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Background: The primary objective of this research is to devise a model to

predict the pathologic complete response in esophageal squamous cell

carcinoma (ESCC) patients undergoing neoadjuvant immunotherapy combined

with chemoradiotherapy (nICRT).

Methods: We retrospectively analyzed data from 60 ESCC patients who

received nICRT between 2019 and 2023. These patients were divided into

two cohorts: pCR-group (N = 28) and non-pCR group (N = 32). Radiomic

features, discerned from the primary tumor region across plain, arterial, and

venous phases of CT, and pertinent laboratory data were documented at two

intervals: pre-treatment and preoperation. Concurrently, related clinical data

was amassed. Feature selection was facilitated using the Extreme Gradient

Boosting (XGBoost) algorithm, with model validation conducted via fivefold

cross-validation. The model’s discriminating capability was evaluated using the

area under the receiver operating characteristic curve (AUC). Additionally, the

clinical applicability of the clinical-radiomic model was appraised through

decision curve analysis (DCA).

Results: The clinical-radiomic model incorporated seven significant markers:

postHALP, DHB, post-ALB, firstorder_Skewness, GLCM_DifferenceAverage,

GLCM_JointEntropy, GLDM_DependenceEntropy, and NGTDM_Complexity, to

predict pCR. The XGBoost algorithm rendered an accuracy of 0.87 and an AUC of

0.84. Notably, the joint omics approach superseded the performance of solely

radiomic or clinical model. The DCA further cemented the robust clinical utility of

our clinical-radiomic model.
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Conclusion: This study successfully formulated and validated a union omics

methodology for anticipating the therapeutic outcomes of nICRT followed by

radical surgical resection. Such insights are invaluable for clinicians in identifying

potential nICRT responders among ESCC patients and tailoring optimal

individualized treatment plans.
KEYWORDS

esophageal squamous cell carcinoma, immunotherapy, neoadjuvant therapy,
radiomics, inflammatory biomarkers
1 Introduction

Esophageal cancer (EC), a malignant tumor of the digestive

tract, is characterized predominantly by progressive dysphagia.

Globally, it holds the seventh spot in incidence, with 604,000 new

cases reported, and is sixth in mortality, accounting for 544,000

deaths annually (1). As per recent data from the China National

Cancer Center, esophageal cancer’s prevalence places it sixth, while

its mortality rate occupies the fourth position. Notably, the

esophageal squamous cell carcinoma (ESCC) subtype is

predominant in China, underscoring its significance in the

broader context of EC (2, 3).

The prevailing therapeutic paradigm for patients with locally

advanced but resectable esophageal cancer is neoadjuvant

chemoradiotherapy (nCRT), subsequently followed by definitive

surgical intervention (4, 5). With the development of

immunotherapy, the concurrent use of immune checkpoint

inhibitors (ICIs) with chemotherapy has shown marked

improvement in survival outcomes for those with advanced or

metastatic disease states (6–10). Preliminary trials investigating the

combination of ICIs with neoadjuvant chemoradiotherapy for

resectable EC have been encouraging (11, 12). The pCR rate of

the nICRT group was 0.48, which was slightly higher than that of

the nCRT group (pCR rate: 0.28–0.49) (4, 13–16). However, the

inter-individual variability in response to nICRT is significant,

highlighting the unmet need to identify robust predictive

biomarkers for pCR.

