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Cancer is typically treated with combinatorial therapy, and such combinations

may be synergistic. However, discovery of these combinations has proven

difficult as brute force combinatorial screening approaches are both logistically

complex and resource-intensive. Therefore, computational approaches to

augment synergistic drug discovery are of interest, but current approaches are

limited by their dependencies on combinatorial drug screening training data or

molecular profiling data. These dataset dependencies can limit the number and

diversity of drugs for which these approaches can make inferences. Herein, we

describe a novel computational framework, ReCorDE (Recurrent Correlation of

Drugs with Enrichment), that uses publicly-available cell line-derived

monotherapy cytotoxicity datasets to identify drug classes targeting shared

vulnerabilities across multiple cancer lineages; and we show how these

inferences can be used to augment synergistic drug combination discovery.

Additionally, we demonstrate in preclinical models that a drug class combination

predicted by ReCorDE to target shared vulnerabilities (PARP inhibitors and Aurora

kinase inhibitors) exhibits class-class synergy across lineages. ReCorDE functions

independently of combinatorial drug screening and molecular profiling data,

using only extensive monotherapy cytotoxicity datasets as its input. This allows

ReCorDE to make robust inferences for a large, diverse array of drugs. In

conclusion, we have described a novel framework for the identification of drug

classes targeting shared vulnerabilities using monotherapy cytotoxicity datasets,

and we showed how these inferences can be used to aid discovery of novel

synergistic drug combinations.
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1 Introduction

Cancer is usually treated with a combination of drugs rather

than a single agent. Treating cancer with a drug combination

decreases the likelihood of the tumor acquiring resistance to

therapy. It also allows for lower dosing of individual agents,

which can reduce toxicity incidence and severity. Such

combinations may be synergistic where the total effect of the

drugs in combination is greater than the sum of the individual

effects of each drug alone. Identifying such synergistic drug

combinations has proven difficult. Brute force combinatorial

screening approaches to finding such combinations, even with a

small number of drugs, are logistically complex and resource-

intensive as the number of assays scales quadratically with

individual drugs tested, and combinations must be tested at

multiple fixed ratios. Computational approaches for predicting

synergy are therefore of interest, and numerous synergy

prediction algorithms have been published (1). However, most of

these approaches are constrained by their dependency on high-cost,

small-sized datasets and/or fail to identify synergistic drug pairs that

target closely related, complementary pathways. Here we outline a

framework, ReCorDE (Recurrent Correlation of Drugs with

Enrichment), for identifying drug classes targeting shared

vulnerabilities, and we show how these results can be used to find

novel synergistic drug combinations.

Supervised learning-based algorithms, such as DeepSynergy

and AuDNNsynergy, rely on synergy-labeled combinatorial drug

data for training, which is hard to generate at a large scale (2, 3).

Existing synergy-labeled datasets tend to be small and only cover a

limited selection of tissue types and drug classes (4–7). These

training dataset characteristics limit the utility of supervised

synergy algorithms as such approaches often struggle with out-of-

domain generalization; thus, accuracy may suffer for predictions

involving drug classes or tissues not covered in training data (8).

Unsupervised algorithms, such as DrugComboExplorer and

SynGeneNet, that are independent of combinatorial drug response

training data have also been developed (9, 10). However, most of

these algorithms use molecular profiling data (i.e. ‘omics data) as

input. Molecular profiling data is expensive to produce, limiting the

size of publicly available datasets. Requirements for perturbational

molecular profiling data can add further complications as sample

size decreases further, and the number of concentrations tested is

typically small, which can provide an incomplete picture of drug

activity and result in spurious predictions. Furthermore, because

algorithms that use molecular profiling data are designed to predict

synergy for a specific molecular profile, predicted synergistic drug

pairs may only be synergistic in niche scenarios.

Although large-scale combinatorial datasets for drug screening

are difficult to come by, drug response datasets for monotherapy have

achieved a scale that allows for identification of response trends across

hundreds of cancer cell lines and a large diversity of drug classes. Over

the last decade, a handful of medium-throughput efforts have been

published to characterize different cancer cell lines’ responses to

different drugs in monotherapy. The Genomics of Drug Sensitivity

in Cancer (GDSC v2), the Cancer Therapeutics Response Portal

(CTRP v2), and the PRISM Drug Repurposing datasets are the
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largest and most up-to-date of these datasets, each containing

sensitivities for hundreds of commercially-available cell lines to

hundreds of drugs (11–13). The diversity of cell lines and drugs

included in these datasets, along with the comprehensive coverage of

drug-cell line combinations, makes these datasets advantageous for

large-scale drug response prediction. Furthermore, these three

datasets have a general redundancy of cell lines and drugs tested,

allowing for cross-validation of drug response across datasets,

increasing the confidence of observed drug response patterns.

Multiple existing synergy prediction methods have leveraged

monotherapy drug response data to augment their predictions, but

these approaches typically require additional ‘omics profiling data

as input or require optimization on combinatorial drug response

data, which imbue these methods with the limitations described

above (1).

Here we present a framework for identifying drug classes

targeting shared vulnerabilities, Recurrent Correlation of Drugs

with Enrichment (ReCorDE), with applications to finding

synergistic drug combinations. Importantly, ReCorDE identifies

drug class combinations targeting shared vulnerabilities using large-

scale, publicly available monotherapy cytotoxicity data and user-

provided canonical mechanism of action without any requirement

for combinatorial drug screening or molecular profiling data.

