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Purpose: This study was designed to determine the diagnostic performance of

fluorine-18-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/

computed tomography (CT) radiomics-based machine learning (ML) in the

classification of cervical adenocarcinoma (AC) and squamous cell

carcinoma (SCC).

Methods: Pretreatment 18F-FDG PET/CT data were retrospectively collected

from patients who were diagnosed with locally advanced cervical cancer at two

centers. Radiomics features were extracted and selected by the Pearson

correlation coefficient and least absolute shrinkage and selection operator

regression analysis. Six ML algorithms were then applied to establish models,

and the best-performing classifier was selected based on accuracy, sensitivity,

specificity, and area under the curve (AUC). The performance of different model

was assessed and compared using the DeLong test.

Results: A total of 227 patients with locally advanced cervical cancer were

enrolled in this study (N=136 for the training cohort, N=59 for the internal

validation cohort, and N=32 for the external validation cohort). The PET

radiomics model constructed based on the lightGBM algorithm had an

accuracy of 0.915 and an AUC of 0.851 (95% confidence interval [CI], 0.715-

0.986) in the internal validation cohort, which were higher than those of the CT

radiomics model (accuracy: 0.661; AUC: 0.513 [95% CI, 0.339-0.688]). The

DeLong test revealed no significant difference in AUC between the combined

radiomics model and the PET radiomics model in either the training cohort

(z=0.940, P=0.347) or the internal validation cohort (z=0.285, P=0.776). In the

external validation cohort, the lightGBM-based PET radiomics model achieved

good discrimination between SCC and AC (AUC = 0.730).
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Conclusions: The lightGBM-based PET radiomics model had great potential to

predict the fine histological subtypes of locally advanced cervical cancer and

might serve as a promising noninvasive approach for the diagnosis and

management of locally advanced cervical cancer.
KEYWORDS

locally advanced cervical cancer, positron emission tomography, PET, radiomics,
adenocarcinoma, AC, squamous cell carcinoma, SCC
1 Introduction

Cervical cancer is the fourth most common female cancer

worldwide (1). In 2016, there were approximately 34,000 cervical

cancer-related deaths in Chinese women (2). Squamous cell

carcinoma (SCC) and adenocarcinoma (AC) are the main

pathological subtypes of cervical cancer, accounting for 70-75%

and 10-25% respectively. The incidence of AC has been observed to

increase in recent decades (3). Patients with locally advanced

cervical cancer who receive radiation therapy or concurrent

chemoradiotherapy have a worse prognosis for AC compared to

SCC, highlighting the need for alternative treatment options

specifically for AC cases (4). High intratumor heterogeneity

exhibited a significantly poor clinical outcome (5). Therefore, it is

essential to uncover the differences between AC and SCC from

multiple perspectives, explore the underlying reasons for these

differences, and develop personalized treatment strategies and

plans, as this holds considerable importance.

Pathological diagnosis is considered the gold standard for the

detection of cervical cancer, with cervical cytology and cervical

biopsy being the primary recommended methods (6). However, AC

may sometimes result in cytological false-negatives (7). Biopsy is an

invasive procedure associated with risks of bleeding and infection.

Point-to-point biopsy performed on larger tumors only evaluates a

small portion of the sample, resulting in sampling bias and an

inability to comprehensively assess tumor heterogeneity (8–10). In

addition, radiologists find it challenging to differentiate AC from

SCC based on conventional imaging modalities such as magnetic

resonance imaging (MRI), positron emission tomography (PET)/

computed tomography (CT), ultrasound, etc., and the interobserver

agreement is typically low (11, 12).

Radiomics is a rapidly growing field of research that utilizes

medical images to extract quantitative features, converting them

into high-dimensional data for analysis and exploration. This

technique enhances our understanding of diseases and provides

valuable support for clinical decision-making (13, 14). Malignant

tumors exhibit considerable spatial variation within the tumor at

the morphological and histopathological levels, including

cellularity, vascularization, extracellular matrix, and necrotic

components (15, 16). As a noninvasive tool, radiomics can

quantify intratumoral heterogeneity and is widely used in
02
diagnosis, treatment response evaluation, and survival prediction

(17). Among conventional imaging modalities, MRI has better fine

exquisite soft tissue resolution than CT and PET, so it has long been

considered as the preferred imaging method of choice for the

evaluation of local tumor extension in primary cervical cancer.

Unsurprisingly, numerous radiomics studies aimed at identifying

the pathological subtypes of cervical cancer are primarily founded

on pretreatment MRI (18). To the best of our knowledge, there are

no radiomics studies that delineate the primary cervical tumor on

CT images, which might be related to the inability to clearly define

the boundary of the primary cervical tumor on CT images. In

addition, only two published studies have preliminarily evaluated

PET radiomics in cervical cancer to discriminate between AC and

SCC (19, 20). Nevertheless, both of the studies were single-center

ones, extracted too few radiomic features, and the methods for

radiomics feature selection and model construction were simplistic.

Even in one of the studies, only 83 patients were included.

