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Enhanced pro-apoptotic activity
of rituximab through IBTK
silencing in non-Hodgkin
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Rituximab is a commonly used chemotherapeutic drug for patients with

aggressive lymphomas, such as non-Hodgkin’s lymphoma (NHL). Currently,

the combination of Rituximab and chemotherapy (R-CHOP) stands as the

most prevalent first-line therapy for NHL. Nevertheless, the development of

new therapeutic approaches remains imperative. An increasing body of evidence

highlights a novel role for IBTK in tumorigenesis and cancer growth. In this study,

we aim to broaden our understanding of IBTK’s function in B-lymphoma, with a

particular focus on its impact on the expression of the oncogene MYC. Here, we

assessed the effects of combining Rituximab with IBTK silencing on cell viability

through cell cycle analysis and Annexin V assays in vitro. Furthermore, we

leveraged the transplantability of Em-myc lymphomas to investigate whether

the inhibition of IBTK could elicit anti-tumor effects in the treatment of

lymphomas in vivo. Our data suggests that IBTK silencing may serve as an

effective anti-tumor agent for aggressive B-Lymphomas, underscoring its role

in promoting apoptosis when used in combination with Rituximab, both in in vitro

and in vivo settings.
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1 Introduction

Mounting evidence supports a novel role for IBTK in cell survival

and tumor growth. IBTK exerts pleiotropic effects, impacting

multiple pathways, including protein turnover as a substrate

receptor of the Cullin 3 Ubiquitin ligase complex (CRL3IBTK) (1),

and RNA metabolism, where it modifies RNA splicing in a cell-type-

specific manner (2). Recent emerging research has further confirmed

that silencing IBTK has the potential to induce apoptosis in

hematological malignancies. In chronic lymphocytic leukemia

(CLL), the overexpression of IBTK has been correlated with disease

progression and proved essential for B cell survival under stress

induced by chemotherapeutic agents (3). In the context of MYC-

driven lymphomagenesis, the loss of IBTK primarily induces B-cell

apoptosis and delays tumor onset (4). Previously, our research has

demonstrated that IBTK haploinsufficiency also influences the tumor

microenvironment in a mouse model of MYC-driven B-cell

lymphoma (5). Recently, we demonstrated that silencing IBTK

reduces cell viability and increases apoptosis in malignant B cells.

Furthermore, our study revealed that IBTK upregulates the oncogene

MYC expression, resulting in decreased survival of malignant B cells.

This effect is mediated through the promotion of GSK3b
ubiquitylation and proteasomal degradation, which occurs via the

b-catenin axis (6). As a result, considerable attention has been

directed toward exploring the potential therapeutic value of IBTK

in aggressive B lymphomas. However, it’s worth noting that the

impact of IBTK on the growth of MYC-driven B lymphomas had not

been previously reported.

The tumorigenic potential of MYC often coincides with genetic

and epigenetic alterations in hematological malignancies.

Lymphomas encompass a highly diverse group of neoplasms that

arise from the clonal expansion of B cells, T cells, or natural killer

(NK) cells (7). Non-Hodgkin lymphoma (NHL) accounts for 90%

of these cases. In Western countries, the most prevalent aggressive

NHL subtypes include diffuse large B-cell lymphoma (DLBCL),

Mantle Cell lymphoma (MCL), and Burkitt lymphoma. Regarding

treatment options, Rituximab, in combination with chemotherapy

(cyclophosphamide, doxorubicin, vincristine, and prednisone) or

R-CHOP (8), has become the standard of care for adults with B-cell

cancers, including patients with diffuse large B-cell lymphoma and

Burkitt’s lymphoma (8). However, the emergence of rituximab

resistance has become a significant challenge in the treatment of

NHL patients (9), underscoring the need for the development of

new therapeutic regimens. In this current study, our aim was to

investigate the impact of combining Rituximab treatment with

IBTK silencing on the growth of MYC-driven B lymphoma. We

sought to enhance the effectiveness of anti-CD20 therapy in NHL.
2 Materials and methods

2.1 Mice

Em-myc transgenic mice (TgN(IghMyc)22Bri/J) were obtained

from The Jackson Laboratory (Bar Harbor, Maine; USA). Ibtk−/−

were obtained as previously described (4). Both Em-myc transgenic
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mice and Ibtk−/− mice were congenic with C57BL/6 J mice. Em-myc

trans-genic mice were crossed with Ibtk−/− or Ibtk+/− mice to

generate Ibtk+/+ Em-myc and Ibtk−/− Em-myc littermates. The Em-
myc transgene was detected by genomic PCR amplification of 600-

bp product as described (10), while genotyping for Ibtk and bgeo
genes was performed as previously described (4). Mice were

monitored daily for signs of morbidity and tumor development.

