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Nasopharyngeal carcinoma (NPC) is a malignant tumor originating from the

nasopharyngeal epithelial cells. Common treatment methods for NPC include

radiotherapy, chemotherapy, and surgical intervention. Despite these

approaches, the prognosis for NPC remains poor due to treatment resistance

and recurrence. Hence, there is a crucial need for more comprehensive research

into the mechanisms underlying treatment resistance in NPC. Long non coding

RNAs (LncRNAs) are elongated RNAmolecules that do not encode proteins. They

paly significant roles in various biological processes within tumors, such as

chemotherapy resistance, radiation resistance, and tumor recurrence. Recent

studies have increasingly unveiled the mechanisms through which LncRNAs

contribute to treatment resistance in NPC. Consequently, LncRNAs hold

promise as potential biomarkers and therapeutic targets for diagnosing NPC.

This review provides an overview of the role of LncRNAs in NPC treatment

resistance and explores their potential as therapeutic targets for managing NPC.
KEYWORDS

nasopharyngeal carcinoma, long noncoding RNAs, drug resistance, radiation
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1 Introduction

Nasopharyngeal carcinoma (NPC) is a malignant tumor originating in the epithelial

cells of the nasopharynx (1). Although NPC has been linked to various factors, such as viral

infections, environmental influences, and genetics, its precise pathogenesis remains

unclear. At present, the latest research suggests that NPC is not caused by a single

factor, but a unified disease of ecology and evolution, and cancer cells and tumor

microenvironment (TME) constitute a complex pathological ecosystem (2). The global

incidence of NPC varies significantly, with higher rates observed in high-risk regions. In

areas such as South China and Hong Kong, the incidence can reach 25-50 cases per 100,000

people, while in the Western world, NPC relatively rarely occurs, with an annual incidence
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of less than one in 100,000 people (3, 4). In low-risk groups, NPC

incidence is positively correlated with age. However, in medium and

high-risk groups, the peak incidence of NPC occurs among the

youth and those aged 45-54 years, with a decline in NPC cases

among older individuals (3). Moreover, men are 2-3 times more

likely than women to develop NPC (1). Early-stage NPC often

presents nonspecific symptoms, leading to potential misdiagnosis.

Many NPCs were not detected until the intermediate and late

stages. Because of its hidden anatomical location and high

sensitivity to radiotherapy, surgical treatment for NPC is not the

primary choice; instead, radiotherapy remains the mainstay.

Although most patients with NPC undergo chemoradiotherapy,

resistance to this treatment is common, leading to very high

recurrence and metastasis rates and low overall survival (OS).

Approximately 10% of patients with NPC experience recurrence,

while 10%-20% develop distant metastasis (5). Globally, the OS rate

for patients with NPC is less than 80%, with a 5-year OS rate of

51.5% for stage III NPC and as low as 32.4% for stage IVA NPC (6).

Consequently, due to the late detection, high recurrence rates, and

unsatisfactory treatment outcomes, there is an urgent need for

extensive research into NPC pathogenesis to improve diagnosis

and treatment.

Long noncoding RNAs (LncRNAs) are transcripts exceeding

200 nucleotides that cannot encode proteins (7). They play a very

important role in physiological and pathological regulation (8)

(Figure 1). Because LncRNAs lack protein-coding ability, it was

believed that they die not have a role in the physiological and

pathological processes of the body, thus receiving less attention

from researchers (9). Historically overlooked, recent years have seen

a shift in understanding their significance in various physiological

and pathological processes, notably in tumor initiation and

progression. LncRNAs have shown substantial involvement in

chemoradiotherapy resistance in NPC. For instance, LHFPL3 is

implicated in regulating NPC radiotherapy resistance by

modulating the expression of the target gene HOXA6 through

sponge miR-143-5p, thereby regulating NPC sensitivity to

radiotherapy; this suggests that LHFPL3 may serve as a potential
Frontiers in Oncology 02
target in NPC treatment (10). NHG16 is highly expressed in NPC