Previous studies have shown that radiomic features based on

CT or PET images can achieve the differentiation of pathological

types of lung cancer (21). The application of radiomics methods for

diagnosis and tumor characterization might be a potential

supplement for omics datasets, or an alternative for pathological

diagnosis, particularly for patients who are at an advanced stage,

inoperable, or unable to undergo biopsies. A more extensive and

comprehensive study is required to investigate the value of PET/CT

imaging in differentiating the subtypes of cervical cancer. Therefore,

the aim of this study was to develop and validate an optimal

machine learning (ML) model based on pretherapeutic fluorine-

18-fluorodeoxyglucose (18F-FDG) PET/CT for differentiating

between SCC and AC in cervical cancer.
2 Materials and methods

2.1 Study design

This retrospective study was conducted in accordance with the

Declaration of Helsinki. Ethical approval was obtained from the

Institutional Review Board of the Affiliated Cancer Hospital of

Shandong First Medical University (No. SDTHEC2023006030) and

the Affiliated Cancer Hospital of Xinjiang Medical University (No.
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K-2022006), and the requirement for written informed consent was

waived. The workflow of our study is shown in Figure 1.
2.2 Patient cohort

The study included patients with a diagnosis of cervical cancer

between September 2015 and February 2022. The inclusion criteria

were as follows: (1) pathologically confirmed cervical cancer with

the 2018 International Federation of Gynecology and Obstetrics

(FIGO) stage IB-IVA; (2) underwent 18F-FDG PET/CT; and (3)

complete clinical data retrievable from the electronic medical

records. Exclusion criteria included: (1) a history of any previous

anticancer treatment; (2) pathological types other than SCC and

AC; (3) patients with a diagnosis of other unrelated malignant

tumors; (4) presence of extensive abdominal metastasis; (5) poor

PET/CT image quality; and (6) primary maximal tumor diameter

less than 1.0 cm.

All patients were initially confirmed by hematoxylin-eosin (HE)

staining, and the poorly differentiated patients whose subtypes

cou ld no t b e a ffi rmed we re f u r th e r confi rmed by

immunohistochemistry (IHC) staining. Ultimately, based on the

pathological reports of biopsy specimens, a total of 195 patients

were recruited in the Center 1 (the Affiliated Cancer Hospital of

Shandong First Medical University), among which 164 were

confirmed by HE staining and 31 were confirmed by IHC. The

Center 2 (the Affiliated Cancer Hospital of Xinjiang Medical

University) recruited 32 patients, of whom 23 were confirmed by

HE staining and 9 were confirmed by IHC. The patients recruited in

the Center 1 were randomly allocated to the training cohort (n =
Frontiers in Oncology 03
136) and the internal validation cohort (n = 59) in a 7:3 ratio, while

the Center 2 serves as the external validation cohort. Figure 2

illustrates a flow chart outlining the process of patient selection. The

clinical information of the patients, including age, pathology,

maximal tumor diameter (MTD) on PET/CT images, menopausal

status, lymph node metastasis (LNM), and red blood cell count, was

collected from electronic medical records.
2.3 PET/CT acquisition

All enrolled patients underwent 18F-FDG PET/CT with a

standardized scan setup and parameters before treatment. Patients

enrolled in Center 1 were scanned with the Philips Gemini TF PET/

CT scanner (Phillips Medical Systems, Holland), and the 18F-FDG

was generated by the MINItrace cyclotron from GE Healthcare. At

Center 2, the Philips Ingenuity TF (Phillips Medical Systems,

Holland) was used, and 18F-FDG was generated by the Sumitomo

Heavy Industries HM-10 cyclotron. The radiochemical purity was

above 95%. All patients fasted for at least 6 h, and their peripheral

blood glucose levels were confirmed to be ≤150 mg/dL before 18F-

FDG injection. 18F-FDG was intravenously administered at 3.7–4.4

MBq/kg body weight. The key scanning parameters were as follows:

tube voltage of 120-130 KV; tube current of 150-300 mA. PET images

were reconstructed using ordered-subset expectation maximization.

Reconstruction using standard convolution kernel with 1.5mm layer

thickness (median 1.5mm; range 1.0–3.0mm). Each CT image was

reconstructed in a 512×512 pixels image matrix and each PET image

was reconstructed in a 144×144 pixel image matrix. To eliminate

image differences between images acquired by different scanners, all
FIGURE 1

The Workflow of this study.
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images were resampled to the same image spacing of 1

mm×1mm ×1mm.
2.4 Tumor segmentation

PET images were attenuated, corrected, reconstructed in

multiple layers, and then fused with noncontrast-enhanced low-

dose CT images. The resulting images were imported into MIM

Maestro version 7.1.7 (MIM Software Inc., Cleveland, OH, USA).