Several clinical factors, such as stage, gender, gross target

volume (GTV), etc., have proven to be associated with treatment

outcomes (17–20). In addition, quantitative imaging biomarkers

have been of interest for the application in clinical prediction

models (21–23). Radiomics is a non-invasive technique that

involves the extraction of quantitative radiomics features (RFs)

from conventional medical images, the selection of features by using

particular methods, and the analysis of the correlation between the

clinical data and clinical outcomes, which may finally support

clinical decision-making (24, 25). Notably, the radiomic model

based on CT to predict pCR after neoadjuvant therapy has a good

power of prediction, especially in ESCC patients, with a high-

performing level and good discrimination ability. In a study by
02
Yang et al. (26), three CT-based radiomic models were used to

predict pCR in ESCC patients after nCRT in both the training

(AUC, 0.84-0.86) and test cohorts (AUC, 0.71-0.79). In addition,

peritumoral features which serve as powerful prognostic indicators

can be used to construct radiomic models. Hu et al. (27) found that

the combination of intratumoral and peritumoral features to

establish a joint radiomic model based on CT demonstrated good

performance on identification and better prediction of pCR. There

are some previous studies that built predictive models based on

clinical risk factors and radiomics features. Gong et al. (28) found

that a model combining radiomic features of contrast-enhanced CT

and clinical characteristics could predict the recurrence rate of EC

among patients treated with definitive chemoradiotherapy.

Despite these advancements, a limitation in many radiomics

studies is the inclusion of both adenocarcinoma and squamous cell

carcinoma patients. Given that the pCR rates might be distinctively

higher in ESCC patients (14, 29) and considering that ESCC

represents about 90% of EC cases (30), our study focuses on this

subset. We leverage a combination of radiomic features, clinical

data, and hematological markers to predict pCR in ESCC patients

post-nICRT. This comprehensive approach aims to furnish

clinicians with insights at the onset of treatment, enabling a more

personalized therapeutic strategy.
2 Materials and methods

2.1 Patient selection and demographics

Patients diagnosed with ESCC, who underwent radical surgical

resection following nICRT at Shandong Cancer Hospital and

Shandong Provincial Hospital between January 2019 and May

2023, were retrospectively enrolled. Inclusion criteria encompassed

a confirmed ESCC diagnosis with an available gold standard

postoperative pathology report, receipt of nICRT, undergoing a

contrast-enhanced CT scan within one month preceding both the

neoadjuvant therapy and surgery, and having comprehensive clinical

records. Exclusion criteria included the presence of other

synchronous malignancies, suboptimal CT quality impeding

diagnosis, or an incomplete diagnostic and therapeutic trajectory
frontiersin.org
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within institutions. Staging was in line with the eighth edition of the

American Joint Committee on Cancer (AJCC)’s tumor-node-

metastasis (TNM) staging for EC (31). This study adhered to the

Declaration of Helsinki and received approval from the institutional

review board of Shandong Cancer Hospital and Institute.
2.2 Treatment

All patients were treated with paclitaxel combined with platinum.

Due to the ongoing exploration of neoadjuvant chemoradiotherapy

combined with immunotherapy for esophageal cancer, the use of

immunotherapy drugs follows clinical trials. The doses adjustments

of regimens were decided by the doctor based on the guidelines of the

National Comprehensive Cancer Network or the Chinese Society of

Clinical Oncology. Regarding radiation techniques, intensity-

modulated radiotherapy (IMRT) was used for thoracic

radiotherapy. At present, there is no specific regulation on the

target volume for neoadjuvant radiotherapy for esophageal cancer

internationally. It is recommended to follow the principle of

involving field irradiation in radical radiotherapy. The organs at

risk (OARs) and target volumes were defined based on the Radiation

Therapy and Oncology Group guidelines for esophageal cancer. The

primary tumor and the positive lymph nodes were included in the

GTV, named GTVp and GTVn, respectively. The clinical target

volume (CTV) was expanded from GTVp with a 0.5-0.6 cm

radially, and a 3 cm cranio-caudally, and included all the positive

regional nodal regions at diagnosis. The planning target volume

(PTV) was increased by 0.5–0.8 cm from the CTV (32, 33). The

radiation therapy plans were made to ensure adequate coverage of the

prescribed radiation dose was at least ninety-five percent of the PTV.

