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Pancreatic cancer, an exceptionally malignant tumor of the digestive system,

presents a challenge due to its lack of typical early symptoms and highly invasive

nature. The majority of pancreatic cancer patients are diagnosed when curative

surgical resection is no longer possible, resulting in a poor overall prognosis. In

recent years, the rapid progress of Artificial intelligence (AI) in the medical field

has led to the extensive utilization of machine learning and deep learning as the

prevailing approaches. Various models based on AI technology have been

employed in the early screening, diagnosis, treatment, and prognostic

prediction of pancreatic cancer patients. Furthermore, the development and

application of three-dimensional visualization and augmented reality navigation

techniques have also found their way into pancreatic cancer surgery. This article

provides a concise summary of the current state of AI technology in pancreatic

cancer and offers a promising outlook for its future applications.
KEYWORDS
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1 Introduction

Pancreatic carcinoma represents a prevalent malignancy of the digestive system,

characterized by elusive prodromal symptoms, heightened invasiveness, and an elevated

propensity for postoperative metastasis and relapse. As delineated by the International

Agency for Research on Cancer, pancreatic cancer assumes the fourteenth position amidst

the 36 most prevalent malignant neoplasms in terms of incidence, and ranks seventh in

mortality rates (1). An additional epidemiological analysis revealed a staggering 60,430

newly diagnosed cases of pancreatic cancer, resulting in 48,220 fatalities within the United

States during the year 2021 (2). Projections suggest that by 2030, pancreatic cancer could

ascend to become the second leading cause of cancer-related mortality in the United States

(3). The sentence is clear and properly structured. The current diagnostic paradigm for
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pancreatic cancer primarily hinges upon imaging modalities such as

CT and MRI, supplemented by the judicious use of PET-CT for

comprehensive assessment when warranted. Notably, endoscopic

ultrasonography (EUS) and EUS-guided fine needle biopsy assume

pivotal roles in the diagnosis and staging of pancreatic cancer, albeit

their diagnostic precision is subject to multifarious technical

considerations. While radical surgery remains the cornerstone of

pancreatic carcinoma management (4), neoadjuvant therapy has

emerged as a burgeoning area of investigation (5). However, the

absence of a standardized framework for assessing its efficacy poses

a significant challenge. Furthermore, the prognosis following

pancreatic cancer resection remains fraught with a substantial risk

of tumor recurrence, thereby necessitating vigilant surveillance

through regular follow-up regimens.

The term “Artificial intelligence (AI)” was first coined in 1956,

with a focus on using machines to imitate human learning and

cognitive abilities. Machine learning, a practical application of AI,

employs diverse algorithms such as decision trees, random forests,

artificial neural networks, support vector machines, logistic

regression, Bayesian methods, K-nearest neighbors, among others.

One such method, deep learning, is classified under the category of

artificial neural networks (6) and has exhibited exceptional

performance in image processing, notably through convolutional

neural networks. By accurately and objectively identifying

characteristic values of images based on standardized decision-

making protocols, deep learning can comprehensively analyze

statistical relationships between these values and associated

outcomes. AI-based radiomics can thus achieve precise diagnosis

of pancreatic cancer, while deep learning can establish early high-

risk prediction models for pancreatic cancer and postoperative

recurrence risk prediction models, facilitating early screening and

assisting in the management of complications after pancreatic

cancer surgery.
2 AI-assisted early screening and risk
prediction of pancreatic cancer

By harnessing foundational data encompassing precancerous

lesions, population-level health parameters, and a spectrum of

biological markers pertinent to pancreatic cancer, AI holds

promise in constructing predictive models to gauge the

propensity for pancreatic cancer incidence, thereby enabling early

detection and intervention. Intraductal papillary mucinous

neoplasm (IPMN) serves as a precursor lesion in the development

of pancreatic cancer (7). To explore IPMN, a study (8) curated an

extensive compendium of 3,970 endoscopic ultrasound (EUS)

images sourced from histopathologically validated IPMN patients,

serving as inputs for sophisticated deep learning algorithms.