The regions of interest (ROIs) were delineated using a fixed

threshold value at 42% of the maximum standardized uptake

value (SUVmax) of the primary tumor. Regions corresponding to

the bladder were manually excluded from the analysis. For the

obtained ROIs, various parameters, such as metabolic active tumor

volume (MTV), mean standardized uptake value (SUVmean), total

lesion glycolysis (TLG), and SUVmax, were calculated using MIM

Software. The contoured ROIs were then transferred to PET and CT

images using rigid registration. Another experienced oncologist

carefully reviewed and modified the transferred results on a slice-

by-slice basis. Figures 3, 4 show a set of representative PET/CT

images from a 53-year-old woman with SCC and a 41-year-old

woman with AC, respectively. The ROI, labeled in red, was

segmented in each slice of the axial, sagittal, and coronal views of

the PET, CT, and fusion images.
2.5 Feature extraction and normalization

A total of 1409 PET and 1409 CT radiomics features were

extracted from each segmented ROI using AccuContour software

version 3.2 (Manteia Medical Technologies Co. Ltd., Xiamen,

China), which is a commercial software application that allows

for standardized preprocessing of medical imaging data. The
Frontiers in Oncology 04
radiomics features based on the original images included shape

features, first-order intensity histogram features, gray-level

cooccurrence matrix (GLCM) features, gray-level run-length

matrix (GLRLM) features, gray-level size zone matrix (GLSZM)

features, neighboring gray-tone difference matrices (NGTDM), and

gray-level dependence matrix (GLDM) features.
2.6 Feature selection and
model development

All features were standardized to Z scores with the mean and

standard deviation. The Pearson correlation coefficient (PCC) for

each feature pair was calculated to evaluate their similarity, and if

the PCC value exceeded 0.9, one of the features was randomly

eliminated. After this process, the dimension of the feature space

was reduced, and features were independent of each other. Then,

least absolute shrinkage and selection operator (LASSO) regression

analysis with 10-fold cross-validation was employed to select the

effective radiomics features. Clinical features were selected using

logistic regression analysis. Separate models with good prediction

performance were built to differentiate pathological subtypes in

locally advanced cervical cancer. Ultimately, the predictive

performance of the models was assessed using the receiver

operating characteristic (ROC) curve, decision curve analysis

(DCA), and calibration curve.
2.7 Statistical analysis

Quantitative data that followed a normal distribution are

presented as the mean ± standard deviation (s), while qualitative

data are expressed as frequencies (percentages). The patient

characteristics between the training and validation cohorts were
FIGURE 2

Flow chart of patients selection.
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compared using various statistical tests, such as the Pearson Chi-

square test, Fisher’s exact test, Student’s t test, and Mann−Whitney U

test. Clinical features were selected using univariate and multivariate

logistic regression analyses. Six ML classifiers, including logistic
Frontiers in Oncology 05
regression (LR), naive Bayes (NB), support vector machine (SVM),

k-nearest neighbors (KNN), light gradient boosting machine

(lightGBM), and multilayer perceptron neural network (MLP),

were used to build a model to differentiate pathological subtypes.
FIGURE 3

A 53-year-old woman diagnosed with SCC. (A–C) The ROI, labeled in red, was segmented on the coronal, axial, sagittal PET images. (D–F) The ROI,
labeled in red, was segmented on the coronal, axial, sagittal fusion images. (G–I) The ROI, labeled in red, was segmented on the coronal, axial,
sagittal CT images. (J) pathological examination confirmed SCC.
FIGURE 4

A 41-year-old woman diagnosed with AC. (A–C) The ROI, labeled in red, was segmented on the coronal, axial, sagittal PET images. (D–F) The ROI,
labeled in red, was segmented on the coronal, axial, sagittal fusion images. (G–I) The ROI, labeled in red, was segmented on the coronal, axial,
sagittal CT images. (J) Pathological examination confirmed AC.
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The optimal ML model was selected based on its AUC, accuracy

(ACC), sensitivity (SEN), and specificity (SPE). The AUC values were

compared between different models using the DeLong test. The data

analyses were performed using SPSS software (Version 25.0, IBM

Corp., Armonk, NY, USA) and R software (Version 3.4.0, R

Foundation for Statistical Computing, Vienna, Austria). A two-

sided p-value<0.05 was considered statistically significant.
Frontiers in Oncology 06
3 Results

3.1 Clinical characteristics and PET
metabolic parameters

Table 1 presents the clinical characteristics and PET metabolic

parameters of 227 patients with locally advanced cervical cancer.
TABLE 1 Comparison of Clinical characteristics and PET metabolic parameters between SCC and AC in the training, internal validation and external
validation cohorts.

Training (N = 136)

p Value

Internal validation
(N = 59)

p Value

External validation
(N=32)

p Value
SCC
(N=115)

AC (N=21)
SCC
(N=45)

AC (N=14)
SCC
(N=29)

AC (N=3)

Age (years) 53.91 ± 9.37 56.33 ± 12.86 0.418 52.67 ± 11.41 55.28 ± 12.22 0.464 52.24 ± 11.27 51.33 ± 4.93 0.892

Abortion 0.105

NO 64(55.7%) 13(61.9%) 0.595 24(53.33%) 4(28.57%) 11(37.93%) 1(33.33%) 0.876

YES 51(44.3%) 8(38.1%) 21(46.67%) 10(71.43%) 18(62.07%) 2(66.67%)

