diagnostics and treatment (26). State-of-the-art

systems biology methods have been developed for human disease

research, such as gene-, module- and cellular-level investigation

(27). However, a comprehensive analysis of lung cancer cell

subtypes and ecosystems is lacking. Here, we utilized the latest

Ecotyper method and showed the contributions of diverse tumor

cell subtypes and ecotypes that have been previously ignored to two

major lung cancer subtypes LUAD and LUSC.

LUSC generally has a poorer prognosis than LUAD (6). We first

used Ecotyper to delineate cell subtypes and ecotypes in LUAD and

LUSC. The difference analysis of cell subtype and ratio between the

two diseases revealed possible cellular differences (28). For example,

CD4.T.cells.2 and CD4.T.cells.4 are naïve and resting T cell subsets.

Both T cell subtypes were down-regulated in LUSC compared to

LUAD. The favorable roles of higher absolute counts of circulating

T cells in NSCLC have been reported (29). Furthermore, several

macrophage subpopulations were identified with different

expression and prognosis significance. Macrophages.9 and
FIGURE 4

Overall survival (OS) for cell subtype marker genes in LUAD and LUSC corresponding to Figure 2. The marker genes for cell states are KRT6A
(epithelial.cells.1), ITGA3 (epithelial.cells.3), ARG2 (epithelial.cells.5), HP1-BETA (epithelial.cells.6), PPP1R32 (fibroblasts.5), CA9 (fibroblasts.8),
CC-CKR-2 (monocytes.and.macrophages.1), DLEC1 (monocytes.and.macrophages.9), KLF2 (CD4.T.cells.4), CCR7 (CD4.T.cells.2), and TPSAB1
(mast.cells.4). Significance was determined by a two-sided log-rank test. Genes PP1R32 and CCR7 were not significant after adjusting for smoking.
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B

A

FIGURE 5

Cell subtype ratios and validation in lung cancer. (A) Cell subtype ratios of macrophages.9/macrophages.7, epithelial.cells.1/B.cell.1, and
macrophages.3/PCs.2 are predictive of lung cancer survival. These cell subtype ratios were still significant after adjusting for copy number alterations
of BRAF, EGFR, KRAS, and P53. (B) Validation of cell subtype ratios by the marker gene ratios in the independent dataset. Ratios K6C/MS4A1 and
SLAMF8/CXCR4 were still significant after adjusting for smoking.
B

C

D

E

F

G

A

FIGURE 6

Macrophages.3/PCs.2-high expression samples have distinct expression patterns. (A) A total of 392 differential expression genes (DEGs) are
identified. (B) The clustering heat map based on DEGs shows the distinct expression patterns between groups. In the color bar above the heat map,
yellow indicates macrophages.3/PCs.2-low expression samples, while red indicates macrophages.3/PCs.2-high expression samples. (C) The cluster
dendrogram shows the assignment of genes into gene modules with different colors. The color bar indicates the assignment of genes to a module.
(D) Module trait relationship heatmap indicates the correlation between module expression and macrophages.3/PCs.2 ratio. GO biological process
enrichment and of module Mod1 (E), Mod2 (F), and Mod3 (G) genes by clusterProfiler.
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macrophages.1 had similar expression patterns in LUAD, both of

which are favorable factors for survival in LUAD but not LUSC, and

are down-regulated in LUSC. Macrophages.1 is annotated as

monocyte, while macrophages.9 is unknown. These results

indicate that more monocytes are recruited to LUAD, which may

be a factor for the better prognosis compared to LUSC.
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Macrophages.2, annotated as classical M0, shows down-regulation

in LUSC and favorable prognostic significance in LUAD.

Macrophages.5, annotated as M2-like normal macrophage, is a

favorable factor in both LUAD and LUSC, displaying lower

expression in LUSC. Macrophages.8, annotated as proliferative,

shows up-regulation in LUSC but does not exhibit prognostic
FIGURE 7

Boxplots showing the protein expression of three differential genes GINS1, AURKA, and CDCA8 in normal lung, LUAD, and LUSC. The P values above
the box indicate the significance. No P value indicates no significance between the two groups. The protein expression data was extracted from the
UALCAN database.
B

A

FIGURE 8

Overall survival (OS) for carcinoma ecotypes (CEs) and CE ratios in LUAD (A) and LUSC (B). Significance was determined by a two-sided log-rank
test. In multivariate analysis, all the cell ecotypes and ecotype ratios were still significant after adjusting for copy number alterations of BRAF, EGFR,
KRAS, and P53 except CE5/CE8 (P= 0.055).
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significance. Macrophages.7, annotated as M2-like proliferative

macrophage, shows up-regulation in LUSC and unfavorable

prognostic significance in LUAD. Moreover, some of the cell

subtypes are novel. For example, Ecotyper provides 5 cell

subtypes for epithelial cells, among them epithelial.cells.3 and

epithelial.cells.5 had opposite prognosis outcomes. We confirmed

the prognostic role of the marker gene of these cell subtypes in an

independent dataset (17). For epithelial.cells.5, ARG2 is the top

marker gene, which is related to hypoxia-associated renal epithelial

cell damage and fibrosis (30). Epithelial.cells.3 is a favorable factor

for survival and its top maker gene is ITGA3, which could regulate

stemness and epithelial-mesenchymal transition of breast cancer

cells (31). Macrophages.1 top maker gene is CCR2, which plays a

crucial role in macrophage recruitment (32). Thus, our analysis

discovered novel cell subtypes in lung cancer that may serve as

biomarkers and merit further experimental validation.

