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1Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University,
Hangzhou, Zhejiang, China, 2Clinical Research Center for Neurological Diseases of Zhejiang Province,
Hangzhou, China, 3Department of Neurosurgery, Hangzhou First People’s Hospital, Hangzhou, China,
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Brain Science, Zhejiang University, Hangzhou, China
Introduction: Tumor treating fields (TTFields) have earned substantial attention

in recent years as a novel therapeutic approach with the potential to improve the

prognosis of glioblastoma (GBM) patients. However, the impact of TTFields

remains a subject of ongoing debate. This study aimed to offer real-world

evidence on TTFields therapy for GBM, and to investigate the clinical

determinants affecting its efficacy.

Methods: We have reported a retrospective analysis of 81 newly diagnosed

Chinese GBM patients who received TTFields/Stupp treatment in the Second

Affiliated Hospital of Zhejiang University. Overall survival (OS) and progression-

free survival (PFS) were analyzed using Kaplan–Meier method. Cox regression

models with time-dependent covariates were utilized to address non-

proportional hazards and to assess the influence of clinical variables on PFS

and OS.

Results: The median PFS and OS following TTFields/STUPP treatment was 12.6

months (95% CI 11.0-14.1) and 21.3 months (95% CI 10.0–32.6) respectively.

Long-term TTFields treatment (>2 months) exhibits significant improvements in

PFS and OS compared to the short-term treatment group (≤2 months). Time-

dependent covariate COX analysis revealed that longer TTFields treatment was

correlated with enhanced PFS and OS for up to 12 and 13 months, respectively.

Higher compliance to TTFields (≥ 0.8) significantly reduced the death risk

(HR=0.297, 95%CI 0.108-0.819). Complete surgical resection and MGMT

promoter methylation were associated with significantly lower risk of

progression (HR=0.337, 95% CI 0.176-0.643; HR=0.156, 95% CI 0.065-0.378)

and death (HR=0.276, 95% CI 0.105-0.727; HR=0.249, 95% CI 0.087-0.710).
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Conclusion: The TTFields/Stupp treatment may prolong median OS and PFS in

GBM patients, with long-term TTFields treatment, higher TTFields compliance,

complete surgical resection, and MGMT promoter methylation significantly

improving prognosis.
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1 Introduction

Glioblastoma (GBM) stands out as a formidable and highly lethal

disease, characterized by early recurrence and a gloomy prognosis (1–

3). The multimodal approach to GBM treatment includes surgical

intervention, radiotherapy, systemic chemotherapy and targeted

therapy. Despite these combined therapeutic efforts, the outcomes

remain stark, with most clinical investigations demonstrating a

median overall survival (OS) of about 15 months (4, 5) and a 5-

year survival rate of merely 5.8% (6, 7).

Tumor treating fields (TTFields) is an alternating electric field that

deliver a low-intensity, mid-frequency electrical field of 200kHz,

which impedes cell proliferation by disrupting the mitotic spindle,

ultimately resulting in the disintegration of proliferating cells (8).

TTFields has shown effectiveness in a range of studies, including in

vitro cellular assays, in vivo animal models, and clinical trials involving

GBM patients (9). Its promising therapeutic results have significantly

changed first-line clinical management of GBM worldwide (10–12).

Recently, several clinical investigations, including the EF-14

randomized trial, have unequivocally exhibited that incorporating

TTFields treatment with temozolomide (TMZ) chemotherapy yields

a significant improvement in both PFS and OS of GBM patients (13–

15). Although the results of these studies have led to the

recommendation of TTFields treatment in GBM patients by Food

and Drug Administration (FDA) and Chinese Glioma Cooperative

Group (CGCG), there exist reports suggesting inconspicuous

effectiveness of TTFields therapy (16). Owing to the skepticism

induced by this variability in outcomes, some medical practitioners

are adopting a cautious, observational stance (17, 18).

In this retrospective study, we evaluated a cohort of 81 newly

diagnosed GBM patients treated with the TTFields/Stupp regimen,

and investigated the impact of various clinical characteristics on

both PFS and OS, especially focusing on treatment duration and

patient compliance. This study aims to provide real-world evidence

in guiding future applications of TTFields in GBM patients.
2 Methods

2.1 Patients and data collection

We recruited GBM patients who underwent surgery in several

hospitals across Zhejiang Province from June, 2019 and December,
02
2022. After surgery, all these patients received the TTFields

treatment and standard Stupp regimen at the Second Affiliated

Hospital of Zhejiang University. Our study included patients

meeting the following criteria: (1) age of 18 years or older, (2)

histologically confirmed diagnosis of GBM, (3) newly diagnosed

GBM, (4) TTFields treatment duration of at least 4 weeks. Informed

consent was obtained from all patients. Approval was granted by the

Ethics Committee of Second Affiliated Hospital, School of

Medicine, Zhejiang University, Hangzhou, China, 313000 (No.,

2023-1172).