Introducing the concept of the AI value, a continuous variable

spanning 0 to 1, as well as the AI malignancy probability, denoting

the mean AI value per patient, the researchers discerned markedly

elevated average AI values in malignant IPMN vis-à-vis benign

instances (0.808 vs. 0.104, P<0.01). Importantly, the model
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showcased commendable predictive prowess, exemplified by an

impressive area under the curve (AUC) of 0.98 for the receiver

operating characteristic curve of AI malignancy probability, thus

validating its potential in prognosticating the transformation of

IPMN into malignant tumors. Notably, the AI-based diagnosis

exhibited superior sensitivity, specificity, and accuracy (95.7%,

92.6%, and 94.0% respectively) compared to physicians’

diagnostic accuracy (56.0%).

Constituting a reservoir of cumulative healthcare data,

longitudinal electronic health records have emerged as a pivotal

asset for researchers endeavoring to construct predictive models

targeting medical prognostication. Recent investigations

spearheaded (9–11) have honed in on the development of

predictive frameworks tailored to unearthing high-risk subcohorts

vulnerable to pancreatic cancer within the diabetic patient cohort.

Particularly salient is the work (9), that derived a prognostic schema

from a cohort of newly diagnosed diabetes patients, synthesizing

key determinants encompassing age at diabetes onset, body mass

index, and glycemic fluctuations. This intricately woven algorithm

furnished predictive scores adept at forecasting the incipient

trajectory toward pancreatic neoplasms within a triennial

window. Notably, patients scoring 3 or above evinced a diagnostic

sensitivity and specificity of 80% for pancreatic carcinoma

(AUC=0.87), marking a 4.4-fold escalation in pancreatic cancer

incidence vis-à-vis their diabetic counterparts. Meanwhile, another

study (10) leveraged both logistic regression and artificial neural

network methodologies to craft predictive architectures pertinent to

type 2 diabetes patients in Taiwan, marshaling parameters inclusive

of age, antidiabetic pharmaceutical usage, and comorbid ailments as

prospective risk determinants for pancreatic cancer. Intriguingly,

the logistic regression model emerged as the more discerning

performer, boasting an AUC of 0.727. In a similar vein, Blyuss

et al. (12) developed a novel pancreatic cancer patient risk scoring

system (PancRisk) predicated on urinary biomarkers. The team

measured three urine biomarkers (LYVE1, REC1B, TFF1) in 199

pancreatic ductal adenocarcinoma patients and 180 healthy

individuals and applied machine learning algorithms to analyze

and compare the datasets. The resulting logistic regression model

demonstrated remarkable diagnostic power with an AUC of 0.94.

When combined with the established tumor marker CA19-9, the

model achieved a diagnostic specificity and sensitivity of 96%.
3 AI-assisted diagnosis of
pancreatic cancer

Diagnosing pancreatic cancer is a multifaceted process that

typically involves clinical manifestations, high-risk factors, serum

tumor markers, and imaging techniques such as endoscopic

ultrasound (EUS). However, imaging examination remains the

most crucial approach for clinical diagnosis of pancreatic cancer,

with contrast-enhanced CT and MRI being the standard options

(13). In recent years, deep learning models have emerged as a

promising tool to aid pancreatic cancer diagnosis. Zhejiang
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University, for example, developed a deep learning model trained

on 319 patients’ abdominal contrast-enhanced CT images that

could provide pancreatic tumor diagnosis suggestions based on

original abdominal CT images without preprocessing. Impressively,

this model achieved an AUC of 0.871 and an F1 score of 88.5%, with

an average diagnostic accuracy of 82.7% for all tumor types.

Moreover, the model demonstrated exceptional accuracy in

distinguishing IPMN and pancreatic ductal adenocarcinoma,

reaching 100% and 87.6%, respectively (14). Additionally, a study

from China (15) developed a convolutional neural network model

trained on 7245 CT images from 222 pathologically confirmed

pancreatic cancer patients and 190 normal pancreatic patients. The

model was trained to differentiate between two categories (with or

without pancreatic cancer) and three categories (no cancer, tumor

in the body/tail of the pancreas, tumor in the head/neck of the

pancreas), demonstrating remarkable accuracy in diagnosing plain

scan images (95.47%) with high sensitivity (91.58%) and specificity

(98.27%). Notably, the three-category model proved particularly

adept at diagnosing tumors in the head/neck of the pancreas using

arterial phase images.