The total radiation dose ranges from 40 Gy to 50.4 Gy, at 1.8 Gy to 2

Gy per fraction once daily (five fractions per week) (34, 35).
2.3 Information collection and follow-up

Clinicopathological characteristics including age, sex, smoking

and drinking status, diabetes and hypertension history, body mass

index (BMI), TNM stage, pathological differentiation, tumor

location, length of the diseased esophagus, cycles of

chemotherapy combined with immunotherapy, and radiotherapy

dose were extracted from the patients’ medical records. The

laboratory data included lactate dehydrogenase (LDH), albumin

(ALB), prealbumin (PALB), absolute white blood cell count (WBC),

absolute neutrophil count (ANC), absolute lymphocyte count

(ALC), absolute monocyte count (AMC), absolute platelet count

(APC), hemoglobin count (HB) and NLR, MLR, PLR, HALP, SII,

SIRI, and PNI. The NLR, MLR, PLR, HALP, SII, SIRI, and PNI were

calculated using the following formulas: NLR = ANC/ALC, MLR =

AMC/ALC, PLR = APC/ALC, HALP=HB×ALB×ALC/APC, SII =

APC×ANC/ALC, SIRI=AMC×ANC/ALC, PNI = ALB (g/L) +

5 ×ALC (109/L). These immune-related inflammatory biomarkers

(IBs) were calculated during two periods: roughly a week pre-

treatment (pre-IBs) and a week preoperation (post-IBs). The

difference between these markers over these intervals (delta-IBs)
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was also calculated. Patients were categorized into either the pCR

group or the non-pCR group based on the absence (ypT0N0) or

presence of viable tumor cells in the primary tumor area and all

excised lymph nodes, respectively (36).
2.4 Imaging acquisition and
radiomic segmentation

A 64-layer spiral CT scanner (Definition AS+, Siemens

SOMATOM) was deployed for CT scans. Parameters included a

5.0 mm slice thickness, 120 kV tube voltage, and 220 mA tube

current. An iodinated contrast agent (300 mg/mL) was administered

at 1.5 ml/kg body mass at a 2 mL/s rate. Digital contrast-enhanced

CT scans in digital imaging and communications in medicine

(DICOM) format were retrieved from the picture archiving and

communication systems (PACS) and subsequently processed using

the open-source radiomics extraction toolkit.

For quantitative imaging analysis, the primary gross tumor was

defined as lesions with esophageal wall thickening > 5 mm or lumen

occlusion diameter > 10 mm and excluding intraluminal gas and oral

contrast agents and selected as the region of interest (ROI) (37), with

normal structures and metastatic lymph nodes omitted. ROI

parameters were set at a window width of 400 and a window level

of 40. Initially, for the CT images of the arterial phase prior to

treatment, the delineation of ROI-B was assisted using medicalmind

software for edge detection, followed by manual tracing and

correction along the primary esophageal tumor contour.

Subsequently, CT images from different phases, both before and

after treatment, were aligned with the arterial phase CT images before

treatment using projection transformation. The contour of the ROI

from the pre-treatment arterial phase CT images was then projected

onto these CT images. Following this, the original radiation

oncologist manually adjusted the contours to account for changes

due to tumor shrinkage after treatment, ensuring consistency in the

anatomical range from cranial to caudal for depicting ROI-A/C/D/E/

F. ROI-D/E/F, identified in the preoperative plain, arterial, and

venous phases, were designated as areas of the esophagus with

visible tumor presence. In cases where no residual tumor was

observed after neoadjuvant radiochemotherapy combined with

immunotherapy, ROIs were marked at the primary tumor bed

location. Experienced radiologists meticulously executed and

reviewed all segmentations to ensure precision.
2.5 Feature extraction

We extracted the radiomics features from the basal CT before

any therapy and the contrast-enhanced CT which is for evaluating

efficacy before surgery. Total of 107 RFs based on patient CT images

were extracted from each phase using the medmind software,

encompassing 14 shape features, 18 first order statistical features,

24 gray level co-occurrence matrix (GLCM), 14 gray level

dependence matrix (GLDM), 16 gray level run-length matrix

(GLRLM), 16 gray level size zone matrix (GLSZM), and 5

neighbor gray tone difference matrix (NGTDM), detailed at

https://pyradiomics.readthedocs.io/en/latest.
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2.6 Feature selection and
model development