MTD (cm) 5.22 ± 1.67 0.29 4.48 ± 1.48 3.27 ± 0.25 0.173

LNM 0.430 0.516 0.909

NO 39(33.9%) 9(42.9%) 13(28.89%) 6(42.86%) 13(44.83%) 2(66.67%)

YES 76(66.1%) 12(57.1%) 32(71.11%) 8(57.14%) 16(55.17%) 1(33.33%)

Para-
aortic LNM

0.350 0.759 0.476

NO 88(76.5%) 18(85.7%) 37(82.22%) 11(78.57%) 24(82.76%) 2(66.67%)

YES 27(23.5%) 3(14.3%) 8(17.78%) 3(21.43%) 5(17.24%) 1(33.33%)

Menopause 0.929 0.849 0.819

NO 45(39.1%) 8(38.1%) 18(40.0%) 6(42.9%) 17(58.62%) 1(33.33%)

YES 70(60.9%) 13(61.9%) 27(60.0%) 8(57.1%) 12(41.38%) 2(66.67%)

SUVmax
(SUVbw)

15.59 ± 5.88 16.38 ± 8.01 0.672 16.20 ± 5.82 17.27 ± 5.90 0.010 15.30 ± 7.28 9.85 ± 6.81 0.225

MTV (ml)
27.48
(15.54,54.08)

34.9
(16.85,57.56)

0.555
35.12
(22.20,73.87)

27.44
(9.21,42.97)

<0.001
11.01
(6.10,25.15)

6.56
(5.27,13.24)

0.580

SUVmean
(SUVbw)

9.23 ± 3.52 9.35 ± 4.43 0.908 10.21 ± 3.44 9.64 ± 2.73 0.013 9.28 ± 4.62 6.08 ± 4.42 0.261

TLG
(SUVbw*ml)

231.53
(117.85,510.18)

305.64
(124.16,693.92)

0.671
405.52
(171.37,775.63)

189.45
(74.06,294.13)

0.012
101.02
(50.60,177.68)

57.04
(36.96,64.96)

0.164

WBC count 6.85 ± 2.43 6.56 ± 3.84 0.644 7.54 ± 3.22 6.28 ± 1.91 0.171 6.17 ± 1.85 6.55 ± 0.62 0.730

RBC count 4.12 ± 0.50 4.02 ± 0.43 0.384 4.19 ± 0.65 4.32 ± 0.45 0.494 4.22 ± 0.61 4.45 ± 0.39 0.529

Plt count 291.76 ± 94.11 285.67 ± 101.24 0.788 326.24 ± 103.28
313.57
± 142.57

0.716 233.25 ± 62.74
225.00
± 37.51

0.826

lymphocyte
count

1.68 ± 0.57 1.56 ± 0.39 0.355 1.63 ± 0.59 1.65 ± 0.40 0.916 3.00 ± 5.79 1.81 ± 0.10 0.728

neutrophile
count

4.52 ± 2.16 4.52 ± 3.60 0.995 5.19 ± 2.56 4.01 ± 1.61 0.13 5.57 ± 10.59 4.22 ± 0.66 0.830

Hb count 120.81 ± 16.76 116.71 ± 14.91 0.298 117.98 ± 23.78 116.43 ± 24.42 0.833 126.17 ± 18.74 131.33 ± 1.16 0.642
fro
SCC, squamous cell carcinoma; AC, adenocarcinoma; MTD, maximal tumor diameter; LNM, lymph node metastasis; SUVmax, maximum standardized uptake value; SUVmean, mean
standardized uptake value; MTV, metabolic active tumor volume; TLG, total lesion glycolysis; WBC, white blood cell; RBC, red blood cell; WBC, white blood cell; Plt, blood platelet;
Hb, hemoglobin.
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The comparison between SCC and AC in three groups are shown in

Supplementary Table S1. The results of the univariate logistic

regression analysis are provided in Table 2. None of the clinical

features or PET metabolic parameters showed significant

differentiation ability for the pathological subtypes.
3.2 Radiomics features extraction
and selection

A total of 2818 radiomic features were extracted from the ROIs of

CT and PET images. Among them, a total of 391 and 242 radiomics

features were selected from the CT and PET images, respectively,

based on the PCC. Subsequently, LASSO regression analysis was

performed to select one CT radiomics feature (Figures 5A, C) and five

PET radiomic features (Figures 5B, D, 6). Then, Table 3 displays the

final PET and CT radiomic features. The quantitative differences in

PET radiomic features between cervical SCC and AC are shown in

Supplementary Table S2.
3.3 Radiomics model development
and evaluation

Table 4 presents a summary of the prediction performance in

distinguishing between AC and SCC using various ML classifiers in the

training and internal validation cohorts. The LightGBM model

exhibited superior performance in terms of AUC, ACC, SEN, SPE

compared to the other ML models, and was consequently employed as

theML algorithm for differentiating the described pathological subtypes.