Moribund mice and mice with obvious tumors were sacrificed, and

single-cell suspensions were obtained from tumor tissues and

frozen in 10% DMSO for in vivo treatment.
2.2 Generation of Em-myc lymphoma in
C57BL/6 mice and treatment

To transplant Em-myc lymphomas to C57BL/6 mice, we thawed,

washed, and counted viably frozen Em-myc lymphoma cells deriving

from Ibtk+/+Eµ-myc and Ibtk-/-Eµ-myc mice. We suspended the

lymphoma cells in RPMI media (GIBCO) and injected 1×106

lymphoma cells by the subcutaneous (s.c.) route into C57BL/6J

mice, as previously described (11, 12). We monitored recipient mice

daily, and as soon as each tumor volume reached about 100 mm3,

the mice were randomly assigned to two groups (five mice per

group): Vehicle, Rituximab 10 mg/kg (clinical formulation; Roche

Diagnostics, Basel-Switzerland). Mice were treated by

intraperitoneal injection of Vehicle or Rituximab (11, 12). The

tumor volumes were determined by measuring length (L) and width

(W) and then calculating volume (V = Length x Width2/2) at the

indicated time points. At the end of treatment, mice were sacrificed,

and the tumors were removed and weighed.
2.3 Cells, plasmids, lentivirus, antibodies

HEK293T, in addition to the Burkitt lymphoma cell lines Ramos,

Raji, and Daudi, were purchased from Sigma‐Aldrich. It is noteworthy

that Ramos cells are EBV-negative, whereas both Raji and Daudi are

EBV-positive cell lines. Ramos, Raji and Daudi cells were grown in

RPMI (Thermo Fisher Scientific, Waltham, MA, USA). HEK293T

cells were grown in Dulbecco’s Modified Eagle Medium (DMEM;

Thermo Fisher Scientific, Waltham, MA, USA). Cell culture media

were supplemented with 10% fetal bovine serum (FBS), 2 mM L‐

glutamine, 1 mM Na‐pyruvate, 50 mM 2bmercaptoethanol, 100 U/

mL penicillin, and 100 mg/mL streptomycin; all reagents were

purchased from Thermo Fisher Scientific. The plasmids pCMV6‐

IBtka‐FLAG and pCMV6 were from OriGene Technologies, Inc.

(Rockville, MD, USA). The lentiviral constructs expressing the short

hairpin RNA against IBtka (shIBTK) or control short hairpin RNA

(shCNTL) (TRCN0000082575 and SHC002, respectively) were from

MISSION® (Sigma‐Aldrich, St. Louis, MO, USA).
2.4 Cells transfection and transduction

HEK293T cells were transfected with plasmids using

Lipofectamine 2000 (Thermo Fisher Scientific), according to the
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manufacturer’s protocol. Lentiviral particles were produced by

transfection of HEK 293T cells, as previously described (6).

Briefly, HEK293Tcells (1 × 106) were transfected with pCMV‐

dR8.91 (5 mg) and pCMV‐VSVG (5 mg) together with shIBTK

(10 mg) or shCNTL (10 mg); 48 h post‐transfection, cell supernatant

was collected, filtered through 0.22 mm sterile filter, and used for

spinoculation in the presence of 8 mg/mL polybrene. For IBtka
silencing, Ramos cells (3 × 106) were transduced with lentiviral

particles (500 ng of p24) expressing shIBTK or shCNTL. Twenty‐

four hours later, transduced cells were subjected to selection with

puromycin (1.5 mg/mL and 0.2 mg/mL, respectively) for 48 h. When

required, cells were treated with the RITUXIMAB (Roche Di-

agnostics; stock solution 10mg/mL).
2.5 Apoptosis and cell cycle analysis

Annexin V‐based apoptotic assay was performed as previously

described (4). Briefly, Ramos, Raji, and Daudi cells (1 × 106) were

stained with FITC‐conjugated Annexin V and propidium iodide

(PI) using the Annexin V‐FITC kit (Miltenyi Biotech). Data were

collected by flow cytometry. Cell cycle analysis was performed as

previously described (13).
2.6 Western blotting analysis

Cells were lysed in modified RIPA buffer (10 mM Tris‐HCl, pH

7.5, 150 mM NaCl, 1 mM EDTA, 1% Igepal). Protein samples were

subjected to electrophoresis on Nupage 4–12% polyacrylamide gel

(Life Technologies), and then transferred onto a nitrocellulose

membrane (GE Healthcare). Antibodies were: anti‐Myc (#5605;

Cell Signaling Technology), and anti‐GAPDH (sc‐47724; Santa‐

Cruz Biotechnology, Dallas, TX, USA).
2.7 Statistical analysis

Statistical analysis was performed by the two‐tailed unpaired

Student’s t-test using the GraphPad Prism® software package.