The eXtreme Gradient Boosting (XGBoost) algorithm was

employed, leveraging its gradient boosting capabilities (38). The

importance of each feature was ranked by calculation. In order to

choose the relevant features for building the classification model, we

recursively removed the features with lower importance to obtain

smaller feature subsets, estimated the discriminative abilities of

features of the subsets, and selected those features with the greatest

discriminative power to enhance the prediction performance. To find

the optimal number of features, 5-fold cross-validation was employed

to score different feature subsets and select the best scoring set of

features. With the selected radiomics features, radiomics models with

good prediction performance for pCR were established. By

comparing a suite of statistical metrics, including accuracy,

precision, and recall, the best radiomics model was selected.

Clinical features were also selected by the XGBoost algorithm to

provide the relevant features based on feature importance. Then

features with low importance were removed through the recursive

elimination method. Clinical features were scored using 5-fold

cross-validation on different feature subsets for the selection of

best feature subset.

Finally, by combining the RFs and clinical features selected, the

XGboost algorithm based on feature importance was used again for

screening. The following steps were as the same as above. The

prediction abilities of the clinical model, radiomics model, and

clinical-radiomic model for pCR were evaluated by the receiver

operator characteristic (ROC) curve. The clinical utility of models

was ascertained via Decision Curve Analysis (DCA).
2.7 Statistical analysis

All statistical evaluations were executed using SPSS Statistics

V25.0 (IBM Corporation, Armonk, NY, USA). In our analysis, we

distinguished between categorical and continuous variables,

employing the Chi-square test and Fisher’s exact test for the

categorical variables and choosing between the independent

sample t-test (for normally distributed data) or the Mann-

Whitney U-test (for data not following a normal distribution) for

continuous variables. For the purpose of statistical significance, a p-

value below 0.05 was considered indicative of a significant result.

Machine-learning analyses were facilitated using the R software

(version 3.4.4). The “pROC” packages were employed to draw ROC

curves and to evaluate the model performance by the AUC.
3 Results

3.1 Patient demographics and
baseline characteristic

Initially, 66 patients were considered for the study. However, due

to incomplete data on treatment protocols or associated diagnostic
Frontiers in Oncology 04
materials for 6 individuals, our model was confined to 60 patients, as

depicted in Figure 1. The baseline attributes for both the pCR and

non-pCR groups are outlined in Table 1. Of all the patients we

enrolled, 66.7% were at stage III, and 33.3% were at stage II. The

cohort consisted of 50 males (83.3%) and 10 females (16.7%) with a

median age of 59.5 years, ranging from 45 to 73 years. The median

tumor length was determined to be 5.5 cm, spanning from 2 to 11 cm.

95% of tumors were located in the middle and lower esophagus.

Upon diagnosis, almost all patients with locally advanced ESCC

received neoadjuvant therapy within 3 months. A total of 56 (93.4%)

patients received at least two cycles of nICRT. Among them, all

patients were given paclitaxel combined with platinum, and 50% of

patients received SHR1701 immune preparation. 36.7% received

tirelizumab and the remaining patients received carrelizumab.

83.3% of patients received radiotherapy exceeding 40Gy, with the

majority receiving 41.4Gy/23F. The pCR rate to the neoadjuvant

therapy was 46.67%. Both groups showcased no significant disparity

in these baseline metrics (P value > 0.05).

The comparison of baseline characteristics and treatment

specifics between the groups of patients achieving pathological

complete response (pCR) and those not achieving pCR revealed

no significant differences in most evaluated criteria. This indicates

that these initial factors may not significantly influence the rates of

pCR observed, supporting the validity of predictive models based on

radiomic and clinical data.