After pathologically confirming the GBM diagnosis, all patients

received the chemoradiotherapy regimen originally prescribed

according to Stupp et al (4). Radiotherapy was given as daily

dosage of 1.8-2.0 Gy for 30 fractions, with 2 days’ rest after

every 5 days’ treatment. During radiotherapy, concurrent oral

temozolomide was administered daily at a dose of 75mg/m² for

42 days. The adjuvant chemotherapy phase commenced 4 weeks

later. Oral temozolomide was prescribed at a daily dosage of 150-

200mg/m² for 5 consecutive days, with repetitions every 28 days,

until completion of 12 cycles. TTFields treatment began either with

or after radiotherapy and persisted until discontinuation due to

tumor progression, financial limitations, patient refusal, or

other factors.

Patients were routinely required to visit the outpatient clinic

every 2 months for clinical evaluation and MRI scanning. If patients

complained of any additional neurological symptoms, they would

contact us for immediate examination. In cases when patients

missed their appointment by more than 2 months, a telephone

follow-up was initiated to assess their condition and remind them of

the outpatient clinic appointment. The MRI scans were evaluated

by two senior neuroradiologists to determine tumor progression.

An independent third neuroradiologist (J.Z) would conduct an

additional blinded evaluation if there was a disparity between the

two senior neuroradiologists. The final results were selected

according to the consensus between either two neurosurgeons.

All data collection was performed by the two neurosurgeons

(X.W and A.Z). Baseline characteristics included age, gender,

Karnofsky performance status score (KPS), extent of surgical

resection, tumor location, TTFields treatment duration, patient

compliance, progression-free survival (PFS), and overall survival

(OS). Detailed review of medical records was performed for each

participant in the trial. Comprehensive data on tumor pathology,

treatments administered, and survival outcomes were compiled
frontiersin.org
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and analyzed. OS was defined as the interval from receiving surgical

treatment to death from any cause, and PFS was defined as the time

from receiving surgical treatment to confirmed disease progression

based on imaging assessments. Gross total resection was

determined by the surgical procedure and postoperative images.

Specific pathological information on GBM was sourced from either

our center’s pathology department or molecular laboratories.

Compliance was assessed monthly based on the average daily

usage percentage.
2.2 Statistical analysis

The Shapiro-Wilk test was used to test the normality. The

median with the interquartile range from the first to the third

quartile (Q1-Q3) were used for continuous variables with skewed

distributions. Categorical variables were presented as number and

percentage. Comparisons between groups were performed using the

nonparametric Mann-Whitney U test for continuous variables, and

Chi-square test or Fisher’s exact test for categorical parameters.

Univariate Kaplan-Meier analyses employing both the log-rank test

and Breslow test to compare difference in survival times. Clinical

variables were assessed for proportional hazards assumption

through time-dependent covariate analysis, with ln(time) as the

defined time-dependent covariate. For clinical variables (X) that

failed to meet the proportional hazards assumption, we constructed

an interaction term [X*ln(time)] combining the variable (X) with

the time-dependent covariate ln(time), and this term was then

integrated into Cox regression model (19–22).

Continuous variables, including age, baseline KPS, usage time of

TTFields, and average compliance of TTFields were turned into

categorical variables: age ≥ 65, KPS >80, usage time of TTFields > 2

months, and average compliance of TTFields ≥ 0.8. The

determination of cutoff values for the usage time and average

compliance of TTFields was primarily based on findings from

prior studies (23, 24). Variables with p values less than 0.10 in

the univariate analysis were involved in the multivariate analysis

utilizing Cox regression models with time-dependent covariate. All

p-values were two-tailed, and a p-value < 0.05 was considered

statistically significant. Analysis was performed using SPSS 26.0

(IBM Corporation, Armonk, NY, USA). Survival curves were

generated using GraphPad Prism 9.0.0 (GraphPad Software, San

Diego, CA, USA). Function graphs were generated using Origin,

2022 (OriginLab Corporation, Northampton, MA, USA).
3 Results

3.1 Study population

A total of 118 patients subjected to TTFields treatment at our

institution between June, 2019 and December, 2022 was recruited.