Independence from these datasets allows ReCorDE to support a

large diversity of drug combinations; furthermore, the simplicity of

inputs allows for easy customization and interpretability. ReCorDE

results can be used to prioritize drugs for synergy testing under the

principle that drugs targeting shared vulnerabilities have interrelated

mechanisms of action and therefore have a high potential for

exhibiting complementary action-driven synergy (14).

ReCorDE takes inspiration from Narayan et al.’s supervised

cophenetic distance-based synergy predictor (15). To prioritize

targeting of independent vulnerabilities, Narayan’s model penalizes

drug combinations with similar monotherapy response patterns; this

approach lends specificity to the algorithm as it eliminates additive

drug combinations, but it may miss synergistic drug combinations

targeting shared vulnerabilities. Similar drug responses between two

drugs may imply: the drugs have similar mechanisms of action; the

drugs have different targets but act on the same pathway; or the

drugs have different mechanisms of action and target distinct

pathways, but these pathways are complementary to each other

(shared vulnerability). This latter group of associated drug responses

indicates a concept of mutually inclusive survival pathways across

cancers and have a high potential for synergy.

To identify drug combinations targeting shared vulnerabilities,

ReCorDE first identifies drug pairs that are recurrently correlated

across independent monotherapy cytotoxicity datasets. ReCorDE

then annotates these drug combinations to drug classes based on

user-input and uses enrichment to find class combinations

overrepresented in the set of recurrently correlated drug pairs,

representing both additive and synergistic combinations. The user

is then able to leverage these annotations and their domain

knowledge to identify class combinations that involve distinct

mechanisms of action, removing likely-additive combinations

from analysis and leaving a list of drug classes targeting shared

vulnerabilities but with distinct mechanisms of action. These drug
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class combinations can then be further validated for synergy in

follow-up studies.

We validated ReCorDE results using publicly-available

combinatorial cytotoxicity data, and we experimentally validated

a ReCorDE-identified class combination, poly-ADP ribose

polymerase inhibitors (PARPi) and Aurora kinase inhibitors

(AurKi), which we showed were synergistic in a variety of cell

lines from multiple lineages. We performed a post-hoc analysis on

publicly-available perturbational transcriptomic signatures for these

drug classes, which suggested that generation of reactive oxygen

species or PKA/C signaling may underlie PARPi-AurKi synergy.
2 Materials and equipment

ReCorDE was implemented using R version 4.3.1 (16). The CTRP

and GDSC datasets were obtained from their respective websites while

the PRISM dataset was obtained from DepMap portal (Table 1) (11–

13). CMAP-LINCS data was obtained from CLUE.io (17).

22RV1, LNCaP, DU145, PC3, VCAP, MCF7, HCC70, HCC1395,

BT474, MDA453 (MDA-MB-453), HCC1937, MDA231 (MDA-MB-

231), and T47D cells were acquired from ATCC (Manassas, VA).

Penicillin/streptomycin and RPMI1640, L-15, EMEM, and DMEM

media were sourced from Gibco (Grand Island, NY). 10% FBS was

obtained from Atlanta Biologicals (Flowery Branch, GA). Alisertib,

Tozasertib, Talazoparib, Olaparib, and Rucaparib were sourced from

MedChemExpress (Monmouth Junction, NJ).
3 Methods

3.1 ReCorDE

3.1.1 Correlation construction
An overview of the core ReCorDE steps are outlined in Figure 1.

The code used to implement ReCorDE is available on GitHub
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(https://github.com/etghose/recorde). To identify drugs targeting

shared vulnerabilities, we identified drugs with correlated responses

in several datasets. For each dataset, we conducted pairwise

Spearman correlations between the AUCs of all possible drug

combinations that were tested in at least ten of the same cell lines

in two or more datasets (Supplementary Tables S1, S2). Spearman

correlations (18) were implemented using the base R cor.test()

function, which uses a Spearman correlation formulation robust to

ties. The total number of combinations tested were 22,156 in CTRP,

10,128 in GDSC, and 33,153 in PRISM.

Drug-drug correlations with |r| < 0.25 were removed. Drug

correlations that met pruning criteria in only two datasets but had

opposite signs for their correlation coefficient were also removed.

We refer to the remaining set of drug combinations as “drug

combinations significantly correlated across datasets” (DCSCAD).

P-values were not considered for pruning criteria because they

could not be adjusted for multiple testing as they violate

exchangeability assumptions due to inter-test variance in sample

size and overlap.

3.1.2 Drug class-based enrichment
We used drug class as a surrogate identifier for the mechanism

of action. To measure if combinations between drugs of specific

classes were enriched in the DCSCAD compared to the distribution

of all drug class combinations tested, we assigned each drug to a

drug class and, thus, each drug combination to a drug class

combination. We then used hypergeometric tests (19) to identify

drug class combinations significantly enriched in the DCSCAD

compared to the distribution of all drug class combinations tested.

Drugs were assigned to classes based on their Anatomical

Therapeutic Chemical (ATC) code (20). Drugs appearing in two

or more datasets were manually annotated with their ATC code

according to the index provided by the World Health Organization

Collaborating Centre for Drug Statistics and Methodology (20).

Drugs without an official ATC code were manually assigned to the

ATC code best matching the description of their main mechanism
TABLE 1 Monotherapy drug response datasets.