After quantifying the cell subtypes, we investigated the

prognostic value of cell state ratios. A well-established cell ratio is

the lymphocyte/monocyte ratio, which has been identified to be

associated with SCLC and NSCLC survival (33, 34). A high

neutrophil/lymphocyte ratio indicated worse overall survival in

both SCLC and NSCLC (35). We mathematically identified

hundreds of cell state ratios associated with prognosis, and most

of them are novel. An example is the Macrophages.1/7 ratio, which

is most significant for LUAD survival prognosis across all possible

macrophage subpopulation ratios. The prognosis significance of the

cell ratio can be validated by the marker gene ratio (Supplementary

Figure 1). However, these ratios need to be biologically annotated by

further experimental validation.

Higher-level tumor ecosystems were also analyzed. We found

that different CEs were prognostic in LUAD and LUSC, indicating

the different cellular components in the two subtypes. We also

found that the ecotype ratios can be prognostic and may result in

better predicting performance as the P values are lower than using a

single ecotype. Clinically, the cell ratio may have a larger potential

to become a practical biomarker as it is unit free and may be
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comparable across labs and experiments than an absolute gene

expression value.

We performed traditional DEG analysis comparing the high

and low macrophages.3/PCs.2 ratio samples in LUSC. Among the

10 most significant DEGs, we found that most of the genes are

favorable predictors for overall survival in an independent dataset

(17). These results may indicate the robustness of Ecotyper.

Moreover, five machine learning models were used to predict

LUSC. We found several epithelial cell subtypes contributed to

the differences between LUSC and LUAD, which may serve as

potential cellular targets for disease treatments. Finally, we used up-

regulated DEGs for drug screening and found two promising

candidates ginkgolide B and triamterene. Independent datasets

validated that these drugs can target cancer-related gene

expression. Our tumor cell proliferation, invasion, and migration

assay also confirmed the anti-tumor roles of the two promising

drugs. As AURKA is a promising drugable target (36) and is

prognostic for survival, we selected it to reveal potential drug

mechanisms by protein-ligand docking and found potential

interaction sites. Interestingly, only recently, two studies reported

that the two drugs act as potential active anticancer components in

NSCLC (37, 38).

In clinical setting immunotherapy and platinum drugs are used

for LUSC and LUAD therapy (39). Our findings may provide

biomarkers for drug treatment efficacy assessment. As example,

macrophages.3/PCs.2 ratio might correlate with immunotherapy.

In an independent dataset (40), marker gene based ratio SLAMF8/

CXCR4 was associated with progression-free survival of anti-PD-1

immunotherapy NSCLC patients (Supplementary Figure 2).

However, currently available cohort for immunotherapy is small

(n= 21). Larger cohorts are needed to verify the association. For

ratio epithelial.cells.1/B.cells.1, we searched literature using their

marker genes and found two meta-analyses that reported the roles

of KRT6A and TCL1A in anti-PD1 therapy response (41, 42).

However, few reports are based on cell ratio. More investigations

are needed to confirm these ratio based immune subtypes before
BA

FIGURE 9

Five popular machine learning models were used to predict LUAD and LUSC based on cell subtype abundance. (A) ROC curves for the five machine
learning models show that XGBOOST had the best LUSC prediction performance. (B) Variable importance analysis reveals the top 10 most significant
cell subtypes in LUSC prediction.
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they can serve as predictive biomarkers in the treatment of LUSC

and LUAD.

It should be acknowledged that in vitro cancer cell line assays

might not fully replicate the complexities of in vivo tumor

environments. Additionally, the use of a single cell line (HCC95)
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may limit the generalizability of the findings. Future studies could

involve multiple cell lines with different metastatic potentials and

consider additional relevant assays to provide a more

comprehensive understanding of the molecular mechanisms

underlying the dysregulated immune microenvironment (43).
FIGURE 10

Validation of candidate drugs for LUSC treatment. (A) Validation of two candidate drugs ginkgolide B and triamterene in two independent datasets
GSE85871 and GSE193855. Gene overlap of three gene lists. DEGs: differential genes of samples with high and low ratios of macrophages.3/PCs.2.
(B) Ginkgolide B and triamterene treatment of the HCC95 cell line inhibit cell survival (n= 5). * indicates P< 0.01. (C–E) Scratch wound-healing assay,
colony formation assay, and transwell assay show the inhibition of invasion and migration in the HCC95 cell line (n= 5). (F) AURKA, also known as
STK6, is prognostic for NSCLC patients’ overall survival. (G, H) Protein-ligand docking analysis shows 3-D structure models for AURKA-ginkgolide B
and AURKA-triamterene. (I) AURKA Lys143 forms a pocket region with ginkgolide B and interacts by hydrogen bonds of Lys258 and Thr292.
(J) AURKA Arg179 forms a pocket region with triamterene, and interacts by a hydrogen bond of Glu170 and a p-p stacking of Tyr199. The hydrogen
bonds were visualized in black dashed lines.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1338634
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2024.1338634
In sum, this is the first study to demonstrate the clinical

relevance of cell subtypes, ecosystems, and their ratios in LUAD

and LUSC. Epithelial subtypes are valuable cellular biomarkers for

disease diagnosis and treatment. The results may expand our

understanding of the cellular organization in NSCLC with

implications for disease mechanisms, disease diagnosis, and

precision therapies.
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SUPPLEMENTARY FIGURE 1

Macropahges.1/7 ratio is prognostic for LUAD survival. The prognostic

significance of cell ratio was validated by marker gene ratio CCR/CHI3L2.
The ratio remained significant after the smoking adjustment.

SUPPLEMENTARY FIGURE 2

Marker gene based ratio SLAMF8/CXCR4 was associated with progression-
free survival of anti-PD-1 immunotherapy NSCLC patients (n= 21).
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