cells, and sponge miR-31-5p is believed to enhance the expression

of the target gene SFN, thereby enhancing the radioresistance of

NPC (11). However, the exact function of NHG16 is not fully

understood. KCNQ1OT1, another LncRNA, significantly influences

NPC drug resistance. KCNQ10T1 knockout promotes

chemotherapy sensitivity of NPC cells through the miR-454/

USP47 axis, offering a potential solution to chemotherapy

resistance in patients with NPC (12). While the precise

mechanism of LncRNA in mediating NPC chemoradiotherapy

resistance remains unclear, current studies highlight its potential

as a therapeutic target for NPC chemoradiotherapy resistance. This

review introduces the role of LncRNAs in NPC chemoradiotherapy

resistance and summarizes LncRNAs associated with NPC

resistance (Figure 2) (Table 1).
2 Role of IncRNA in NPC
chemotherapy resistance

Platinum drugs are cytotoxic drugs used as first-line

chemotherapeutic agents for many cancers. Their mode of action

involves binding to DNA after hydrolyzing one or two chloride ions

in the body, thereby impeding replication and transcription and,

consequently, the proliferation of cancer cells (35, 36). However,

prolonged usage of platinum-based drugs may lead to the

development of resistance, which can compromise treatment

efficacy. The mechanisms underlying drug resistance to platinum

drugs in malignant tumors include several facets: First,

overexpression of drug efflux transporters diminishes intracellular

drug accumulation. Second, increased DNA repair diminishes

sensitivity to chemotherapy. Third, intracellular drug inactivation

also contributes to this resistance (37, 38).Recent studies have

emphasized the significant role of LncRNA in tumor

chemotherapy resistance (13). For instance, in NPC tissues,

upregulated expression of LncRNA DLEU1 enhances the

expression of BIRC6 through the sponge miR-381-3p, thereby
FIGURE 1

Role of LncRNA in NPC treatment resistance.
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TABLE 1 LncRNAs involved in NPC resistance.

NcRNAs Location Expression Target Resistant
type

Role in
drug

resistance

Functions References

LHFPL3 7q22.2-
q22.3

↑ HOXA6 Radiotherapy Promoting proliferation, apoptosis,
migration, invasion

(10)

SNHG16 17q25.1 ↑ SFN Radiotherapy Promoting proliferation (11)

KCNQ1OT1 11p15.5 ↑ USP47 Chemotherapy Promoting Proliferation,
migration, invasion

(12)

DLEU1 13q14.2-
q14.3

↑ BIRC6 Chemotherapy Promoting proliferation (13)

HOTAIR 12q13.13 ↑ miR-106a-5p/SOX4 Chemotherapy Promoting Apoptosis,
migration, invasion

(14)

XIST Xq13.2 ↑ PDCD4, Fas-L Chemotherapy Promoting Proliferation, apoptosis,
migration, invasion

(15, 16)

ROR 18q21.31 ↑ P53 signaling pathway Chemotherapy Promoting Proliferation,
apoptosis,
migration

(17–19)

NEAT1 11q13.1 ↑ Rsf-1/Bcl-2 Chemotherapy Promoting proliferation,
migration, invasion

(20, 21)

MAGI2-AS3 7q21.11 ↑ GDPD5,SEC61A1 Chemotherapy Promoting proliferation, migration (22)

HOXA11-
AS

7p15.2 ↑ c-MeT/PBX3 Chemotherapy Promoting Proliferation,
apoptosis

(23, 24)

(Continued)
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FIGURE 2

Role of LncRNA in chemoradiotherapy resistance.
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promoting cisplatin resistance in NPC cells (13). Competitive

endogenous RNA (ceRNA) is a novel mechanism for regulating

gene expression. LncRNAs with the same miRNA response

elements competitively bind to the same miRNA, thus

diminishing its inhibition of target gene mRNA and modulating

NPC development (39). HOTAIR, highly expressed in cisplatin-

resistant cells, regulates target gene expression through ceRNA.

Knockdown of HOTAIR can reduce cell viability, expression,

migration and invasion of chemical resistance related proteins,

increase cell apoptosis, reduces the expression of target gene

SOX4 through miR-106a-5p, heightening the chemosensitivity of

NPC cells to cisplatin. This suggests that HOTAIR is a potential

therapeutic target in NPC therapy (14). LINC00346, located on

chromosome 13q34, has shown abnormal expression in various

diseases including NPC. Its aberrant expression significantly

correlates with tumor proliferation, invasion, and drug resistance,

establishing it as a potential biomarker for disease diagnosis and

treatment (40). There is no doubt that chemotherapy sensitivity of

malignant tumor cells is closely related to cell proliferation and

apoptosis (41). XIST, an important mammalian LncRNA derived

from the XIST gene, upregulated in NPC cisplatin cells, decreases

the expression of programmed cell death 4 (PDCD4) and Fas ligand

(Fas-L), thereby increasing drug resistance and reducing

chemosensitivity in NPC cells (15, 16). ROR, an oncogenic

LncRNA located on chromosome 18, is overexpressed in NPC.