Dataset (Acronym) Cancer Therapeutics
Response Portal (CTRP)

Genomics of Drug
Sensitivity in
Cancer (GDSC)

PRISM Repurposing
Dataset (PRISM)

Version V2 V2, Release 8.4 Secondary

Raw Cell Lines Screened 860 969 481

Drugs Screened 545 286 1448

Unique Cell Line-
Drug Combinations

387,130 235,748 624,224

Post-Data Prep Cell Lines screened 692 829 481

Drugs Screened 212 143 258

Unique Cell Line-
Drug Combinations

124,976 98,181 115,130

Reference (13) (12) (11)
Name and version of each dataset. Number of cell lines, drugs, and unique cell line-drug combinations tested in raw data and post-data prep, which refers to datasets after deduplication of drug-
cell line combinations, removal of hematological cell lines, and removal of drugs unique to a dataset. Note that not every drug was tested in every cell line and vice versa.
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of action (Supplementary Table S2). We found that a significant

number of drugs were annotated to categories encompassing

miscellaneous drugs (n=86), often because an official ATC code

did not exist corresponding to their drug class or mechanism of

action. By lumping dissimilar drugs into the same “miscellaneous”

class, the class label is rendered biologically unmeaningful. In the

case of two or more “miscellaneous” drugs having the same

mechanism of action, we created novel, non-canonical ATC codes

and reassigned the previously “miscellaneous” drugs to these newly

defined codes. We also altered criteria and/or consolidated certain

canonical ATC categories (n=6) to allow closely related drugs to be

placed under the same identifier (Supplementary Methods). ATC

code assignments and explanations of altered canonical and novel

non-canonical ATC codes can be found in Supplementary Tables S2

and S3.

We annotated all drug combinations for which Spearman

correlations were generated in two or more datasets to a

concatenation of the ATC codes (“drug class combinations”) for

the individual drugs in a drug combination. For the background

distribution, counts for a drug combination, and their

corresponding drug class, are proportional to the number of
Frontiers in Oncology 04
datasets that combination was tested in. For the DCSCAD

distribution, counts are proportional to the number of datasets

the drug combination is significantly correlated in. This weighting

accounts for differences in testing frequency that unduly advantage

combinations present in three datasets compared to two datasets.

For each drug class combination present in the DCSCAD, we used a

hypergeometric test to assess enrichment of that drug class

combination in the DCSCAD compared to the background

distribution of all drug class combinations tested. We removed

drug class combinations in which both drugs belong to the same

class before FDR (21) adjustment as these combinations are

expected to be enriched and may be less likely to exhibit synergy

as they have the same targets. For the final set of enrichment results,

we excluded drug class combinations that included individual

classes labeled as “miscellaneous-type” classes as these classes are

characterized by the drugs’mechanism of action not fitting into any

other classes rather than drugs sharing the same mechanism of

action. This property makes these class labels poor descriptors of

member drugs’ mechanisms of action. The following classes were

considered “miscellaneous”-type classes: D01AE, “other

antifungals”; L01AX, “other alkylating agents”; L01CX, “other
FIGURE 1

Overview of ReCorDE framework. *Filtering here refers to the removal of drug combinations not significantly correlated in two or more datasets and
the removal of drug combinations where the signs for the coefficient of correlation were opposite across datasets.
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plant alkaloids”; L01DC, “other cytotoxic antibiotics”; L01EX,

“other kinase inhibitors”; and L01XX “other antineoplastics”.

We used a heatmap to easily visualize enrichment results where

each cell represents an adjusted enrichment p-value with the rows

and columns corresponding to the two different drug classes which

make up the class combination being tested for enrichment. To

better organize enrichment results and identify biological patterns,

drug classes are hierarchically clustered by adjusted enrichment p-

value using Euclidean distance and complete linkage. Analyzing

enriched correlation patterns among drug classes can offer valuable

insight into their mechanisms of action and facilitate their

clinical interpretation.
3.2 Validation

3.2.1 Validation on
OncoPolyPharmacology dataset

ReCorDE does not currently support lineage-specific analysis,

and ReCorDE results are not reported on a drug combination level

but rather a class combination level. However, there is a paucity of

combinatorial cytotoxicity datasets that report synergy on a class

combination level, test multiple drugs in the same class, or test

multiple lineages. Given the limitations of the available

combinatorial cytotoxicity datasets, we used drug combinations

that were both present in the DCSCAD and belonged to class

combinations enriched in the DCSCAD as a heuristic for ReCorDE-

identified synergistic drug combinations. Drug combinations

meeting this criterion but with the added caveat of belonging to

classes targeting distinct pathways were considered ReCorDE-

identified synergistic drug combinations. With this modification,

we validated ReCorDE results using combinatorial drug screening

data from Merck’s OncoPolyPharmacology screen (6).

Merck’s OncoPolyPharmacology screen consists of synergy

measurements for all pairwise combinations between 38 drugs

(n=703 drug combinations) performed on a panel of 39 cancer

cell lines from 7 different lineages (6). Each drug combination is

tested in a 4 x 4 combination scheme for each cell line. Similar to the

synergy cutoff used in DeepSynergy, we defined synergy as having a

Loewe synergy score greater than the 90th percentile of all synergy

scores considered (>8.61) (3). A drug combination was considered

synergistic if the Loewe synergy score exceeded this cutoff in at least

one cell line. A class combination was considered synergistic if at

least one drug combination belonging to that class combination was

considered synergistic. Performance was assessed at the class

combination level.