Figure 7 illustrates the ROC curves of the CT radiomics model,

PET radiomics model, and combined model. In the training cohort,

the best differentiation performance was demonstrated by the

combined radiomics model (AUC=0.968), followed by the PET

radiomics model (AUC=0.955), while the differentiation

performance of the CT radiomics model was average

(AUC=0.752). The DeLong test indicated that there was no

statistically significant difference between the combined radiomics

model and the PET radiomics model (z=0.940, p-value=0.347).

Nevertheless, both the combined radiomics model and the PET

radiomics model significantly outperformed the CT radiomics

model (z=3.291, p-value<0.001). In the internal validation cohort,

the PET radiomics model had the best differentiation effectiveness

(AUC=0.851), followed by the combined radiomics model

(AUC=0.842), while the differentiation performance of the CT

radiomics model was poor (AUC=0.513). The DeLong test

showed no statistically significant difference between the

combined radiomics model and the PET radiomics model

(z=0.285, p-value=0.776). However, both the combined radiomics

model and the PET radiomics model were significantly better than

the CT radiomics model (z=2.807, p-value=0.005 and z=2.697, p-

value=0.007, respectively). In the external validation cohort, the

DeLong test showed no statistically significant difference between

the combined radiomics model and the PET radiomics model

(z=0.272, p-value=0.809).
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The DCA results showed that the PET radiomics model

performed better and provided a higher clinical application value

in differentiating pathological subtypes than CT radiomics mode

and PET-CT radiomics model (Supplementary Figure S1). The

calibration curves for the training cohort, internal validation cohort

and external validation cohort (Supplementary Figures S2), assessed

using the Hosmer-Lemeshow test, showed no significant differences

in both the training cohort (P=0.129), internal validation cohort

(P=0.351) and external validation cohort (P=0.529). This suggests

good consistency between the actual and predicted risks.
4 Discussion

In this study, we successfully developed six MLmodels based on

PET and CT images, among which the lightGBM model based on

PET radiomics features performed excellently in distinguishing AC

and SCC.

Previous literature has indicated that CT radiomics features

exhibit better predictive performance than PET radiomics features

in predicting survival, and CT radiomics features are also more

abundant than PET features (22, 23). Nevertheless, with regard to

distinguishing pathological subtypes, Kirienko et al. (24) discovered

that PET radiomics features had a greater ability to discriminate

between primary and metastatic pulmonary lesions than CT
TABLE 2 Univariate logistic regression analysis of clinical and PET
metabolic parameters to differentiate pathological subtypes in the
training cohort.

Univariate logistic analysis

OR 95% CI p-Value

Age (years) 1.022 0.986-1.060 0.228

Abortion 0.915 0.647-1.295 0.617

MTD (cm) 0.859 0.680-1.087 0.206

LNM 0.642 0.304-1.355 0.245

Para-aortic LNM 0.739 0.284-1.921 0.535

Menopause 0.974 0.462-2.056 0.945

SUVmax (SUVbw) 0.968 0.909-1.031 0.316

MTV (ml) 0.996 0.986-1.006 0.414

SUVmean (SUVbw) 0.933 0.837-1.040 0.211

TLG (SUVbw*ml) 1.000 0.999-1.001 0.385

WBC count 0.911 0.778-1.067 0.249

RBC count 0.995 0.496-1.997 0.989

Plt count 1.000 0.996-1.003 0.806

lymphocyte count 0.780 0.386-1.575 0.488

neutrophile count 0.929 0.780-1.107 0.410

Hb count 0.991 0.972-1.010 0.755
MTD, maximal tumor diameter; LNM, lymph node metastasis; MTV, metabolic active tumor
volume; SUV, standardized uptake value; TLG, total lesion glycolysis; WBC, white blood cell;
RBC, red blood cell; WBC, white blood cell; Plt, blood platelet; Hb, hemoglobin.
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radiomics features. Further studies conducted by Hyun et al. (25)

and Han et al. (21) demonstrated that a PET/CT-based machine

learning method was able to make a distinction between AC and

SCC in patients with non-small cell lung cancer. This study

indicates that in distinguishing SCC and AC, the selected PET

radiomics features are substantially more numerous than CT
Frontiers in Oncology 08
radiomics features, and the performance of the PET radiomics

model is notably superior to that of the CT radiomics model.

Furthermore, the Delong test showed that although there was a

slight improvement in performance when combining PET

radiomics features with CT radiomics features, the increase in

AUC value did not reach statistical significance (the p values of
FIGURE 5

CT and PET radiomics feature selection using the least absolute shrinkage and selection operator (LASSO) algorithm. (A) LASSO coefficient profiles of
CT radiomics features. (B) LASSO coefficient profiles of PET radiomics features. (C) Mean square error path obtained through tenfold cross-validation
for CT radiomics feature selection process. (D) Mean square error path obtained through tenfold cross-validation for PET radiomics feature
selection process.
FIGURE 6

The five PET radiomics features are selected and shown.
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the training and internal validation cohorts were 0.347 and 0.776,

respectively). In a retrospective study, Shen et al. (19) first found

that short-zone emphasis (SZE) from GLSZM was the only PET-

based radiomics feature that showed quantitative differences

between SCC and non-SCC in cervical cancer. Tsujikawa et al.