Statistical significance was determined by p < 0.05.
3 Results

3.1 IBTK silencing enhances the pro-
apoptotic activity of rituximab in NHL cells
in vitro

Rituximab stands as one of the most frequently utilized

chemotherapeutic drugs in patients with aggressive lymphomas,

particularly non-Hodgkin’s lymphoma (NHL) (14, 15). Currently,

the foremost frontline therapy for NHL involves the combination of

Rituximab with chemotherapy (cyclophosphamide, doxorubicin,

vincristine, and prednisone), commonly referred to as R-CHOP
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(16). Nonetheless, this clinical standard underscores the necessity

for the development of novel therapeutic approaches.

Recognizing that the acquisition of rituximab resistance often

leads to chemotherapy failure in NHL patients (17), we conducted

an investigation into the effects of combining Rituximab with IBTK

silencing on cell viability. For our in vitro experiments, we

employed the Ramos cell line as a model of NHL cells due to

their relative resistance to rituximab therapy (17).

To achieve this, we transduced Ramos cells with lentiviral

particles carrying short hairpin RNA for IBTK silencing (SHI) or

a control short hairpin (SHC), followed by treatment with

rituximab (10 mg/mL). Remarkably, our observations revealed

that IBTK silencing in the presence of rituximab (10 mg/mL)

substantially increased the subG1 phase (from 7.65% to 22.8%, p

value < 0.005) and reduced the S phase (from 37.5% to 23.9%, p

value < 0.05) (Figure 1A). These findings indicate a synergistic effect

between IBTK depletion and Rituximab treatment on cell viability.

To corroborate the obtained results, we analyzed the cell cycle of

NHL cell lines, Raji and Daudi in presence or absence of IBTK

silencing treated with rituximab (10 mg/mL). In Raji cell line, we

found that the combination of IBTK silencing and Rituximab

strongly increased the subG1 phase (from 6.95% to 38.3%, p

value < 0.05) along with a reduction of the percentage of cells in

G0/G1 phase (from 30.9% to 12.25%, p value < 0.05), in S phase

(from 56.55% to 44.75%, p value < 0.05) (Figure 1B). Consistent

with the results obtained in the other NHL cell lines, in Daudi cell,

we observed that the synergistic effect of IBTK silencing and

Rituximab caused an increase of percentage of cell in subG1

phase (from 11.1% to 24.4%, p value < 0.005) along with a

reduction of the percentage of cells in S phase (from 51.7% to

33.57%, p value < 0.05), (Figure 1C).

Subsequently, we investigated whether the synergistic effect

resulting from the depletion of IBTK in combination with

Rituximab treatment was attributed to the induction of apoptosis.

Employing the Annexin V assay, we observed that the combination

of IBTK silencing and Rituximab significantly increased the

percentage of Annexin V-positive cells to 35.83%, whereas the

apoptotic rate of Ramos cells treated with Rituximab alone was

11.65% (Figures 1D, 1G). Consistent with this result, the analysis of

apoptosis by Annexin V assay, in Raji and Daudi cell lines silenced

or not for IBTK and treated with Rituximab (10 mg/mL) showed an

increase of the percentage of Annexin V-positive cells from 8.78%

(SHC) to 51,23% (SHI) for Raji (Figures 1E, H) and from 6.61%

(SHC) to 25.87% (SHI) for Daudi cells (Figures 1F, I). These results

indicate consistency in the trends observed with the Ramos cell line,

suggesting a broader applicability of our findings across different

NHL cell types (Figure 1).

Given previous studies indicating MYC’s involvement in

regulating cell cycle inhibitors during the early subG1 phase,

influencing the transition from the G1 to the S phase (18), we

sought to determine whether the combined effect of IBTK silencing

and Rituximab treatment affected MYC protein levels.

As anticipated, our findings demonstrated a more pronounced

reduction in MYC protein levels in Ramos cells when both

IBTK depletion and Rituximab treatment were employed,
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compared to either IBTK depletion or Rituximab treatment alone

(Figures 2A, B).