3.2.2 Drug combination and synergy analysis for
Aurora kinase and PARP inhibitors
3.2.2.1 Cell culture

22RV1, LNCaP, DU145, PC3, HCC1937, T47D, HCC70,

HCC1395, and BT474 cells were cultured in RPMI1640 medium

supplemented with 10% FBS and 1% penicillin/streptomycin in 5%

CO2 conditions at 37°C. MDA453 and MDA231 were cultured in

L-15 medium supplemented with 10% FBS and grown in

atmospheric conditions. VCAP cells were cultured in DMEM
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medium supplemented with 10% FBS and 1% penicillin/

streptomycin in 5% CO2 conditions at 37°C . MCF7 cells were

cultured in EMEM medium supplemented with 10% FBS and 1%

penicillin/streptomycin in 5% CO2 conditions at 37°C.

3.2.2.2 Drug combination screening

To measure the combinatorial efficacy of PARP inhibitors

(PARPi) and Aurora kinase inhibitors (AurKi), we used an 8 x 5

drug combination matrix-approach, considering all possible

pairwise concentration combinations between a given PARPi and

AurKi. Cells were treated sequentially with PARPi and AurKi as has

previously been done in AurKi-based synergy studies

(Supplementary Methods) (22). For all assays, cells were plated in

96-well flat bottom plates at 1500-6000 cells per well with 85 µL of

cell line media followed by a 24-hour incubation prior to any drug

treatment. All assays were performed in triplicate. We prepared

drugs in 1:5 serial dilutions for 8 concentrations of a PARPi and 5

concentrations of an AurKi. Cells were treated with 15 µL PARPi or

DMSO vehicle and incubated for 3 days. We then washed cells and

treated wells with 85 µL of media plus 15 µL AurKi or DMSO

vehicle followed by another 3-day incubation. Viability was then

determined via CyQuant (ThermoFisher Cat. C7026) cytotoxicity

screening, and toxicity effect was compared to vehicle-treated

control. In this manner, we assessed the combinatorial efficacy of

Talazoparib and Alisertib in the prostate cancer cell lines 22RV1,

LNCaP, PC3, DU145, and VCAP and the breast cancer cell lines

MCF7, HCC70, HCC1395, BT474, MDA453, HCC1937, MDA231,

and T47D. We also assessed the efficacy of other PARPi-AurKi

combinations (Olaparib-Alisertib, Rucaparib-Alisertib, and

Talazoparib-Tozasertib) in DU145 cells. The final concentration

range of Talazoparib (PARPi) was 8 µM - 0.1024 µM, and the final

concentration range of both Olaparib and Rucaparib (both PARPi)

was 200 µM - 2.45 nM. The final concentration range of Alisertib

(AurKi) was 1.6 µM - 2.56 nM, and the final concentration range of

Tozasertib (AurKi) was 8 µM - 12.8 nM. We used GraphPad Prism

(v10.0.3) to generate dose-response curves in the form of log

(inhibitor) vs. response; these curves were fit using the four

parameter variable slope option.

3.2.2.3 Drug synergy analysis

Synergy was assessed through multiple methods including

Chou-Talalay combination index, Loewe additivity, and highest

single agent (HSA) (23–26). For Loewe additivity and HSA metrics,

scores > 10 were considered synergistic. For the Chou-Talalay

combination index, synergy was defined at EC75, and scores < 0.3

were considered synergistic. Visualization of synergy was also

performed through fixed ratio comparison of drug response

relative to the single drug alone (Supplementary Methods).
3.3 Pathway analysis of Aurora kinase
inhibitors and PARP inhibitors

Gene expression data for AurKi and PARPi-treated cells were

obtained from the CMAP-LINCS database (17). In brief, CMAP-

LINCS derives gene expression signatures for various perturbagens
frontiersin.org
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using their L1000 system (17). A cell line is treated with a perturbagen

for a set concentration and time. Gene expression for 978 “landmark”

mRNAs is measured using ligation-mediated amplification. These

values are rescaled using L1000 Invariant Set Scaling based on 80

invariant gene transcripts followed by quantile normalization.

Expression values for a further 11,350 genes are inferred via linear

regression of landmark gene expression values with weights derived

from an independent dataset. Gene expression values are then Z-

scored gene-wise relative to median plate gene expression using a

robust Z-scoring procedure. Finally, replicate-consensus signatures

are generated across biological replicates (“Level 5” signatures).

CMAP-LINCS designates a subset of these Level 5 signatures as

exemplar signatures based on the greatest transcriptional activity

score, which is a metric combining the number of differentially

expressed genes and signature concordance.

Level 5 gene expression signatures from the CMAP-LINCS

database (CMap2020) were downloaded a long wi th

corresponding metadata from Clue (17). We extracted PC3-based

exemplar signatures using Aurora kinase inhibitors and PARP

inhibitors from AurKi-PARPi combinations in the DCSCAD

(“treatment” signatures); a DMSO-treated control exemplar

signature was also extracted (“control” signature) (Supplementary

Table S4). We restricted our analysis to the 978 “landmark genes”

(17). Signatures used for analysis were generated by substracting the

“control” signature values from “treatment” signatures. The

resulting signatures were then used to generate pathway

activation Z-scores (excluding “Disease-specific” pathways) using

Ingenuity Pathway Analysis (27). Pathways with the absolute

pathway activation Z-scores > 1 for all signatures were reported

(Supplementary Table S5).
4 Results

4.1 ReCorDE results

4.1.1 Drug combinations significantly correlated
across datasets

After removing combinations with |r| < 0.25, 7726, 2494, and

2677 drug combinations were considered correlated in the CTRP,

GDSC, and PRISM datasets, respectively. 2437 of these drug

combinations were correlated in ≥ 2 datasets. Most of the drugs

recurrently correlated across datasets agreed in the direction of

correlation, but 6 drug combinations were removed from this set as

the direction of correlation was not the same across all datasets

despite meeting r magnitude criteria. The remaining 2431 drug

combinations showed consistently positive directions of correlation

across datasets. This set is referred to as the set of “drug

combinations significantly correlated across datasets” (DCSCAD)

(Supplementary Table S6).