(20) reported that the correlation from normalized gray-level co-

occurrence matrix (NGLCM) was the only feature extracted from
18F-FDG PET that showed significant differences between cervical

SCC and non-SCC. The previous two published studies extracted

merely 18 or 76 features from the original images. In contrast, our

study extracted 2818 features from the original images as well as the

converted images. This might be the cause for which the previous

study could select only one meaningful feature, while our study

selected five. In summary, the findings of this series of PET/CT

radiomic studies highlights the importance of functional imaging-

based radiomics research in differentiating tumor pathological

subtypes. This may be related to the FDG uptake heterogeneity
Frontiers in Oncology 09
between AC and SCC, which is consistent with the identification of

the pathological subtypes of lung cancer based on PET/CT (21).

MRI techniques also introduced various functional sequences,

including apparent diffusion coefficient (ADC), dynamic contrast-

enhanced imaging, and perfusion-weighted imaging (26). Wang

et al. (18) achieved good differentiation between SCC and AC using

a multiparameter MRI radiomics model based on ADC, enhanced

T1-weighted imaging, and other anatomical and functional

sequences. Although the differentiation performance of the multi-

parametric MRI-based radiomics model was the highest among the

published MRI-based radiomics studies, its differentiation

performance (AUC = 0.89) was lower than that of the pure PET-

based radiomics model constructed in our study (AUC = 0.955).

These findings demonstrate the advantages of PET radiomics

features over multiparametric MRI radiomics features to a certain

extent. PET-based radiomics can not only reveal the intratumoral

heterogeneity of imaging structures between AC and SCC but also

demonstrate the heterogeneity of tumor cell metabolism. Moreover,

radiomics features are based on manually segmented ROIs in five

MRI sequences, which not only requires a substantial amount of

work but also increases the instability of the features.

The radiomics features selected in our study are all derived from

processed images, which may reveal greater tumor heterogeneity

differences between SCC and AC compared to the original images,

showcasing the advantage of radiomics. Among these radiomics

features selected in our study, the firstorder_Maximum and

firstorder_Minimum represent the maximum and minimum gray

level intensities, respectively. SCC exhibits significantly higher values

than AC, indicating that SCC has a stronger FDG uptake than AC.

Campos-Parra et al. found that compared to AC, SCC exhibits higher

activation levels of key cancer pathways, such as IL-17, JAK/STAT,

and Ras signaling (27). high-risk human papilloma virus (HPV) -16
TABLE 3 The final PET and CT radiomics features used for models.

Image Filter Feature class Feature

PET Exponential GLSZM
Small area low gray
level emphasis

Wavelet
(LHL)

First-order Maximum

Square GLDM Small dependence emphasis

Squareroot First-order Minimum

Squareroot GLDM Small dependence emphasis

CT
Wavelet
(HLL)

NGTDM Busyness
TABLE 4 Performance of machine learning classifiers for differentiating pathological subtypes in the training and internal validation cohort.

ML DS
PET radiomics model CT radiomics model

AUC 95% CI ACC SEN SPE AUC 95% CI ACC SEN SPE

LR
T 0.916 0.852 - 0.979 0.919 0.714 0.957 0.597 0.441 - 0.753 0.779 0.429 0.843

V 0.779 0.631 - 0.928 0.814 0.571 0.889 0.521 0.330 - 0.711 0.746 0.286 0.909

NB
T 0.848 0.739 - 0.957 0.919 0.667 0.965 0.684 0.549 - 0.820 0.603 0.762 0.574

V 0.719 0.517 - 0.921 0.847 0.643 0.911 0.524 0.334 - 0.712 0.746 0.286 0.909

SVM
T 0.941 0.885 - 0.998 0.941 0.857 0.957 0.612 0.465 - 0.760 0.632 0.619 0.635

V 0.811 0.647 - 0.975 0.864 0.786 0.889 0.484 0.287 - 0.681 0.780 0.214 0.977

KNN
T 0.96 0.931 - 0.989 0.824 1.000 0.791 0.802 0.735 - 0.870 0.559 1.000 0.478

V 0.700 0.535 - 0.865 0.847 0.357 1.000 0.417 0.253 - 0.582 0.763 0.071 1.000

LightGBM
T 0.955 0.922 - 0.988 0.868 0.952 0.852 0.752 0.642 - 0.862 0.713 0.667 0.761

V 0.851 0.715 - 0.986 0.915 0.643 1.000 0.513 0.339 - 0.688 0.661 0.286 0.814

MLP
T 0.930 0.877 - 0.984 0.809 0.905 0.791 0.597 0.440 - 0.753 0.779 0.429 0.843

V 0.816 0.667 - 0.965 0.847 0.643 0.911 0.521 0.330 - 0.711 0.746 0.286 0.909
fro
ML, machine learning; DS, data set; PET, positron emission tomography; CT, computed tomography; AUC, area under the curve; CI, confidence interval; ACC, Accuracy; SEN, Sensitivity; SPE,
Specificity; LR, logistic regression; T, training cohort; V, internal validation cohort; NB, Naive Bayes; SVM, support vector machine; KNN, k-nearest neighbors; lightGBM, light gradient boosting
machine; MLP, multilayer perceptron neural network.
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infection is more common in SCC, while HPV-18 and HPV-45 are

more frequently observed in AC (27, 28). Priego-Hernández et al.