Additionally, our thorough analysis explored the relationship

between pCR and a wide range of 41 hematological markers in the

entire study population (refer to Supplementary Table 1). Among

these numerous markers, three showed a statistically significant

association with pCR rates in the collective group, each presenting

p-values below 0.05.
FIGURE 1

Flowchart of patient enrollment. pCR, pathologic complete
response; ESCC, esophageal squamous cell carcinoma.
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TABLE 1 Baseline characteristics of all patients.

Clinical parameter
Total pCR-group non-pCR-group

P-value
N=60 N=28 N=32

Age 0.365

≤65Y 48 (80.0%) 21 (75.0%) 27 (84.4%)

>65Y 12 (20.0%) 7 (25.0%) 5 (15.6%)

Gender 0.563

Male 50 (83.3%) 22 (79.6%) 28 (87.5%)

Female 10 (16.7%) 6 (21.4%) 4 (12.5%)

Smoking status 0.139

Former/current 36 (60.0%) 14 (50.0%) 22 (68.7%)

Never 24 (40.0%) 14 (50.0%) 10 (31.3%)

Alcohol consumption 0.073

Former/current 31 (51.7%) 11 (39.3%) 20 (62.5%)

Never 29 (48.3%) 17 (60.7%) 12 (37.5%)

Diabetes history 0.876

Yes 5 (8.3%) 3 (10.7%) 2 (6.2%)

No 55 (91.7%) 25 (89.3%) 30 (93.8%)

Hypertension history 0.744

Yes 14 (23.3%) 6 (21.4%) 8 (25.0%)

No 46 (76.7%) 22 (78.6%) 24 (75.0%)

BMI 0.175

<18.5 2 (3.3%) 0 (0.0%) 2 (6.2%)

18.5~25 32 (53.3%) 13 (46.4%) 19 (59.4%)

≥25 26 (33.4%) 15 (53.6%) 11 (34.4%)

Stage T 0.546

T2 6 (10.0%) 4 (14.3%) 2 (6.3%)

T3 54 (90.0%) 24 (85.7%) 30 (93.7%)

Stage N 0.668

N0 16 (26.7%) 9 (32.2%) 7 (21.9%)

N1 30 (50.0%) 13 (46.4%) 17 (53.1%)

N2 14 (23.3%) 6 (21.4%) 8 (25.0%)

Clinical stage 0.143

II 20 (33.3%) 12 (42.9%) 8 (25.0%)

III 40 (66.7%) 16 (57.1%) 24 (75.0%)

Tumor differentiation 0.066

Gx 28 (46.7%) 17 (60.7%) 11 (34.4%)

G1 (Well) 3 (5.0%) 2 (7.1%) 1 (3.1%)

G2 (Moderate) 20 (33.3%) 5 (17.9%) 15 (46.9%)

(Continued)
F
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3.2 Feature selection

In this study, we delineated the ROI of the plain phase, arterial

phase, and venous phase of contrast-enhanced CT before treatment, as

well as the plain phase, arterial phase, and venous phase before surgery,

and respectively named these six regions of interest A, B, C, D, E, and F.

Due to the absence of complete three-temporal phase data for part of

patients in the PACS, and the limited sample size for the preoperative

plain phase rendering it unsuitable for feature analysis, preoperative

plain phase (D) was excluded. In order to select important features that

influence clinical severity, we first investigated the contribution of each

of the 107 input variables of each phase on severity via feature

importance analysis using XGBoost algorithms. we recursively

remove the features with lower importance to obtain smaller feature

subsets. We found the optimal feature subset by 5-fold cross-validation.