4.1.2 Class combination enrichment
To identify combinations of drugs with different primary

mechanisms of action that were overrepresented in the DCSCAD

given the types of drugs tested, we tested for enrichment of different
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class-class combinations in the DCSCAD using hypergeometric

tests. We translated each drug combination tested in two or more

datasets into a class combination (using drug class as a surrogate

identifier for the mechanism of action) using each drug’s

Anatomical Therapeutic Chemical (ATC) code (20). This

annotates each drug combination with a class combination

identifier based upon their ATC codes (i.e. Palbociclib-Everolimus

becomes L01EF-L01EG, referring to CDKi-mTORi). For each class

combination present in the DCSCAD, we tested if that class

combination was enriched in the DCSCAD compared to its

distribution in the drug combinations tested for correlation in

two or more datasets.

Overall, drug combinations corresponding to 1767 distinct

class-class annotations were tested for correlation in two or more

datasets, and 564 of these class combinations were present in the

DCSCAD. We tested for enrichment of these 564 class

combinations in the DCSCAD using hypergeometric tests. After

removing same-class combinations (n=32), this number dropped to

532, which were then FDR-adjusted. After excluding

“miscellaneous-type”-class-containing combinations (n=150), 111

class combinations were found to be significantly enriched (p.adj <

0.05) in the DCSCAD (Table 2; Supplementary Table S7).

To facilitate analysis of enrichment results, we converted

ReCorDE’s results to a class-by-class square matrix where each

entry corresponds to the adjusted p-value for enrichment in the

DCSCAD for each class combination. This matrix was visualized

with a heatmap (Figure 2).

To better organize enrichment results and identify biological

patterns in these results, we sought to hierarchically cluster the 54

individual drug classes by adjusted enrichment p-value using

complete linkage. However, we found 41 drug class combinations,

spanning 17 different individual drug classes, that were not present

in the background distribution of drug class annotations, even

though individual drugs of each class were present in at least two

datasets. The enrichment statistics for these 41 drug class

combinations were considered missing values. To avoid removing

all 17 individual classes involved in these “missing” class

combinations, which would have also removed classes involved in

enriched combinations, we chose to remove 5 major offender classes

(A02BA, L04AX, L02BB, R05CB, N04CX) to yield a complete

square matrix. None of the drugs from these 5 classes were

present in drug combinations represented in the DCSCAD, and

all of them only contained one drug. This selective pruning

approach enabled us to retain as many individual classes as

possible in our analysis.

After judiciously pruning 5 individual classes to eliminate class

combinations with missing values, we were left with 49 individual

classes corresponding to 1176 class combinations. We performed

hierarchical clustering of individual classes based on their adjusted

p-values for class combination enrichment (Figure 2). We observed

that when both classes target the same ontological function (e.g.

disruption of spindle fiber function), they tend to be enriched in the

DCSCAD. However, we did observe a number of enriched class

combinations where the classes are not known to target the same

pathway or converge on the same ontological function (e.g. HSP90i-
frontiersin.org

https://doi.org/10.3389/fonc.2024.1343091
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


John et al. 10.3389/fonc.2024.1343091
TOP1i). The enrichment of these class combinations with distinct

mechanisms of action in the DCSCAD suggests that the classes

target complementary pathways and therefore have high potential

for an underlying synergistic relationship.

Hierarchical clustering revealed two clusters-of-interest termed

A and B (Figure 2) where classes exhibited very similar enrichment

patterns. Examining these clusters at the drug level (Figure 3)

reveals which individual drug combinations drive class

combination enrichment and can help the user select which

individual agents to use for in vitro follow-up testing.

Furthermore, visualizing these clusters at the drug level sheds

light on intraclass variation in enrichment patterns, which may

provide novel biological insight into mechanisms of action. Figure 3

reveals that the most significantly enriched class combinations are

driven by correlations between multiple drugs in each class rather

than a single drug, suggesting that ReCorDE is picking up on broad

class-class targeting of shared vulnerabilities. Additionally, Figure 3

shows that drug correlation data can be quite sparse as not every

drug combination is tested in an adequate number of cell lines

across datasets. By aggregating this data by class, ReCorDE can

make inferences about relationships between drugs even when

individual drug correlation data is sparse.

When choosing drug class combinations for experimental synergy

testing, we selected criteria to emphasize class pairs with limited

toxicity. We implemented two criteria to prioritize the 111 enriched

class combinations for follow up: 1) if the individual classes target
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distinct pathways; and 2) if the drugs are both targeted therapy versus

at least one being chemotherapeutic. Of the 111 enriched class

combinations, 71 met criterion [1]; and 24 met criteria [1] and [2].