Following the exclusion of 13 patients with non-GBM pathologies,

17 patients diagnosed with secondary GBM, and 7 patients who
Frontiers in Oncology 03
became lost to follow-up, a resultant sample of 81 patients with

newly diagnosed GBM and subjecting to TTFields therapy were

included in this investigation. None of the patients had a history of

other major comorbidities. The median follow-up of this study was

18.9 months (95% CI 14.3-23.5). The detailed demographic and

clinical data were listed in Table 1.

Among 81 patients enrolled, 49.4% were female. The median

age was 55 years (Q1-Q3 42-64), with 19% of individuals being aged

65 or older. The median Karnofsky performance status score (KPS)

of the patients was 90 (Q1-Q3 90-90), and 80.2% of them exhibited

a baseline KPS exceeding 80. Tumor localization was classified into

frontal (22.2%), superficial excluding the frontal lobe (59.3%), and

midline/deep structure/infratentorial (18.5%) regions. Additionally,

gross total tumor resection (accessed by intraoperative assessment

and postoperative imaging) was accomplished in 44.4% of patients.

IDH mutant status, MGMT methylation, and TERT promoter

were evaluated based on patients’ pathology reports. After

surgery, all patients underwent the recommended TTFields

therapy alongside standard temozolomide chemotherapy and

radiotherapy (Stupp regimen).

The analysis of TTFields application data revealed that among

81 patients, 59 (72.8%) used TTFields for more than 2 months, with

median duration of 7 months (Q1-Q3 2-11). Moreover, 71 patients

(87.8%) attained an average compliance rate exceeding 0.8, with a

median compliance of 0.9 (Q1-Q3 0.8-0.9). Univariate analysis

revealed significant difference in baseline KPS and average

TTFields compliance between long-term TTFields group (>2

months) and short-term TTFields group (≤2 months). The KPS

scores and the percentage of patients with KPS >80 were

considerably greater in the long-term TTFields group compared

to short-term group (p=0.002 and p=0.009, respectively).

Additionally, the long-term TTFields group (>2 months)

exhibited higher treatment compliance and a larger fraction of

patients with high compliance (≥0.80) compared to their short-term

(≤2 months) counterparts (p=0.001 and p=0.035). Moreover, no

significant difference was found between the groups in terms of

gender, age, educational background, other tumor characteristics,

and surgical methods.
3.2 Univariate Kaplan-Meier analyses

This study found that the median PFS and median OS for

patients receiving TTFields along with the Stupp protocol were 12.6

months (95% CI 11.0-14.1) and 21.3 months (95% CI 10.0-32.6),

respectively (Figure 1). Kaplan-Meier analyses of PFS and OS were

performed across multiple clinical parameters, as detailed in

Table 2. Usage time of TTFields, average compliance of TTFields,

extent of surgical resection, andMGMT promoter methylation were

significantly associated with patients’ survival time.

Patients from the long-term TTFields group (>2 months)

exhibited significantly longer PFS and OS compared to those

from the short-term group, with Breslow p-values of 0.009 for

PFS and 0.049 for OS. The median PFS was 13.1 months (95% CI
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11.9-14.3) for the long-term group and 11.5 months (95% CI 5.3-

17.7) for the short-term group. Median OS was 23.4 months (95%

CI 12.0-34.8) for the long-term group and 21.3 months (95% CI

11.3-31.3) for the short-term group. In terms of average compliance

with TTFields, there was a remarkable extension of OS in the high-

compliance group (≥0.80) as compared to the low-compliance

group (<0.80). The median OS was 33.7 months (95% CI 14.5-

52.9) and 16.5 months (95% CI 10.4-22.7) in high- and low-

compliance groups respectively (Log-rank p=0.001, Breslow

p=0.002). However, PFS did not differ significantly between these

two groups.

The extent of surgical resection was significantly correlated with

both PFS (Log-rank p=0.027, Breslow p=0.002) and OS (Log-rank

p=0.016, Breslow p=0.031). Patients with incomplete resections had

a median PFS of 10.6 months (95% CI 10.2-10.9), while patients

with complete resections had a median PFS of 16.2 months (95% CI

11.7-20.7). In terms of OS, patients who received incomplete

resection had a median OS of 18.8 months (95% CI 15.5-22).