Collectively, these data suggest that the combination of IBTK

silencing and Rituximab treatment induces a cell cycle block at the

G1-S phase, which is associated with an increase in apoptotic rates,

likely attributable to the reduction in MYC protein content

(Figures 1A-C, 2A, B).
3.2 Combined treatment of rituximab and
IBTK silencing decreases lymphoma
growth in vivo

As IBTK silencing demonstrated inhibitory effects on B-

lymphoma growth in vitro, we sought to investigate whether the

loss of IBTK could exert anti-tumor effects in the treatment of

lymphomas in an in vivo setting.

To address this, we employed the transplantability of Eµ-myc

lymphomas, a preclinical mouse model of NHL (19), into

immunocompetent C57BL/6 background strain mice. Specifically,

we subcutaneously injected lymphoma cells (1x106 cells) derived

from Ibtk+/+ Eµ-myc and Ibtk-/- Eµ-myc lymphomas into C57BL/6
Frontiers in Oncology 04
wild-type mice. When each tumor volume reached approximately

100 mm3, which occurred about three days later, we administered

vehicle or Rituximab intraperitoneally at a dose of 10 mg/kg.

Notably, we observed a significant reduction in both tumor

volume and weight for tumors derived from Ibtk-/- Eµ-myc in

comparison to those arising from Ibtk+/+ Eµ-myc. Furthermore,

the combined absence of IBTK and Rituximab treatment

demonstrated a synergistic effect in reducing both tumor volume

and weight (p value < 0.001) (Figures 3A–C).
4 Discussion

The treatment of aggressive lymphomas, particularly non-

Hodgkin’s lymphoma (NHL), represents a significant clinical

challenge due to the emergence of resistance to Rituximab, a

commonly employed chemotherapeutic agent (14, 15). The

current standard of care for NHL involves the combination of

Rituximab with chemotherapy, known as R-CHOP (16).

Nevertheless, the development of rituximab resistance frequently

leads to chemotherapy failure in NHL patients (17). To address this

challenge, we embarked on a comprehensive investigation into the
B C

D E F
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FIGURE 1

IBTK silencing strongly enhances the pro-apoptotic activity of Rituximab on a panel of B-lymphoma cells in vitro. Ramos, Raji and Daudi cells (1x106)
were transduced with lentiviral particles (500 ng of p24) expressing short hairpins controls (shCTRL) or directed against IBTK mRNA (shIBTK). Next,
cells were treated with or without Rituximab (10 µg/mL) for 48-hours. (A–C) shCTRL or shIBTK cells were labeled, fixed then stained with PI/RNase
staining solution, and cell cycle analysis was performed by flow cytometry. The phases of cell cycle were evaluated by using the Watson pragmatic
model. Values (mean ± SE, n = 3 for each group of samples) are shown. The bar indicates a statistically significant difference according Student’s t
test. (D–F) Representative density plot of Annexin V binding assay of in vitro cultured shCTRL or shIBTK cells treated with Rituximab or left untreated.
(G–I) Bar diagrams showing the quantification of apoptotic cells by Annexin V binding assay. Values (mean ± SE, n = 3 for each group of samples) are
shown. The bar indicates a statistically significant difference according Student’s t test. Statistically significant difference was calculated according to
Student’s t test and represented as asterisk for p value < 0.05. n.s. is for not statistically significant.
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potential therapeutic benefits of combining Rituximab with IBTK

(Inhibitor of Bruton Tyrosine Kinase) silencing, focusing on the

enhancement of pro-apoptotic activity. Our in vitro results

demonstrated that IBTK silencing in combination with Rituximab

significantly increased the subG1 phase of cell cycle distribution and

reduced the S phase. This shift towards a higher proportion of cells

in the subG1 phase signifies an increase in apoptotic cells (17). The

synergistic effect observed in our experiments underscores the

potential of IBTK silencing to enhance the pro-apoptotic activity

of Rituximab. Numerous studies have established that MYC

deregulation is one of the most important events for aggressive B-

lymphoma malignant transformation (20, 21). Overexpression of

MYC is associated with high growth rates in vivo and in cell culture

experiments, driving quiescent cells into the cell cycle (22). In

contrast, low levels of MYC are associated with nondividing and

differentiated cells (23). Previous studies showed that IBTK is a

potential transcriptional target of MYC in aggressive MYC-driven B

cell lymphomas (4, 24).
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The observation of IBTK silencing-dependent apoptosis of

cancerous B cells was consistent with previous observations in

mouse embryonic fibroblasts (24), in DeFew and MEC-1 human

B cell lines (3), and mouse pre-cancerous B-lymphoma cells (4).