discovered that cervical cancer and HPV-16-positive cell lines have

increased expression of HIF-1a and glucose metabolism-related genes

(GLUT1, LDHA, CAIX, MCT4, and BSG) (29). Furthermore, there

are significant variations in the expression of glucose metabolism-

related genes between SCC and AC (30). Choi et al. demonstrated that

tumor FDG uptake is associated with glucose transporters (Glut-1 and

Glut-3), with SCC exhibiting higher expression intensity and

proportion of Glut-1 compared to AC. Consequently, SCC

demonstrates higher SUVmax and stronger FDG uptake capacity

(31). Small dependence emphasis (SDE) from GLDM and small area

low gray level emphasis (SALGLE) from GLSZM represent tumor

heterogeneity, with higher values indicating more significant

heterogeneity. In our study, GLDM_SDE and GLSZM_SALGLE

features were significantly higher in SCC compared to AC,

indicating that the intratumoral metabolic heterogeneity based on

PET imaging in SCC is significantly higher than that in AC. This may

be related to the previously mentioned metabolic and

histomorphological differences between SCC and AC. The tissue

structure of SCC is tight, with small gaps between tumor cells,

wrapped in several matrix structures, forming cancer nests. In

contrast, the tissue structure of AC is more loose, characterized by

glandular differentiation. Therefore, the differential expression of

pathogenic molecular mechanisms, especially glucose metabolism

genes, determines the metabolic differences of tumor cells, while cell

arrangement and tissue morphology determine the spatial

heterogeneity of tumor cells. The tumor heterogeneity revealed by

PET images manifests these metabolic differences and spatial

heterogeneity of tumor cells. These findings require further

validation with a larger-scale patient or in combination

with pathomics.

In this study, we employed six ML algorithms to develop

models for distinguishing SCC and AC. Among the algorithms,

the radiomics model constructed by the LightGBM algorithm

exhibited excellent differentiation performance, accuracy,

sensitivity, and specificity with a relatively balanced performance.

This finding is consistent with a similar study conducted by Lam

et al., who investigated the correlation between radiomics features
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and tumor mutation burden in glioma based on MRI images using

LR, SVM, and six other ML algorithms (32). They found that the

radiomics model constructed by the LightGBM algorithm also

demonstrated the best discriminative performance with relatively

balanced sensitivity and specificity. Furthermore, researchers have

successfully achieved good discriminative performance in

distinguishing low-grade and high-grade meningiomas using the

LightGBM algorithm for both radiomics and deep learning models

(33). Similarly, Chang et al. constructed LightGBM and

convolutional neural network (CNN) models based on

noncontrast CT and enhanced images to differentiate thymic

epithelial tumors from other anterior mediastinal tumors (34).

The results demonstrated that the LightGBM model

outperformed the CNN model in both the noncontrast CT

dataset and the enhanced CT dataset. The LightGBM algorithm,

which is based on the gradient boosting decision tree model,

optimizes the search for optimal split points and the tree growth

process. It supports efficient parallel training and possesses

advantages such as faster training speed, lower memory

consumption, better accuracy, and quick processing of massive

data, making it widely applicable. Therefore, ML can better handle

complex nonlinear relationships in large-scale datasets and holds

great potential for clinical applications (35). However, it is

important to acknowledge that ML models and algorithms also

have limitations, including overfitting and lack of interpretability.

Overfitting can undermine predictive performance, while the lack of

interpretability can hinder the use of ML (36). Hence, it is essential

to prioritize the future optimization of ML algorithms and conduct

independent validations to verify their performance.

There were several limitations in this study. Firstly, it was a

retrospective and preliminary study, carrying a potential selection

bias despite the use of strict inclusion and exclusion criteria. Secondly,

HPV status and histological differentiation were not available for

some patients when retrieving the electronic medical record system,

and we were unable to further explore their impact on pathological

subtypes. Lastly, the sample size of AC in this study is relatively small,

but this is consistent with the epidemiology of cervical cancer. To

improve the generalizability of the model, it is necessary to investigate

a larger sample size from multiple centers in future research.
FIGURE 7

The receiver operating characteristic (ROC) curves of all three radiomics models were used to differentiate pathological subtypes in the training
cohort (A), internal validation cohort (B), and external validation cohort (C).
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5 Conclusion

The lightGBM-based PET radiomics model effectively identified

pathological subtypes in patients with locally advanced cervical

cancer and may help clinicians in their daily decision-

making process.
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Montiel D, Coronel-Martıńez J, Millan-Catalan O, et al. Molecular differences
between squamous cell carcinoma and adenocarcinoma cervical cancer subtypes:
potential prognostic biomarkers. Curr Oncol (Toronto Ont). (2022) 29:4689–702.
doi: 10.3390/curroncol29070372