Endoscopic ultrasound (EUS) is an indispensable tool for

diagnosing pancreatic tumors and chronic pancreatitis (13). With

the advent of AI, EUS images’ diagnostic efficiency has been

remarkably improved. To address the challenge of distinguishing

autoimmune pancreatitis (AIP) from pancreatic ductal

adenocarcinoma, chronic pancreatitis, and normal pancreas,

Marya et al. (16) developed a convolutional neural network

model based on EUS images. The model was trained using static

images and videos from EUS examinations of patients.

Impressively, the model achieved high sensitivity and specificity

rates for differentiating AIP from pancreatic ductal adenocarcinoma

(90% and 93%, respectively), normal pancreas (99% and 98%,

respectively), and chronic pancreatitis (94% and 71%,

respectively). Moreover, another research (17) implemented age

grouping into the AI model trained on EUS images and conducted

stratified analysis by dividing patients into three age groups (<40

years old, 40-60 years old, and >60 years old). The results showed

that the grouped model outperformed the ungrouped one in terms

of classification accuracy, sensitivity, and specificity, with rates

ranging from 88.5% to 94.1%. Notably, the study highlights the

importance of age grouping in enhancing the diagnostic efficiency

of AI models for EUS images.

Additionally, substantial strides have been made in AI-driven

research concerning tissue pathology slices and tumor biology

markers. Notably, unsupervised learning methodologies have

demonstrated efficacy in the identification of specific tumor

markers linked to pancreatic cancer (18), offering a novel

approach to screening potential markers with clinical relevance.

Furthermore, the pursuit of developing a sophisticated model

capable of precisely identifying and autonomously segmenting

pancreatic tumors stands as a critical frontier in medical research,

holding great promise for advancing diagnostic capabilities and

refining treatment modalities for pancreatic malignancies. These

developments underscore the transformative potential of AI in

reshaping the landscape of pancreatic cancer research and

clinical practice.
Frontiers in Oncology 03
4 Application of AI in the surgical
treatment of pancreatic cancer

At present, radical resection surgery represents the cornerstone of

curative strategies for pancreatic cancer. A seminal report published

in 2006 chronicled a remarkable series of 1,000 consecutive

pancreatico-duodenectomies performed by an esteemed surgeon at

Johns Hopkins Hospital between 1969 and 2003 (19). Over this

period, the frequency of these surgeries exhibited a steady rise, with

only three cases documented prior to 1980. Remarkably, the median

operating time decreased from 8.8 hours in the 1970s to 5.5 hours in

the 2000s, yielding a strikingly low mortality rate of merely 1% within

30 days or during hospitalization. Akin to these findings, an extensive

analysis encompassing 2,050 operations conducted at Massachusetts

General Hospital between 1941 and 2011 further underscored the

progressive improvements achieved in surgical management (20).

Nevertheless, the advent and application of neoadjuvant therapy hold

immense promise in broadening the population eligible for radical

resection surgery and fostering improved prognoses. Notably, AI has

emerged as a potent tool in the realm of neoadjuvant therapy for

pancreatic cancer. A study from Netherlands conducted an insightful

investigation to assess the efficacy of neoadjuvant therapy, employing

histological examinations of surgical specimens following

neoadjuvant chemotherapy (21). By employing digital processing

techniques on HE-stained sections from 64 pancreatic cancer

patients, they meticulously delineated three distinct categories

(tumor, normal duct, and residual epithelium), effectively training a

tumor segmentation model with an average F1 score of 0.86.

Similarly, another study from USA utilized machine learning

approaches to compare enhanced CT images before and after

neoadjuvant therapy, successfully identifying and extracting

treatment-related image features, culminating in the establishment

of a prediction model boasting an impressive AUC of 0.94 (22). These

seminal studies unequivocally affirm the feasibility of harnessing AI

to evaluate the outcomes of neoadjuvant therapy in pancreatic cancer.