Studies have shown that the enrichment of ROR is related to the

chemotherapy resistance of NPC. P53 is one of the important tumor

suppressors in the body. ROR inhibits the P53 signaling pathway,

which may elucidate the mechanism of NPC resistance to

chemotherapy, indicating the pivotal role of ROR in NPC

progression (17–19). It could serve as a potential therapeutic

target to mitigate chemotherapy resistance in NPC. NEAT1 up-

regulates the expression of Rsf-1 through let-7a-5p, thereby

enhancing the resistance of NPC cells to cisplatin. In addition,

NEAT1 can also regulate the resistance of nasopharyngeal

carcinoma to cisplatin through the regulation of Ras-MAPK

signaling pathway (20). Epithelial-mesenchymal transition (EMT)
Frontiers in Oncology 04
is a complex process that can regulate the changes of cell

morphology and function during embryogenesis and tissue

development, and tumor cells can obtain drug resistance through

EMT (42, 43). MAGI2-AS3 can regulate the expression of target

genes GDPD5 and SEC61A1 through sponge miR-2185p, thereby

regulating the proliferation, migration and EMT of NPC cells, as

well as the cisplatin resistance of NPC (22). HOXA11-AS is pivotal

in various cancers such as lung adenocarcinoma (44), oral

squamous cell carcinoma (45), gastric cancer (46), prostate cancer

(47), and breast cancer (48) and is closely related to NPC.

HOXA11-AS is increasingly expressed in cisplatin-resistant NPC

cells and knocking down HOXA11-AS could increase the

expression of miR-454-3p and inhibit the expression of target

gene c-Met, thereby increasing the sensitivity of the tumor cells to

cisplatin (23). Knocking out HOXA11-AS can also decrease the

expression of the target gene PBX3 through sponge miR-98, further

increasing the sensitivity of NPC cells to cisplatin. These findings

highlight a potential target for treating drug-resistant NPC (24).

Paclitaxel, derived from the Pacific redwood, is the first

approved herb-derived chemotherapeutic drug (49, 50), and is

widely used in the treatment of many types of cancer. Paclitaxel

binds to microtubules, disrupting microtubule protein

depolymerization. This interference inhibits mitosis, ultimately

leading to the death of cancer cells (51, 52). Although paclitaxel is

effective in treating malignant tumors, resistance to paclitaxel

remains a significant impediment to its effectiveness. The exact

mechanisms underpinning paclitaxel resistance are presently

unclear. However, certain studies propose its association with

altered microdynamics, changes in micro-protein expression, and

modifications in tumor- suppressing signaling pathways (51). H19,

known as the imprinted maternally expressed transcript, represents

one of the earliest identified LncRNAs. It is located in the 11p15.5

chromosomal region and is encoded by the H19 gene (53, 54).

Accumulating evidence underscores the pivotal role of H19 in the

progression and drug resistance of malignant tumors, rendering it a

focal point of research. Studies have identified its resistance to

various anticancer drugs such as paclitaxel, erlotinib, methotrexate,
TABLE 1 Continued

NcRNAs Location Expression Target Resistant
type

Role in
drug

resistance

Functions References

CCAT1 8q24.21 ↑ CPEB2 Chemotherapy Promoting proliferation, apoptosis,
migration, invasion

(25)

PVT1 8q24.21 ↑ PIK3CA Radiotherapy Promoting Proliferation,
apoptosis

(26, 27)

LINC01140 1p22.3 ↓ ZNF621 Radiotherapy Promoting Proliferation,
apoptosis

(28)

Linc00312 3p25.3 ↓ AKT-DNA-PKcs, MRN-
ATM-CHK2, ATR-CHK1

Radiotherapy Promoting Proliferation,
invasion

(29, 30)

PTPRG-AS1 3p14.2 ↑ MiR-124-3p/LHX2,miR-
194-3p/PRC1

Radiotherapy Promoting Proliferation, apoptosis,
migration, invasion

(31, 32)