Compared to this, patients who underwent complete resection

had a longer OS, and did not reach the median overall survival

during the follow-up period.
Frontiers in Oncology 04
The different methylation status of MGMT promoter showed

significant statistical difference in both PFS (Log-rank p<0.001,

Breslow p <0.001) and OS (Log-rank p=0.037, Breslow p=0.05). The

PFS and OS were significantly longer in the MGMT promoter-

methylated group compared to the non-methylated group. During

the follow-up period, the MGMT promoter-methylated group’s

median OS was not attained, and the non-methylated group

demonstrated a median OS of 18.8 months (95% CI 12.8-24.8).

The median PFS for the two groups were 26.8 months (95% CI 11.5-

42.2) and 9.4 months (95% CI 6.9-11.9), respectively.

Besides, no significant differences in PFS or OS were observed in

relation to mutations in other molecular markers, including IDH

and the TERT promoter. And other factors such as gender, age,

baseline KPS, and tumor location were not significantly associated

with survival times in the Kaplan-Meier analysis.
3.3 Proportional hazards assumption

Before incorporating any clinical variables into the multivariate

COX model, we must ensure that each variable meets the
TABLE 1 Patient characteristics.

81 GBM patients receiving TTFields treatment

Total
(n = 81)

TTFields time ≤ 2 m
(n = 22)

TTFields time> 2 m
(n = 59)

p-Value

Gender Female 40 (49.4) 9 (40.9) 31 (52.5) 0.352

Age (y) Median (Q1-Q3) 55 (42-64) 59.5 (46.75-68.25) 55 (40-64) 0.226

Age ≥ 65 19 (23.5) 7 (31.8) 12 (20.3) 0.278

Educational background High school degree & above 45 (55.6) 9 (40.9) 36 (61.0) 0.105

Baseline KPS Median (Q1-Q3) 90 (90-90) 90 (70-90) 90 (90-90) 0.002

KPS > 80 65 (80.2) 13 (59.1) 52 (88.1) 0.009

Tumor location

Frontal lobe 18 (22.2) 8 (36.4) 10 (16.9)

0.089Superficial hemisphere 48 (59.3) 9 (40.9) 39 (66.1)

Midline/deep structure/infratentorial 15 (18.5) 5 (22.7) 10 (16.9)

Extent of surgical resection Gross total resection 36 (44.4) 9 (40.9) 27 (45.8) 0.696

IDH mutant status

Wild type 75 (92.5) 21 (95.5) 54 (91.5)

1Mutated 5 (6.2) 1 (4.5) 4 (6.8)

Invalid 1 (1.2) 0 1 (1.7)

MGMT promoter methylation

Unmethylated 33 (40.7) 12 (54.5) 21 (35.6)

0.304Methylated 24 (29.6) 5 (22.7) 19 (32.2)

Invalid 24 (29.6) 5 (22.7) 19 (32.2)

TERT promoter mutation

Wild type 22 (27.2) 7 (31.8) 15 (25.4)

0.845Mutated 32 (39.5) 8 (36.4) 24 (40.7)

Invalid 27 (33.3) 7 (31.8) 20 (33.9)

Average compliance of TTFields
Median (Q1-Q3) 0.9 (0.8-0.9) 0.8 (0.79-0.88) 0.9 (0.84-0.9) 0.001

Average compliance ≥ 0.80 71 (87.7) 16 (72.7) 55 (93.2) 0.035
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TABLE 2 The Kaplan-Meier analyses for PFS and OS in GBM patients.

PFS OS

Median
PFS

(95% CI)

Log-rank
test

p-value

Breslow
test

p-value

Median
OS

(95% CI)

Log-rank
test

p-value

Breslow
test

p-value

Gender

Male
12.7

(11.1-14.2)
0.953 0.573

19.4
(14.6-24.3)

0.79 0.928

Female
12.0

(9.5-14.5)
23.4

(15.4-NA)

Age (y)

< 65
12.9

(9.2-16.5)
0.287 0.315

33.7
(15.6-51.8)

0.546 0.933

≥ 65
11.5

(9.9-13.1)
18.8

(13.3-24.3)

Baseline KPS

KPS ≤ 80
10.6

(3.0-18.1)
0.341 0.052

19.7
(15.0-24.5)

0.148 0.064

KPS >80
12.6

(10.9-14.2)
33.7

(11.6-55.8)

Tumor location

Frontal lobe
12.0

(10.8-13.2)

0.752 0.923

NR

0.688 0.984Superficial hemisphere
13.1

(10.7-15.5)
19.4

(14.8-24.0)

Midline/deep
structure/infratentorial

18.9
(9.9-27.9)

19.7
(11.0-28.5)