Interestingly, in our recent work, we identified as a direct interactor

of IBTK, GSK3b (6), an essential component of the b-catenin
destruction complex (25). b-catenin pathway is reported to be

involved in the progression of many types of cancers, such as

leukemia (26–28), myeloma (28, 29), and several subtypes of

lymphoma (30, 31). Our study showed that down-regulation of

IBTK could significantly inactivate b-catenin signaling through the

stabilization of GSK3b which promotes b-catenin degradation, thus

preventing the nuclear accumulation of b-catenin as well as the

transcriptional activation of its target genes MYC, CCDN1, and

CD44 (6).

Moving from our promising in vitro results to an in vivo setting,

we utilized a preclinical mouse model of NHL to investigate the

potential anti-tumor effects of IBTK loss. Our results demonstrate a
BA

FIGURE 2

IBTK silencing with Rituximab treatment significatively reduces Myc protein expression on B-lymphoma cells in vitro. (A) Whole cell extracts (30 µg)
from shCTRL or shIBTK Ramos, cells treated with Rituximab (10 µg/mL) or left untreated for 48 hours were separated by 12% SDS–PAGE and
analyzed by western blotting using anti-MYC and anti-GAPDH antibodies. (B) Densitometric values of the Myc protein bands were normalized to
GAPDH bands. Mean values ± SE are shown for three independent experiments. Statistically significant difference was calculated according to
Student’s t test and represented as asterisk for p value < 0.05.
B CA

FIGURE 3

Effects of IBTK silencing combined with Rituximab treatment on in vivo model of B-lymphomas. (A) Workflow of the experimental design of in vivo
analysis (B) Tumor growth curves of lymphoma cells (1x106), deriving from Ibtk+/+Emu-myc or Ibtk-/-Emu-myc lymphomas, subcutaneously injected
into C57BL/6 wild type mice. When each tumor volume reached about 100 mm3, approximately three days after tumor engraftments, recipient mice
were intraperitoneally treated with rituximab (10 mg/kg) or vehicle for indicated time. Values (mean ± SE, n = 5 for each group of samples) are
shown. The asterisk indicates a statistically significant difference according Student’s t test (p < 0.01). (C) Weights of tumors deriving from
subcutaneous injection of Ibtk+/+Emu-myc or Ibtk-/-Emu-myc lymphoma cells (1x106) after treatment with Rituximab (10 mg/kg) or vehicle for six
days. Values (mean ± SE, n = 5 for each group of samples) are shown. The bar indicates a statistically significant difference according Student’s t test.
Statistically significant difference was calculated according to Student’s t test and represented as asterisk for p value < 0.05.
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significant reduction in both tumor volume and weight when IBTK

was absent in conjunction with rituximab treatment. The

synergistic reduction in tumor growth, highlighted in our study,

is a noteworthy finding and underscores the potential clinical

significance of combining IBTK silencing with Rituximab.

Long-term exposure of the tumor to certain drugs can lead to

drug resistance and multi-drug combination is a promising approach

to overcome drug resistance (32, 33). Intriguingly, we found that the

combination of IBTK silencing with Rituximab treatment induces a

cycle block at the G1-S phase associated with the reduction of MYC

protein content and concomitantly to an increase of apoptotic rate. In

addition, we found that IBTK loss and Rituximab treatment act

synergistically in reducing tumor volume and weight in the Eµ-myc

mouse model of non-Hodgkin’s lymphoma (NHL) (34). While our

results offer promising insights, several limitations warrant

consideration. First of all, our study predominantly focused on B-

NHL cell lines and only one mouse model of B-NHL, not fully

capturing the heterogeneity of NHL in clinical populations. We

assume that we will also extend to test the combined approach in

more complex and immunocompetent preclinical models, such as

humanized mice. The consistency of the trends observed in our

models (Ramos, Raji and Daudi cell lines) suggests a broader

applicability of our findings across different NHL cell types

(Figure 1). Of course, further investigations are needed to validate

the translational potential of our findings. Our study presents

compelling evidence that the combination of IBTK silencing with

Rituximab enhances pro-apoptotic activity in NHL cells, both in vitro

and in vivo. This holds great promise for addressing rituximab

resistance and advancing the development of innovative therapeutic

regimens for aggressive lymphomas. Future studies should aim to

further elucidate the underlying mechanisms and expand the clinical

applicability of this approach. Primary concern will be a

consideration of regulatory approval pathways for precision

medicine approaches, including early-phase studies in cohorts

selected based on the IBTK profile. In addition, the evaluation of

combinations with other targeted therapies, such as inhibitors of the

PI3K/AKT pathway or CD20 signaling, and the assessment of the

synergistic impact with immunotherapy, given its growing relevance

in lymphoma, will be integral to our ongoing investigations.
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