By objectively assessing the response to neoadjuvant therapy, AI

holds immense potential in guiding the selection of optimal

neoadjuvant therapy regimens, thereby optimizing surgical

interventions. Furthermore, researchers have made noteworthy

strides in leveraging deep neural networks to precisely locate and

even track pancreatic tumors without relying on internal markers

(23). Additionally, they have pioneered automated segmentation

methods for accurately delineating organ-threatening contours,

providing invaluable guidance for radiotherapy planning (24). Deep

learning techniques have also emerged as a valuable asset in the

treatment planning of stereotactic radiotherapy for pancreatic cancer,

enabling accurate predictions of radiation dose distribution (25).

AI has emerged as a potent tool in the field of surgery,

particularly in the domain of three-dimensional reconstruction

and visualization. A study form China published a seminal study

demonstrating the high accuracy, sensitivity, and specificity of

three-dimensional reconstruction in assessing pancreatic cancer

(26). Collaborating with this team in 2019, we harnessed three-

dimensional visualization technology to observe the location, size,

and adjacency to surrounding organs of pancreatic head tumors

prior to pancreaticoduodenectomy, optimizing surgical plans and
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effectively reducing surgical time, intraoperative blood loss, and

postoperative recovery time for patients (27). In a similar vein, a

study from Japan used three-dimensional reconstruction before

surgery to precisely determine the size and position of the main

pancreatic duct and select the best anastomosis technique (28).

Augmented reality navigation technology represents a promising

surgical navigation technique that merges three-dimensional virtual

images with real-time intraoperative conditions. Okamoto et al.

conducted a rigorous evaluation of five patients who underwent

augmented reality navigation-assisted pancreatic resection surgery,

revealing strong agreement between the positions of various organs

in surface-stained images and their actual positions (29).

Additionally, Volonte et al. applied augmented reality navigation

technology to laparoscopic distal pancreatectomy, projecting

nodules in the tail of the pancreas onto the patient’s body,

enhancing anatomical understanding and localization for

physicians (30). Moreover, Tang et al. even employed augmented

reality software on smartphones to overlay reconstructed three-

dimensional images onto the surgical area displayed on the phone

screen, providing intermittent navigation assistance that helped

identify the boundaries of pancreatic head cancer invasion and

facilitate the removal of relevant blood vessels, ultimately achieving

R0 resection for all surgical patients (31). The integration of AI into

surgical practice holds great promise in improving patient

outcomes through precise and personalized surgical interventions.
5 AI-assisted prediction and
management of postoperative
complications in pancreatic
cancer patients

Pancreatic cancer surgery is often burdened by postoperative

complications, including postoperative pancreatic fistula, bile

fistula, postoperative bleeding, abdominal infection, and delayed

gastric emptying (32, 33). The most common complication is

pancreatic fistula, which can lead to serious complications such as

abdominal infection and life-threatening bleeding. However, the

current risk scoring system for pancreatic fistula only considers four

factors, which has significant limitations (34). To address this issue,

scholars in Korea developed an AI-driven postoperative pancreatic

fistula risk prediction platform using random forest and neural

network algorithms to analyze 38 variables from 1,769 patients who

underwent pancreaticoduodenectomy (PD) from 2007 to 2016 (35).

By combining neural networks with recursive feature elimination,

the platform achieved a maximum AUC of 0.74, ultimately

identifying 16 risk factors for postoperative pancreatic fistula,

including pancreatic duct diameter, body mass index,

preoperative serum albumin, lipase level, and age, among others.