Extent of
surgical resection

Partial resection/Biopsy
10.6

(10.2-10.9)
0.027 0.002

18.8
(15.6-22.0)

0.016 0.031

Gross total resection
16.2

(11.7-20.7)
NR

IDH mutant status

Wild type
12.5

(11.2-13.7)

0.398 0.544

19.7
(16.7-NA)

0.325 0.305
Mutated

29.1
(0.0-67.0)

NR

Invalid NA NA

MGMT
promoter methylation

Unmethylated 9.4 (6.9-11.9)

<0.001 <0.001

18.8
(12.8-24.8)

0.037 0.05

Methylated
26.8

(11.5-42.2)
NR

(Continued)
F
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FIGURE 1

Kaplan–Meier survival curves in PFS and OS for all 81 GBM patients. Progression-free survival (PFS) is shown in (A) and overall survival (OS) in (B).
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proportional hazards assumption (Table 3). The analysis showed

that the usage time of TTFields was significantly associated with the

time-dependent covariate for both PFS and OS (p-values of 0.018

and 0.032, respectively), thereby violating the proportional hazards

assumption. Additionally, other clinical variables, including

Baseline KPS, extent of surgical resection, MGMT promoter

methylation, and average compliance of TTFields, met the

proportional hazards assumption as they did not show a

significant association with the time-dependent covariate.
Frontiers in Oncology 06
3.4 Multivariate analysis

Clinical variables showing a Log-rank or Breslow p-value below

0.1 in univariate Kaplan-Meier analysis were selected for

multivariate analysis. The usage time of TTFields was integrated

with time-dependent covariates to develop multivariate Cox models

to analyze these included clinical variables (Tables 4, 5).

Multivariate analysis indicated significant effects of TTFields

usage duration on both PFS and OS (p= 0.003 and 0.028,
TABLE 2 Continued

PFS OS

Median
PFS

(95% CI)

Log-rank
test

p-value

Breslow
test

p-value

Median
OS

(95% CI)

Log-rank
test

p-value

Breslow
test

p-value

Invalid
13.3

(12.0-14.5)
33.7 (0.0-NA)

TERT
promoter mutation

Wild type
10.7

(8.0-13.4)

0.223 0.107

NR

0.44 0.282Mutated
12.5

(10.8-14.1)
21.3

(13.1-29.6)

Invalid
13.1

(7.0-19.2)
19.7

(14.7-24.7)

Usage time of TTFields

≤ 2 months
11.5

(5.3-17.7)
0.118 0.009

21.3
(11.3-31.3)

0.389 0.049

> 2 months
13.1

(11.9-14.3)
23.4

(12.0-34.8)

Average compliance
of TTFields

< 0.8
11.5

(10.3-12.7)
0.831 0.705

16.5
(10.4-22.7)

0.001 0.002

≥ 0.8
12.7

(11.4-14.0)
33.7

(14.5-52.9)
NR, Not Reached; NA, Not Applicable.
TABLE 3 Using time-dependent covariate to test whether each clinical factor met the proportional hazards assumption.

PFS OS

Time-dependent covariate

HR (95% CI) p-value HR (95% CI) p-value

Baseline KPS
KPS ≤ 80

1.61 (0.72-3.56) 0.244 6.77 (0.758-60.48) 0.087
KPS >80

Extent of surgical resection
Partial resection/Biopsy

2.735 (0.87-8.65) 0.087 1.99 (0.24-16.37) 0.523
Gross total resection

MGMT promoter methylation

Unmethylated

1.49 (0.81-2.76) 0.203 1.36 (0.63-2.96) 0.437Methylated

Invalid

Usage time of TTFields
≤ 2 months

3.35 (1.23-9.13) 0.018 46.77 (1.39-1573.73) 0.032
> 2 months

Average compliance of TTFields
< 0.8

2.63 (0.89-7.77) 0.079 2.43 (0.27-21.79) 0.429
≥ 0.8
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TABLE 5 Multivariate COX model with Time-dependent covariate for OS.

B HR

Multivariate Analysis

Adjusted
p-Value

95% CI

Lower Upper

Usage time of TTFields

≤ 2 months 1

> 2 months -10.549 0.000 0.000 0.313 0.028

Time-dependent covariate 4.095 60.043 1.596 2258.515 0.027

Baseline KPS

≤ 80 1

> 80 0.373 1.452 0.542 3.891 0.459

Extent of surgical resection

Partial resection/Biopsy 1

Gross total resection -1.289 0.276 0.105 0.727 0.009

MGMT promoter methylation

Unmethylated 1

Methylated -1.391 0.249 0.087 0.710 0.009

Invalid -0.853 0.426 0.166 1.096 0.077

Average compliance of TTFields

< 0.8 1

≥ 0.8 -1.213 0.297 0.108 0.819 0.019
F
rontiers in Oncology
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TABLE 4 Multivariate COX model with Time-dependent covariate for PFS.