The most significantly enriched class combination amongst these 24

were PARPi-AurKi drug combinations (Hypergeometric test,

p.adj=4.19 x 10-15), which we selected for further experimentation

(Supplementary Table S8). Further details on this process can be found

in Supplementary Methods. The top class combinations meeting

criteria [1] and [2] are shown in Table 2.
4.2 Validation of ReCorDE results

4.2.1 OncoPolyPharmacology dataset
Of the 703 drug comb ina t i on s a s s e s s ed in the

OncoPolyPharmacology dataset, 329 were tested for correlation in

ReCorDE, 49 appeared in the DCSCAD of ReCorDE, and 17

belonged to class combinations that were enriched in the

DCSCAD (n=13 class combinations) (6). Of these 17 drug

combinations, 13 belonged to class combinations enriched in the

DCSCAD targeting distinct pathways (n = 10 class combinations).

Based on these criteria, 9 out of the 10 class combinations with

distinct mechanisms of action that were enriched in the DCSCAD

were considered synergistic. More detailed results can be found in

Supplementary Table S9.

4.2.2 In vitro synergy validation
After determining that PARP inhibitors and Aurora kinase

inhibitors were recurrently correlated in their monotherapy cytotoxic

response across non-hematological cell lines, we next sought to

determine the synergistic potential of these two agents in

combination with one another in a variety of prostate and breast

cancer cell lines. Using a drug combination matrix approach, we

observed a high degree of synergy between Talazoparib (PARPi) and

Alisertib (AurKi) by multiple metrics across prostate and breast cancer

cell lines with a higher proportion of prostate cancer cell lines

demonstrating the combinatorial phenotype (Figure 4, Table 3,

Supplementary Figures 1–4). We also observed synergism between

other combinations of PARPi and AurKi agents (Figure 5). Together,

this data demonstrates a robust class-class synergistic relationship

between PARP and Aurora kinase inhibitors.
4.3 Pathway analysis of PARPi and
AurKi agents

We performed an exploratory post-hoc analysis of AurKi- and

PARPi- gene signatures to investigate possible mechanisms

underlying the synergy between these agents. Using drug

perturbational gene signatures for AurKi and PARPi, we looked

for pathways that were regulated in the same direction by both drug

classes in monotherapy. For AurKi and PARPi drugs which were

correlated together in the DCSCAD, we pulled available exemplar

drug perturbational gene expression signatures done in PC3 cell

lines from CMAP-LINCS (PARPi: Olaparib; AurKi: Tozasertib,
TABLE 2 Top 5 drug class combinations enriched in DCSCAD targeting
different pathways and excluding combinations containing
untargeted therapies.

Class A Class B P (raw) P (FDR)

Aurora
kinase
inhibitors

PARP
inhibitors

1.5 x 10-16 4.19x 10-15

PLK1 inhibitors Inhibitors of
histone-
modifying
agents—
includes BRD
and
HDAC
inhibitors

2.53x 10-14 5.62 x 10-13

BCR-
ABL inhibitors

EGFR
inhibitors

7.30 x 10-12 1.08 x 10-10

BCR-
ABL inhibitors

HER2
inhibitors

3.82 x 10-11 5.08 x 10-10

Aurora
kinase
inhibitors

Inhibitors of
histone-
modifying
agents—
includes BRD
and
HDAC
inhibitors

1.34 x 10-9 1.59 x 10-8
Also excludes combinations containing “miscellaneous-type” categories. Rows correspond to
different drug class combinations identified by Class A and Class B columns. P (raw) contains
the raw p-value from the hypergeometric test used to assess enrichment of each drug class
combination in the DCSCAD. P (FDR) corresponds to the FDR-adjusted version of this
p-value.
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Barasertib, ZM447439, Alisertib) (17). We then used Ingenuity

Pathway Analysis’ activation z-score algorithm on these

signatures to identify pathways activated/repressed by each drug

class (27). We restricted our analysis to IPA canonical pathways,

from which we excluded “disease-specific” pathways to increase the

interpretability and relevance of findings (n=313 pathways). We

considered pathways where the magnitude of activation z-scores

were > 1 and in the same direction for all drugs assessed to be

pathways regulated in the same direction by both classes. Two

pathways met this criteria for both classes: alpha-adrenergic

signaling and NRF2-mediated Oxidative Stress Response

(Supplementary Table S5). This indicates that PARP and Aurora

kinase inhibitors could potentially have a common downstream

impact through either oxidative stress or PKA/C signaling.
5 Discussion

We have shown that ReCorDE is able to identify drug classes

targeting shared vulnerabilities using widely available monotherapy

cytotoxicity datasets; and we have shown that this output can be

used to identify existing and novel synergistic drug combinations.

The ReCorDE approach has important strengths such as

independence from molecular profiling and combinatorial

training data. These features, combined with the use of large
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publicly available monotherapy cytotoxicity datasets, allow

ReCorDE to make inferences about targeting of shared

vulnerabilities for a large number and diversity of drugs.

Furthermore, the use of multi-lineage data allows for

identification of robust drug class relationships, applicable to

multiple cancer types. Additionally, ReCorDE’s rigorous approach

to finding significantly correlated drug pairs increases the accuracy

of its inferences. The modular design of ReCorDE also allows for

facile expansion of input data without requiring extensive

integration efforts. Furthermore, ReCorDE’s simple design allows

for straightforward implementation and makes results easily

interpretable. Finally, by using a phenotype-driven framework to

define drug relationships, ReCorDE is able to prioritize the

identification of shared vulnerabilities across cancers that have

high translational potential.

While ReCorDE has many strengths, it does have some notable

weaknesses such as lack of lineage specificity and requiring manual

annotation and disentanglement of redundant targeting.