28. Wang WP, An JS, Yao HW, Li N, Zhang YY, Ge L, et al. Prevalence and
attribution of high-risk HPV in different histological types of cervical cancer. Zhonghua
fu chan ke za zhi. (2019) 54:293–300. doi: 10.3760/cma.j.issn.0529-567x.2019.05.002

29. Priego-Hernández VD, Arizmendi-Izazaga A, Soto-Flores DG, Santiago-Ramón
N, Feria-Valadez MD, Navarro-Tito N, et al. Expression of HIF-1a and genes involved
in glucose metabolism is increased in cervical cancer and HPV-16-positive cell lines.
Pathog (Basel Switzerland). (2022) 12:33. doi: 10.3390/pathogens12010033

30. Martinez-Morales P, Morán Cruz I, Roa-de la Cruz L, Maycotte P, Reyes Salinas
JS, Vazquez Zamora VJ, et al. Hallmarks of glycogene expression and glycosylation
pathways in squamous and adenocarcinoma cervical cancer. PeerJ. (2021) 9:e12081.
doi: 10.7717/peerj.12081

31. Choi WH, Yoo IR, O JH, Kim TJ, Lee KY, Kim YK. Is the Glut expression related
to FDG uptake in PET/CT of non-small cell lung cancer patients? Technol Health care:
Off J Eur Soc Eng Med. (2015) 23 Suppl 2:S311–8. doi: 10.3233/thc-150967

32. Lam LHT, Chu NT, Tran TO, Do DT, Le NQK. A radiomics-based machine
learning model for prediction of tumor mutational burden in lower-grade gliomas.
Cancers. (2022) 14:3492. doi: 10.3390/cancers14143492

33. Yang L, Xu P, Zhang Y, Cui N, Wang M, Peng M, et al. A deep learning
radiomics model may help to improve the prediction performance of preoperative
grading in meningioma. Neuroradiology. (2022) 64:1373–82. doi: 10.1007/s00234-022-
02894-0

34. Chang CC, Tang EK, Wei YF, Lin CY, Wu FZ, WuMT, et al. Clinical radiomics-
based machine learning versus three-dimension convolutional neural network analysis
for differentiation of thymic epithelial tumors from other prevascular mediastinal
tumors on chest computed tomography scan. Front Oncol. (2023) 13:1105100.
doi: 10.3389/fonc.2023.1105100

35. Luo W. Predicting cervical cancer outcomes: statistics, images, and machine
learning. Front Artif Intell. (2021) 4:627369. doi: 10.3389/frai.2021.627369

36. Luo Y, Chen S, Valdes G. Machine learning for radiation outcome modeling and
prediction. Med Phys. (2020) 47:e178–e84. doi: 10.1002/mp.13570
frontiersin.org

https://doi.org/10.1007/s00404-017-4500-z
https://doi.org/10.3802/jgo.2020.31.e13
https://doi.org/10.4081/ejtm.2022.10670
https://doi.org/10.1007/s00330-016-4417-0
https://doi.org/10.1007/s00330-016-4417-0
https://doi.org/10.1007/s11912-019-0824-0
https://doi.org/10.1016/j.crad.2022.08.149
https://doi.org/10.17691/stm2021.13.2.11
https://doi.org/10.1007/s13244-012-0196-6
https://doi.org/10.1021/acsomega.2c06659
https://doi.org/10.7150/thno.30309
https://doi.org/10.1177/02841851211014188
https://doi.org/10.1007/s00259-017-3697-1
https://doi.org/10.1007/s12149-017-1199-7
https://doi.org/10.1007/s00259-020-04771-5
https://doi.org/10.3233/cbm-210201
https://doi.org/10.1007/s00259-017-3837-7
https://doi.org/10.1007/s00259-018-3987-2
https://doi.org/10.1007/s00259-018-3987-2
https://doi.org/10.1097/RLU.0000000000002810
https://doi.org/10.3389/fonc.2022.1030967
https://doi.org/10.3390/curroncol29070372
https://doi.org/10.3760/cma.j.issn.0529-567x.2019.05.002
https://doi.org/10.3390/pathogens12010033
https://doi.org/10.7717/peerj.12081
https://doi.org/10.3233/thc-150967
https://doi.org/10.3390/cancers14143492
https://doi.org/10.1007/s00234-022-02894-0
https://doi.org/10.1007/s00234-022-02894-0
https://doi.org/10.3389/fonc.2023.1105100
https://doi.org/10.3389/frai.2021.627369
https://doi.org/10.1002/mp.13570
https://doi.org/10.3389/fonc.2024.1346336
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Radiomics-based machine learning models for differentiating pathological subtypes in cervical cancer: a multicenter study
	1 Introduction
	2 Materials and methods
	2.1 Study design
	2.2 Patient cohort
	2.3 PET/CT acquisition
	2.4 Tumor segmentation
	2.5 Feature extraction and normalization
	2.6 Feature selection and model development
	2.7 Statistical analysis

	3 Results
	3.1 Clinical characteristics and PET metabolic parameters
	3.2 Radiomics features extraction and selection
	3.3 Radiomics model development and evaluation

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