B HR

Multivariate Analysis

Adjusted
p-Value

95% CI

Lower Upper

Usage time of TTFields

≤ 2 months 1

> 2 months -3.243 0.039 0.004 0.344 0.003

Time-dependent covariate 1.282 3.604 1.323 9.820 0.012

Baseline KPS

≤ 80 1

> 80 0.819 2.269 0.993 5.182 0.052

Extent of surgical resection

Partial resection/Biopsy 1

Gross total resection -1.089 0.337 0.176 0.643 0.001

MGMT promoter methylation

Unmethylated 1

Methylated -1.855 0.156 0.065 0.378 <0.001

Invalid -1.054 0.349 0.165 0.738 0.006
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respectively). Given the violation of the proportional hazards

assumption, the hazard ratios (HRs) for TTFields usage were

time-variant, with the long-term TTFields usage group (>2

months) exhibiting HRs below 1 before 12 and 13 months of

follow-up (Figures 2A, B, 3). These findings imply that, over a

follow-up period of approximately one-year, long-term TTFields

therapy (>2 months) substantially decreases the risk of tumor

progression and mortality relative to short-term therapy (≤ 2

months). Additionally, the high-compliance group (≥ 0.80)

exhibited a markedly lower mortality risk than the low-
Frontiers in Oncology 08
compliance group (<0.80) (OS HR=0.297, 95% CI 0.108-0.819,

p=0.019) (Figure 2D).

The patients who underwent complete tumor resection had

significantly lower risks of tumor progression and death (PFS

HR=0.337, 95% CI 0.176-0.643, p=0.001; OS HR=0.276, 95% CI

0.105-0.727, p=0.009) (Figures 2E, F). Likewise, the MGMT

promoter-methylated cohort exhibited significantly lower risks of

progression and mortality than their unmethylated counterparts

(PFS HR=0.156, 95% CI 0.065-0.378, p<0.001; OS HR=0.249,

95% CI 0.087-0.710, p=0.009) (Figures 2G, H). Additionally,
B

C D

E F

G H

A

FIGURE 2

Kaplan–Meier survival analysis for comparing the prognostic impact of various clinical variables. Progression-free survival (PFS) and overall survival (OS)
are shown in the first and second columns of the figure, respectively. (A, B) Differences in PFS/OS among TTFields usage time groups. (C, D) Differences
in PFS/OS among TTFields average compliance groups. (E, F) Differences in PFS/OS among surgery extension groups. (G, H) Differences in PFS/OS
among MGMT promoter methylation groups. Dashed lines represent estimated 95% confidence intervals of the hazard ratios (HRs).
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multivariate analysis showed that neither high (>80) nor low (≤ 80)

baseline KPS significantly affected patient survival outcomes (PFS

p-value = 0.052; OS p-value = 0.459).
4 Discussion

GBM is one of the deadliest and most challenging diseases, with

the majority of reports demonstrating a median PFS of 6.2-7.5

months and a median OS of only 14.6-16.7 months (13). Prior

clinical studies have highlighted the potential of TTFields therapy,

an innovative and promising treatment, to significantly improve

both PFS and OS for GBM patients when combined with Stupp

regimen (13, 14). Nevertheless, TTFields has not gained essential

global recognition as the established standard of care for primary

GBM treatment, and it has not yet found its place within the

guideline of the European Association of Neuro-Oncology

treatment (15). In this retrospective study, we analyzed a total of

81 newly diagnosed GBM patients who underwent TTFields/

Stupp regimen, and investigated the impact of various clinical

characteristics on both OS and PFS. We hope that the results of

this study will provide valuable evidence to inform future treatment

strategies for GBM.

The therapeutic efficacy of TTFields/Stupp regimen remains a

prominent focus. Taking a comparative lens, the EF-14 trial

delineated a median PFS of 6.7 months (95% CI 6.1-8.1) and OS

of 20.9 months (95% CI 19.3-22.7) for patients treated with

TTFields/Stupp regimen (13). Another study from China posited

a median PFS of 16 months (95% CI 9.6-24.6) and OS of 21.8

months (95% CI 17.4-NA) (14). In our study, the median PFS was

12.6 months (95% CI 11.0-14.1), positioning it between the results

of the two aforementioned studies. The median overall survival

(OS) in our cohort was 21.3 months (95% CI 10.0-32.6), aligning

closely with the outcomes of the previously mentioned studies.