By not taking lineage information into consideration, ReCorDE

has reduced sensitivity for lineage-specific drug class relationships;

conversely, this makes ReCorDE inferences broadly applicable to

multiple lineages, potentially having greater clinical impact.

However, the lack of lineage specificity can make applying

ReCorDE to synergistic drug discovery more difficult as it does

not explicitly provide information to aid model selection for in vitro
FIGURE 2

Rows and columns are identical and correspond to different drug classes. Drug classes are labeled with their ATC code followed by a more detailed
definition. Each cell corresponds to a drug class combination of the corresponding row and column drug classes. Cell color denotes the FDR-
corrected p-value for enrichment of the respective drug class combination in the DCSCAD with yellow corresponding to more significant p-values.
This plot was generated based on results after like- and "miscellaneous-type" class removal and after judicious pruning to remove missing cells.
Individual classes are hierarchically clustered by FDR-corrected p-value using Euclidean distance and complete linkage. “Cluster A” is outlined in
solid red; “Cluster B” is outlined in dashed red.
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FIGURE 4

The PARP inhibitor Talazoparib synergizes with the Aurora kinase inhibitor Alisertib (Ali) in prostate cancer cell lines LNCaP, 22Rv1, PC3, and DU145
and breast cancer cell lines MDA453, MDA231, and T47D. An 8-by-5 array of concentrations of Talazoparib-by-Alisertib were tested in triplicate for
cytotoxicity via CyQuant reagent. Dose-reponse curves for additional cell lines are available in Supplementary Figure 2.
A B

FIGURE 3

Fraction of datasets with correlation for drugs in class combination clusters-of-interest. Rows and columns correspond to individual drugs in cluster
A (A) and cluster B (B) Drugs are annotated with their class, and cells are split by class-class combination. Cells color denotes the fraction of datasets
in which a drug pair was correlated in (|r| > 0.25) out of datasets that the drug pair was tested for correlation in. Gray corresponds to like-class drug
combinations and to combinations not tested for correlation in any dataset (“missing”). Drug combinations with fraction correlated > 0.66 were
included in the DCSCAD.
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FIGURE 5

PARP and Aurora kinase inhibitor synergy is observed to be a class-class phenomenon in DU145 cells. (Top) 8 concentrations of two different PARP
inhibitors (Olaparib or Rucaparib) were tested in combination with 5 concentrations of the Aurora kinase inhibitor Alisertib (Ali). (Bottom) 8
concentrations of the PARP inhibitor Talazoparib were tested in combination with 5 concentrations of the Aurora kinase inhibitor Tozasertib (Toza).
All conditions were tested in triplicate.
TABLE 3 Summary of Talazoparib and Alisertib synergy screens in prostate and breast cancer cell lines.

Tissue Cell
Line

Chou-
Talalay CI

Loewe HSA Synergistic
Concentrations

of PARPi

Synergistic
Concentrations

of AurKi

BRCA
Status

Prostate 22RV1 0.249 14.12 16.43 2.6 – 64 nM 64 – 1600 nM BRCA2 fs

LNCaP 0.147 15.15 17.94 0.5 – 12.8 nM 64 – 1600 nM BRCA2 fs

PC3 0.198 11.70 10.49 0.5 – 12.8 nM 64 – 1600 nM BRCA1/2 WT

DU145 0.267 12.59 14.74 12.8 – 320 nM 64 – 1600 nM BRCA1 ms
BRCA2 ms

VCAP 1.56104 10.66 4.58 320 – 8000nM 12.8 – 320 nM BRCA1/2 WT

Breast HCC1395 0.109 11.02 9.37 0.5 – 12.8 nM 64 – 1600 nM BRCA1 ns
BRCA2 ns

HCC1937 0.097 17.54 33.41 12.8 – 320 nM 64 – 1600 nM BRCA1 fs

MCF7 789.019 0.39 5.11 2.6 – 64 nM 64 – 1600 nM BRCA1/2 WT

T47D 0.106 12.79 11.93 0.5 – 12.8 nM 64 – 1600 nM BRCA1/2 WT

HCC70 0.082 16.10 9.54 0.1 – 2.56 nM 64 – 1600 nM BRCA1/2 WT

BT474 Inf 0.26 0.15 64 – 1600 nM 64 – 1600 nM BRCA2 ns

MDA-231 26.8825 13.77 10.63 2.6 – 64 nM 64 – 1600 nM BRCA1/2 WT

MDA-453 0.91 31.78 8.97 2.6 – 64 nM 64 – 1600 nM BRCA1/2 WT
F
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Synergy metrics representing response of Talazoparib (PARPi) and Alisertib (AurKi) in individual cell lines. For each cell line, exact synergy metrics by Chou-Talalay combination index (CI),
Loewe additivity, and HSA are shown. Individual drug concentrations for highest degree of synergy by Loewe additivity is also provided. Tissue and BRCA status are also indicated for each cell
line (28). For BRCA status, WT refers to wild-type, fs refers to frame-shift, ms refers to missense, and ns refers to nonsense. Cell lines where the combination of Talazoparib and Alisertib was
deemed synergistic by all three metrics are highlighted in red.
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follow-up. Theoretically, the ReCorDE framework could be

extended to make inferences about lineage-specific drug

relationships by using linear regression with lineage covariates

rather than Spearman correlations, but using this strategy would

miss non-linear drug relationships and increase ReCorDE’s

sensitivity to outliers; therefore, we have elected to forgo

incorporating lineage information into ReCorDE in favor of

increased stability.