CASC19 8q24.21 ↑ AMPK-mTOR
Pathway/FKBP5

Radiotherapy Promoting proliferation apoptosis,
migration, invasion

(33, 34)
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and 5-fluorouracil (55–58). Current research extensively

demonstrates the substantia l involvement of H19 in

chemotherapy resistance in malignant tumors. It could potentially

serve as a target for treating NPC chemotherapy resistance. For

instance, increased H19 expression in paclitaxel-resistant cells,

along with H19 silencing combined with paclitaxel, has shown

promise in inhibiting NPC progression and enhancing

chemotherapy sensitivity (54, 59). Moreover, a sequencing- based

construction of LncRNA differential expression profiles associated

with NPC paclitaxel resistance was conducted. LncRNAs exhibiting

similar expression trends as predicted were further assessed using

qRT-PCR. Among NPC cells, n375709 exhibited the highest

expression level; its suppression was found to augment the

sensitivity of NPC cells to paclitaxel (60). CCAT1, or colon

cancer-associated transcript 1, also known as cancer-associated

region LncRNA-5 or CCAT1-S, localizes to chromosome 8q24.2

and plays a critical role in biological processes such as invasion and

drug resistance (61). In paclitaxel-resistant NPC tissues, CCAT1 is

notably overexpressed, indicating its involvement in paclitaxel

resistance. Investigations revealed that silencing CCAT1 can

inhibit the target gene CPEB2 through sponge miR-181a, thereby

enhancing the sensitivity of NPC cells to paclitaxel. This suggests

that CCAT1 holds potential as a therapeutic target for NPC (25). At

present, there have been many studies on the mechanism of

IncRNA in drug resistance of malignant tumors, which is not

only related to apoptosis, autophagy, control of carcinogenic

signaling pathway, promotion of EMT, but also related to the

regulation of cancer stem cells (CSCs) (62). CSCs play an

important role in the progression and drug resistance of

malignant tumors, and are a small subgroup of tumor cells. It has

the ability of self-renewal, increasing DNA repair, body

maintenance, drug efflux and redox (63). It has been confirmed

that LncRNA is related to CSCs, and chemoradiotherapy can

promote the unique self-renewal ability of CSCs through the

production of cytokines and DNA repair mechanisms. For

example, H19 has been found to participate in the regulation of

CSCs, thereby regulating the sensitivity to chemotherapy (64, 65).
3 Role of LncRNA in NPC
radiotherapy resistance

Considering the specific anatomy of NPC and its sensitivity to

ionizing radiation, the primary treatment for NPC is radiotherapy

(33). Resistance to radiation stands as a significant contributor to

the failure of NPC treatment (66). The core of radiotherapy lies in

causing DNA damage, potentially inducing cell apoptosis through

radiation exposure (67). However, radiotherapy might trigger

mechanisms that repair DNA damage, ultimately bolstering

resistance to this form of treatment (68). Recent evidence

increasingly supports the pivotal role of LncRNA in NPC

radioresistance, suggesting LncRNA as a potential target for

enhancing radiotherapy sensitivity and improving the 5-year

survival rate of patients with NPC. The mechanism of LncRNA
Frontiers in Oncology 05
in radiotherapy resistance is similar to that in chemotherapy

resistance. For instance, PVT1, encoded by the human PVT1

gene on chromosome 8q24.21, exhibits high expression in NPC

tissues. PVT1 is reported to be correlated with radiation resistance

and prognosis. Knocking out PVT1 can reduce PIK3CA expression

by sequestering miR-515-5p, inhibit the proliferation of

nasopharyngeal carcinoma cells, resist radiation, and promote cell

apoptosis, so as to improve the radiotherapy sensitivity and

prognosis of patients with NPC (26, 27). Additionally, decreased

LncRNA levels post-radiotherapy activate cysteinyl aspartate–

specific proteinases (caspase), initiating a cascade that triggers

caspase 9, caspase 7, and PARP. The binding of caspase 7 and

PARP induces apoptosis (69). PVT1, however, inhibits caspase 9,

caspase 7, and PARP, impeding apoptosis, thus diminishing NPC

sensitivity to radiotherapy and fortifying its resistance

(26).Moreover, the downregulation of LINC01140 in NPC cells is

closely related to NPC radiation resistance, cancer cell proliferation

and apoptosis. It regulates ZNF621 expression by competitively

binding miR-452-5p, thereby influencing NPC cell radiosensitivity.