These comparisons demonstrated the consistent effects of TTFields/

Stupp regimen across different cohorts. The observed median OS in

our cohort was 21.3 months. Although our study lasks a control

group for Stupp-only treatment, we could compare our data to the

previously reports as reference, which showed median OS of 16 and
Frontiers in Oncology 09
15 months with Stupp treatment alone (13, 14). This result suggests

that integrating TTFields with the Stupp regimen could markedly

enhance the survival prognosis for GBM patients.
4.1 Impact of TTFields therapy duration on
survival outcomes

The Kaplan-Meier survival analysis revealed that patients in the

long-term TTFields usage group (>2 months) exhibited improved

prognoses compared to those in the short-term usage group (≤ 2

months) (Figures 2A, B, Table 2). The median PFS in the long-term

group (>2 months) was 13.1 months (95% CI 11.9-14.3) versus 11.5

months (95% CI 5.3-17.7) in the short-term group (≤ 2 months)

(Breslow p = 0.009). The median OS reached 23.4 months (95% CI

12.0-34.8) in the long-term group (>2 months), in contrast to 21.3

months (95% CI 11.3-31.3) in the short-term group (≤ 2 months)

(Breslow p = 0.049). The Breslow test alone reached statistical

significance, unlike the Log-rank test, indicating more pronounced

early follow-up prognostic differences between these groups (25).

Analysis revealed that the usage time of TTFields treatment did not

satisfy the proportional hazards assumption (Table 3). Time-

dependent multivariate Cox analysis revealed that long-term

TTFields usage (>2 months) was significantly associated with

both progression (p=0.003) and mortality risks (p=0.028)

(Tables 4, 5), and that the HRs increased gradually, approaching

1 at 12 and 13 months of follow-up (Figure 3). The usage time of

TTFields treatment has a higher HR during early follow-up, and

this finding aligns with the results of the univariate K-M analysis,

where only the Breslow test reached statistical significance. We

speculate that this might be due to the poor prognostic

characteristics of GBM. As postoperative recurring tumors

gradually proliferate, the heterogeneity of the tumor changes, and

the therapeutic efficacy of TTFields also gradually diminishes (26).

In summary, our study is the first report demonstrating that

GBM patients undergoing long-term TTFields treatment (>2

months) exhibit a statistically significant improved PFS and OS

compared to the short-term treatment group (≤2 months).

Although the protective benefits of long-term TTFields treatment
BA

FIGURE 3

The function graphs of time-dependent HR values for Long-term TTFields treatment (>2 months). (A) The time-dependent HR values in
progression-free survival (PFS). (B) The time-dependent HR values in overall survival (OS).
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appear to diminish over time, they still convey a reduced risk of

progression and death during the follow-up exceeding 12 months.

Glas and colleagues conducted a radiological study on GBM

patients who used TTFields for more than 2 months, finding that

TTFields suppressed tumor progression in a dose-dependent

manner (23). This aligns with our findings, endorsing the

advantages of prolonged and higher-dose TTFields therapy in

GBM patients. Interestingly, in our cohort, patients treated with

the short-term TTFields (≤2 months) had a median PFS and OS of

11.5 months and 21.3 months, respectively. This outcome still

surpasses the prognosis of Stupp-only treatment. As a matter of

fact, the majority of patients (95.5%) in the short-term TTFields

treatment group (≤ 2 months) completed the 2-month regimen,

indicating a 2-month duration of TTFields treatment may confer

significant therapeutic benefits. Further research with control

groups and larger cohorts is necessary to confirm this hypothesis.
4.2 Impact of TTFields therapy compliance
on survival outcomes

The compliance with TTFields therapy has been shown to be a

critical determinant influencing patients’ outcomes (27, 28). The

PRiDe study suggested a median compliance rate of 75%

for TTFields (using the device for ≥18 hours per day) (24).

According to the actr-27 study, an average monthly compliance

of at least 50% was necessary to meaningfully prolong PFS and OS,

with higher compliance correlating with improved prognoses (29).