Additionally, ReCorDE as presented requires manual curation

of annotations—this can admittedly be labor-intensive to do

manually. If a user wishes to use ATC-based drug classes for

annotations as we have, there are a number of automated stand-

alone methods for this task that can be used; however, we refrained

from using these in our implementation of ReCorDE as these

methods can fail to support compounds that are not currently

used clinically or may be dependent on perturbational molecular

profiling data (29, 30).

Another limitation of our ReCorDE framework is its inability to

fully capture the complexities associated with the concurrent

application of immunotherapy, anti-angiogenic, and chemotherapy

agents, a common scenario in the multifaceted field of cancer

therapy. Although our model includes specific angiogenesis-

targeted drugs, our cytotoxicity datasets lack vascular and immune

contexts, failing to fully delineate the actions of these drug classes. To

address this gap, there is a need for comprehensive drug screening

datasets, ideally derived from in vivo studies or advanced co-culture

systems, which could more accurately reflect the complex

physiological interactions. Our methodology is flexible and can be

updated to include such datasets. We recognize this as an essential

area for future enhancement and aim to refine our framework to

better accommodate these intricate interactions, thereby improving

its clinical applicability and relevance.

Using ReCorDE, we identified prominent patterns of mutual

susceptibilities to DNA damaging agents and cell cycle inhibitors.

Of particular interest was the identification of shared vulnerabilities

to PARP inhibitors and Aurora kinase inhibitors, which also

represented a potential novel synergistic cytotoxic drug

combination for breast and prostate cancers. The rationale for

why these particular drugs are particularly of note is that (a)

these drugs, especially PARP inhibitors, have been studied

extensively in these cancers but have not been tested in these

cancers together; (b) PARP inhibitors are known to be effective in

homologous recombination (HR) deficient settings, but resistance is

common; and (c) there is prior evidence to suggest connections

between the pathways these drugs target. Specifically, DNA damage

can have roles in dysregulating mitosis; both HR and Aurora kinase

members have been identified as being involved in the DNA

damage response, and both Aurora kinase and HR members have

been shown to directly be involved in late cell cycle and/or mitosis

(31–36). Previous work in two ovarian cancer cell lines has shown

Rucaparib and Olaparib synergizing with Alisertib through a

proposed Aurora A-induced BRCAness phenotype (37, 38).

Additionally, post-hoc analysis suggested that the underlying

synergy mechanism between these two classes may be through

shared perturbation of the NRF2-mediated oxidative stress
Frontiers in Oncology 11
response or PKA/C signaling. These pathways are known to

cross-talk with each other, and the NRF2 pathway has been

shown to play a role in the DNA damage response, in which

targets of both drug classes play a role (39–42).
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SUPPLEMENTARY FIGURE S1

Sequential dosing of the PARPi Talazoparib followed by the AurKi Alisertib

demonstrates a superior synergistic effect compared to concurrent dosing in
22RV1 cells. 5 concentrations of Talazoparib and Alisertib were tested in

triplicate for cytotoxicity via CyQuant Reagent. The concentration ratio of
Talazoparib to Alisertib was fixed at 1:25. Chou-Talalay combination index

(CI), Loewe additivity, and HSA synergy metrics for each dosing scheme are

noted on each panel. (Left) Sequential administration of Alisertib followed by
Talazoparib. (Center) Concurrent administration of Alisertib and Talazoparib.

(Right) Sequential administration of Talazoparib followed by Alisertib.

SUPPLEMENTARY FIGURE S2

Additional dose-response curves between Talazoparib and Alisertib. Dose-

response curves correspond to assays documented in Table 3 that are not

already presented in Figure 4. Assays were performed in the prostate cancer
cell line VCAP and the breast cancer cell lines MCF7, HCC70, HCC1395,

and BT474.
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SUPPLEMENTARY FIGURE S3

Surface plots depicting Loewe additivity and HSA synergy scores for
Talazoparib and Alisertib in the prostate cancer cell lines 22RV1, PC3,

LNCaP, and DU145. Most synergistic area scores (MSAS) are noted in the

bottom right corner of each plot.

SUPPLEMENTARY FIGURE S4

Combination index plots for Talazoparib and Alisertib in the prostate cancer

cell lines 22RV1, PC3, LNCaP, and DU145. Chou-Talalay combination index
(CI) scores are shown for different Talazoparib:Alisertib ratios and ED-cutoffs.

SUPPLEMENTARY TABLE S1

Name standardization across CTRP, GDSC, and PRISM datasets.

SUPPLEMENTARY TABLE S2

List of agents present in two or more of the three monotherapy cytotoxicity
datasets and corresponding ATC codes.

SUPPLEMENTARY TABLE S3

ATC code definitions used in ReCorDE.

SUPPLEMENTARY TABLE S4

CMAP signatures used for post-hoc investigation of PARPi-AurKi synergy..

SUPPLEMENTARY TABLE S5

Step-by-step results from post-hoc investigation of PARPi-AurKi synergy.

SUPPLEMENTARY TABLE S6

Drug combinations significantly correlated across datasets (DCSCAD).

SUPPLEMENTARY TABLE S7

Enrichment results.

SUPPLEMENTARY TABLE S8

Annotated significant enrichment results.

SUPPLEMENTARY TABLE S9

ReCorDE validation on Merck’s OncoPolyPharmacology screen.
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