Hence, LINC01140 is a potential therapeutic target for NPC (28).

Linc00312 exhibits dysregulation and reduced expression in NPC,

linked to its role in NPC progression, drug resistance, short-term

efficacy, and OS (70). Upregulating Linc00312 enhances NPC

sensitivity to radiotherapy by inhibiting radiation-induced signal

transduction pathways and DNA damage repair–related protein

expression (29, 30). Aberrant expression of PTPRG-AS1, observed

in various malignant tumors, including NPC, demonstrates its effect

on radiosensitivity. For example, PTPRG-AS1, as a ceRNA of miR-

124-3p, regulates the LHX2 target gene, affects the proliferation and

apoptosis of NPC cells, and regulates the radiotherapy sensitivity of

NPC cells (31). LncRNA can also affect the viability of malignant

tumor cells. Furthermore, PTPRG-AS1 binds specifically to miR-

194-3p, thereby affecting the target gene PRC1, regulating the

activity and apoptosis of NPC cells, and regulating the sensitivity

of nasopharyngeal carcinoma cells to radiotherapy (32). CASC19,

another noteworthy LncRNA encoded by chromosome 8q24.21,

shows high expression in various malignant tumors, including

NPC. It participates in proliferation, radioresistance, invasion,

and other processes, signifying its potential as a therapeutic target

and biomarker for NPC (71). CASC19 expression is closely related

to the resistance of NPC cells to radiotherapy. It regulates NPC

sensitivity to radiotherapy by modulating not only AMPK-mTOR

and blocking autophagy (33) but also FKBP5 expression, acting as a

molecular sponge for miR-340-3p, thereby influencing radiation

resistance (34). Because of its inherent resistance to radiation, NPC

tends to relapse and metastasize distantly, resulting in a poor

prognosis for patients (72). Thus, delving deeper into the

molecular mechanisms and actively seeking potential targets for

NPC treatment remains an urgent need.
4 Conclusion

NPC is one of the most prevalent human tumors, particularly

among head and neck tumors. Despite its prevalence, the exact
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causes and mechanisms triggering NPC remain unclear.

Radiotherapy combined with chemotherapy is the primary

treatment for NPC. However, while this approach exhibits some

efficacy against NPC, the 5-year OS rate for patients with NPC

remains notably low due to drug resistance. Additionally, the

recurrence and metastasis rates remain considerably high (68). To

improve the survival rates and tackle drug resistance and recurrence

in NPC, there is an urgent need for further exploration into NPC

treatment methods. The role of exosomes in NPC has been a focus

of ongoing research. Exosomes, which are tiny membrane vesicles

ranging from 40 to 100 nm in diameter, are released when various

cells fuse with the plasma membrane. Their contents comprise

lipids, nucleic acids, and proteins (73, 74). These exosomes are

extensively present in bodily fluids such as blood, saliva,

cerebrospinal fluid, and urine, showcasing high biological

stability, compatibility, and availability. They play crucial roles in

signal transduction, immune regulation, and targeted delivery,

among other significant functions (75–80). Exosomes derived

from gamma-delta-T cells can counteract the radioresistance

observed in NPC stem-like cells. Furthermore, when radiotherapy

coincides with exosomes derived from gamma-delta-T cells, it

exhibits control over NPC (81). Moreover, the upregulated

expression of DDX53 in paclitaxel resistant NPC cells shows a

correlation with NPC sensitivity to paclitaxel. DDX53 can be

transferred through exosomes, thereby regulating the expression

of MDR1 and subsequently influencing NPC sensitivity to paclitaxel

(82). In summary, this study offers potential insights into NPC

treatment and identifies possible therapeutic targets. Exosomes play

a pivotal role in NPC by transmitting crucial information to target

cells. Additionally, they affect the tumor microenvironment,

contributing to NPC resistance against radiotherapy and

chemotherapy. This suggests that exosomes might serve as

potential biomarkers in NPC.

Immunotherapy is a vital approach for treating malignant

tumors, as it fortifies the immune system against them (83). In

the context of NPC, immunotherapy includes immune checkpoint

inhibitors (ICIs), adoptive cellular immunotherapy (ACT), and

tumor vaccines (84). In 2021, China approved the use of

programmed death-1/programmed death-ligand 1 (PD-1/PD-L1)

blocking ICIs for NPC treatment (85). When the T-cell receptor

(TCR) signaling is activated, PD-1 is induced on the T cell,

impairing their function. PD-1 then binds to the PD-L1 ligand on

cell membranes, facilitating immune evasion and tumor

development (83). PD-1 inhibitors block the PD-L1 and PD-1

binding on T-cell surfaces, thereby inhibiting NPC progression.