In addition, Skawran et al. used a gradient boosting tree model

based on MRI radiomics to predict postoperative pancreatic fistula

after PD, achieving a high AUC of 0.90 (36). Furthermore, Zhang

et al. developed a predictive model for postoperative ICU admission

with an AUC of 0.8 by employing a support vector machine model
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to analyze clinical features of patients with pancreatic ductal

adenocarcinoma, revealing bilirubin, CA19-9, and preoperative

albumin as associated factors for postoperative bleeding in

patients (37). The use of AI in predicting postoperative

complications in pancreatic cancer surgery holds great potential

in improving patient outcomes and facilitating targeted

treatment strategies.
6 AI prediction of prognosis in
pancreatic cancer patients

The relationship between patient survival and recurrence in

pancreatic cancer is of utmost importance, necessitating the

identification of relevant factors contributing to recurrence. Lee

et al. conducted a meticulous analysis using multicenter registry

data to evaluate the probability of postoperative recurrence and

ascertain its major prognostic factors in pancreatic cancer (38). By

employing random forest and Cox proportional hazards models,

disease-free survival was predicted in a large cohort of 4,846

patients. Remarkably, tumor size, tumor grade, TNM stage, T

stage, and lymphovascular invasion emerged as key prognostic

factors for postoperative disease-free survival based on their

variable importance. The Cox model exhibited a higher mean C-

index (0.7738) compared to the random forest model (0.6805),

indicating its superior predictive ability. Additionally, Tong et al.

(39) conducted a study involving 221 patients with unresectable

pancreatic cancer, collecting data on 32 clinical parameters. They

developed three artificial neural network models based on different

sets of basic features (3, 7, and 32) to predict the 8-month survival

rate of patients. Impressively, all three artificial neural network

models exhibited favorable performance, surpassing the

corresponding logistic regression models in terms of AUC values

(0.811 vs. 0.680, 0.844 vs. 0.722, 0.921 vs. 0.849, all P < 0.05). These

findings emphasize the potential of artificial neural networks in

accurately predicting the survival rate of patients with unresectable

pancreatic cancer.
7 Summary and outlook

In recent years, the rapid evolution of deep learning and AI has

engendered burgeoning interest in their potential implications in the

realm of pancreatic cancer. The application of AI technology has

exhibited substantial promise in the realms of early screening,

diagnosis, surgical interventions, and prognostic evaluations for

pancreatic cancer, equipping clinicians with more precise and

expeditious decision-making tools, consequently ameliorating

treatment outcomes and enhancing patients’ survival rates (40).

Nevertheless, notwithstanding the manifold affirmative prospects

for the integration of AI in the domain of pancreatic cancer,

certain constraints are inevitably encountered. Firstly, the

interpretability conundrum of deep learning models utilized in

pancreatic cancer screening, diagnosis, surgery, and prognostication
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frequently lacks transparency, impeding comprehension and

engendering skepticism. Consequently, dedicated research

endeavors are imperative to heighten interpretability and foster a

more transparent decision-making process. Secondly, the

generalization capacity of models across heterogeneous datasets is a

significant concern.While deep learningmodels for pancreatic cancer

developed on single-center datasets may demonstrate disparate

accuracies when transposed to alternative medical facilities,

enhancing generalization capacity assumes paramount importance

in ensuring consistent performance across diverse clinical settings

(41). Moreover, the limited sample size inherent in rare disease

models such as pancreatic cancer poses a formidable obstacle to

effective training and validation, culminating in erratic performance.

Innovative methodologies including cross-center collaboration and

synthetic sample generation warrant exploration to surmount this

challenge and bolster reliability (42). Finally, the normative intricacies

surrounding the utilization of AI in pancreatic cancer diagnosis and

treatment necessitate the establishment of ethical benchmarks and

standards to safeguard patient confidentiality and data integrity.

Research initiatives should be concentrated on formulating

pertinent protocols and mechanisms for data dissemination, while

upholding the sanctity of patient rights and privacy (43). In

conclusion, despite the hurdles associated with interpretability,

generalization, sample size, and ethical considerations, the potential

dividends of deep learning and AI in pancreatic cancer research are

profound. Future pursuits should revolve around the amalgamation

of multi-omics data analysis to devise personalized treatment

regimens tailored to individual patients, ultimately augmenting

therapeutic efficacy and survival rates (44, 45). Synergistic

collaborations between clinicians and researchers are indispensable

in effectuating the seamless integration of these technologies into

clinical practice.
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