The EF-14 phase 3 trial reported a compliance rate of 75% and a

median PFS of 6.7 months (13), whereas our cohort achieved a

higher compliance rate of 90% and a prolonged median PFS of 12.6

months. However, a Chinese study with a median compliance rate

of 85% and median PFS of 16 months (14), along with another

study of only 16 GBM patients showing a compliance rate of 83%

and median PFS of 20 months (30), highlights the variability in PFS

outcomes across different studies. Our data, corroborated by

previous studies (31), indicate that high TTFields treatment

compliance may prolong PFS. Yet, given the inter-center

variations in median PFS, larger multicenter studies are required.

With respect to OS, our results revealed a median OS of 21.3

months, consistent with the phase 3 EF-14 trial’s median OS of 20.9

months and a Chinese center’s 21.8 months (13, 14). These findings

support the association of high compliance to TTFields with

increased OS.

Furthermore, we examined the prognostic disparities between

patient groups with compliance rates below 0.8 and those 0.8 or

above. PFS did not significantly differ between the groups (Log-rank

p=0.831). However, a significant disparity was observed in OS (Log-

rank p=0.001). Patients with ≥0.8 compliance had a median OS of

33.7 months (95% CI 14.5-52.9), in stark contrast to a median OS of

16.5 months in patients with <0.8 compliance (95% CI 10.4-22.7)

(Table 2, Figures 2C, D). The multivariate COX model for OS

(Table 5) suggested that higher compliance to TTFields (≥ 0.8)

significantly reduces the risk of death (HR=0.297, 95%CI 0.108-

0.819). In summary, our study confirms that long-term TTFields

treatment and high compliance to TTFields therapy significantly
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improve the prognosis of GBM patients. Therefore, clinicians

should emphasize the importance of maintaining TTFields

treatment protocols with patients.
4.3 Other clinical variables affecting
survival outcomes

Our study found no significant prognostic correlation with

clinical variables such as gender, age, baseline KPS, or tumor

location. However, the extent of surgical resection and MGMT

promoter methylation were significantly associated with prognosis

in both univariate and multivariate analysis.

Regarding surgical resection, patients undergoing gross total

resection demonstrated significantly improved PFS and OS

compared to those with partial resection/biopsy (Figures 2E, F),

with reduced risk of progression (HR=0.337, 95% CI 0.176-0.643)

and death (HR=0.276, 95% CI 0.105-0.727). This aligns with prior

research indicating that complete tumor resection can substantially

lessen tumor burden, thus benefiting GBM patient outcomes (24).

In the context of molecular biomarkers for tumors, our findings

indicated a significant increase in both PFS and OS associated with

MGMT promoter methylation (Figures 2G, H). Specifically,

MGMT promoter methylation resulted in a marked decrease of

recurrence risk (HR=0.156, 95% CI 0.065-0.378) and mortality

risk (HR=0.249, 95% CI 0.087-0.710), which corroborates

existing literature on TTFields therapy (32, 33). Patients with

MGMT-methylated tumors had superior prognoses, potentially

attributable to increased temozolomide (TMZ) sensitivity in these

tumors (34). Notably, recent research on human GBM cell lines

indicated a synergistic effect of combining TTFields with

chemotherapy agents such as TMZ on MGMT promoter

methylated cells (35). Moreover, our study found no significant

prognostic impact from other tumor biomarkers, such as IDH and

TERT promoter mutations. Although TERT promoter mutations

typically correlate with an unfavorable prognosis (36, 37), our study

revealed that patients harboring these mutations attained a median

OS of 21.3 months after TTFields therapy, which was comparable

with that of the wild-type group (Log-rank p=0.44). This indicates

that TTFields therapy could potentially neutralize the adverse

prognostic impact of TERT promoter mutations.
4.4 Study limitations

The current study included only the patients treated with

TTFields in addition to Stupp strategy, and lacked a control

group receiving only standard stupp treatment. Some patients

were not subjected to a comprehensive molecular analysis, leading

to incomplete pathological data.

Future studies should enlarge the sample size and include

comparative analyses with control group to substantiate the

conclusions. Additionally, future research should use multi-omics

analyses of pathology (exome sequencing, methylation, RNA

sequencing, etc.) to further classify tumors and identify patient

groups most likely to benefit from TTFields treatment.
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5 Conclusion

In conclusion, this single-center retrospective study from China

included 81 newly diagnosed GBM patients treated with TTFields.

The findings indicated that combining TTFields with Stupp

treatment potentially extends the median OS (21.3 months) and

median PFS (12.6 months) for GBM patients, with higher

compliance (≥ 0.8) and prolonged TTFields usage (>2 months)

correspondingly improving prognosis. Furthermore, GBM patients

with complete surgical resection and MGMT promoter methylation

demonstrated an enhanced prognosis.
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