PD-L1 carried by NPC cell–derived exosomes is an immune-related

protein that binds to PD-1 on the surface of CD8+T cells,

diminishing immune cell activity, fostering NPC immune escape,

and advancing NPC occurrence and progression (86).

Hyperthermia’s ability to regulate immune responses, bolster

radiation resistance, eliminate tumors through heat, impede NPC

metastasis and recurrence, and in conjunction with ICIs, elevate 5-

year survival rates in patients with NPC (87). ACT employs a

patient’s T cells and other structures to combat malignant tumors
Frontiers in Oncology 06
(88). This encompasses tumor-infiltrating lymphocytes, engineered

TCRs, chimeric antigen receptor T cells, and natural killer cell

therapies (89, 90). Biologically active immune effector cells are

isolated from the patient, multiplied significantly, enhanced in

cytotoxic function, or transformed into antiviral cells.

Subsequently, these cells are reintroduced into the patient to exert

antitumor effects (89). A retrospective analysis involving 38 patients

with NPC in a Phase II trial showcased a higher overall response

rate when chemotherapy with gemcitabine and carboplatin was

combined with the adoptive transfer of six autoamplified Epstein-

Barr virus–specific T cells than chemotherapy alone for NPC (91).

Moreover, NPC vaccines substantially decreased NPC incidence

(92). Glycoproteins on the surface of Epstein-Barr virus cells, such

as gp350, gH/gL, and gp42, among others, can be used as vaccine

targets. Notably, gp350 is distributed abundantly and holds promise

as the most potential vaccine immunogen (93). gp350 has long been

acknowledged as an Epstein-Barr virus vaccine candidate for both

nonhuman primates and humans (94). A prospective cohort

analysis underlines the role of Epstein-Barr virus–neutralizing

antibodies, glycoprotein antibodies, and anti-EBNA1 IgA in

reducing NPC risk. High levels of anti-GP350 antibodies and B-

cell–neutralizing antibodies inhibit infection, suggesting their

potential in vaccine development to curtail NPC prevalence (95).

Epstein-Barr virus–encoded latent membrane protein 2 (LMP2)

antigen can be used as a therapeutic target for NPC. The

development of lipid-based LMP2-mRNA (mLMP2) vaccines

efficiently expresses LMP2 for NPC immunotherapy (96).

Increasing evidence highlights the dysregulation of LncRNAs in

NPC, closely linking them to tumor progression (97). This study

summarizes key LncRNAs significant in NPC (Table 1).

Understanding the mechanisms and biology of LncRNAs in NPC

suggests their potential as diagnostic and therapeutic targets. For

instance, SNHG14, highly expressed in NPC cells, interacts with

miR-5590-3p and elevates the expression of ZEB1, leading to

increased programmed cell death receptor-1 (PD-L1) expression

and promoting NPC’s epithelial-mesenchymal transition (EMT).

Yet, research indicates that nano-coated si-SNHG14 downregulates

PD-L1 expression, diminishes EMT, and impedes NPC progression,

offering a new potential target for NPC immunotherapy (98). To

enhance the efficacy of chemoradiotherapy for NPC, RGD-targeted

platinum-based nanoparticles (RGD-PtNPs, termed RPNs) have

been developed. RPNs, through RGD, are absorbed by NPC cells,

augmenting cisplatin’s effect. Additionally, RGD nanoparticles bind

to RGD receptors in cancer cells, effectively targeting NPC (99, 100).

Targeted ligands, such as pH and redox dual stimulation-responsive

folate-targeted folic acid–b-cyclodextrin–hyperbranched poly

(amido amine) (FA-DS-PAAs) nanocarriers, are currently used in

precision-targeted therapy for NPC by co-delivering docetaxel and

tissue factor pathway inhibitor 2 (TFPI-2) (101). Drug resistance

significantly affects the low 5-year survival rate of patients with

NPC. Ongoing studies elucidating the intricate relationship between

LncRNAs and drug resistance underscore the potential of LncRNAs

as treatment targets for NPC. Further clinical investigations are

warranted to enhance the 5-year survival rate of patients with NPC.
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