The specific radiomics model parameters used to reduce weights and

control overfitting are shown in Table 2. Due to the lack of a clear

correlation between RFs of the arterial phase before treatment (B) and

the outcome pCR, both feature selection and model parameters were
Frontiers in Oncology 06
unstable and not listed in the table. Finally, we averaged the importance

values for the final ranked feature importance value. The features

selected based on importance in the radiomics model of the contrast-

enhanced CT plain phase before treatment were GLCM_JointEntropy,

GLCM_DifferenceAverage, GLDM_DependenceEntropy,

Firstorder_Skewness, Firstorder_RootMeanSquared, GLSZM_

SizeZoneNonUniformityNormalized, and NGTDM_Complexity. A

suite of features including GLDM_DependenceNonUniformity,

Firstorder_TotalEnergy, GLCM_MCC, Shape_SurfaceArea, GLSZM_

SizeZoneNonUniformity, GLSZM_GrayLevelNonUniformity, and

GLSZM_ZonePercentage were also chosen based on importance in

the radiomics model of the pretherapeutic contrast-enhanced CT

venous phase. In the radiomics model of the arterial phase before

surgery, we selected Firstorder_Skewness, GLCM_ClusterShade,

GLCM_InverseVar i ance , F i r s to rder_Energy , Shape_

Maximum2DDiameterColumn, GLCM_Correlation, Shape_

Leas tAxi sLength , F i r s torder_RootMeanSquared , and

Shape_MinorAxisLength . S imi lar ly , F irs torder_Mean

AbsoluteDeviation, Shape_Maximum2DDiameterColumn,
TABLE 1 Continued

Clinical parameter
Total pCR-group non-pCR-group

P-value
N=60 N=28 N=32

Tumor differentiation 0.066

G3 (Poor) 9 (15.0%) 4 (14.3%) 5 (15.6%)

Tumor location 0.130

Upper thoracic 3 (5.0%) 0 (0%) 3 (9.3%)

Middle thoracic 26 (43.3%) 12 (42.9%) 14 (43.8%)

Lower thoracic 31 (51.7%) 16 (57.1%) 15 (46.9%)

Chemotherapy regimen 0.068

Paclitaxel and cisplatin 21 (35.0%) 13 (46.4%) 8 (25.0%)

Paclitaxel and carboplatin 35 (58.3%) 15 (42.9%) 23 (71.9%)

Paclitaxel and nedaplatin 4 (6.7%) 23 (10.7%) 1 (3.1%)

Prescribed dose 0.203

≤40Gy 10 (16.7%) 7 (25.0%) 3 (9.4%)

>40Gy 50 (83.3%) 21 (75.0%) 29 (90.6%)

Immunotherapy 0.152

Tirelizumab 22 (36.7%) 14 (50.0%) 8 (25.0%)

SHR1701 30 (50.0%) 11 (39.3%) 19 (59.4%)

Karelizumab 8 (13.3%) 3 (10.7%) 5 (15.6%)

Treatment cycle 0.930

1 4 (6.6%) 3 (10.7%) 2 (6.3%)

2 51 (85.0%) 23 (82.1%) 27 (84.4%)

3 4 (6.7%) 2 (7.2%) 2 (6.3%)

4 1 (1.7%) 0 (0.0%) 1 (3.0%)
P value was calculated across treatment groups for categorical data using Chi-square test and Fisher’s exact test. pCR, pathologic complete response; BMI, Body Mass Index; T, tumor; N, node.
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https://doi.org/10.3389/fonc.2024.1350914
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2024.1350914
Firstorder_RobustMeanAbsoluteDeviation, Shape_MinorAxisLength,

GLSZM_ZoneVariance, GLRLM_RunVariance, NGTDM_Busyness,

GLCM_Correlation, and GLDM_DependenceNonUniformity

Normalized were opted based on feature importance in the

radiomics model of the preoperative contrast-enhanced CT venous

phase. The performance of radiomics model was gauged through

accuracy, precision, recall (Figure 2A), and AUC (Figure 2B) metrics

across different phases. The analysis for phase A revealed optimal

predictive power with an AUC of 0.81 and accuracy of 0.78 when seven

features were selected. Phase B, with unstable feature selection,

achieved an AUC of 0.70 and accuracy of 0.69. Phase C, with seven

selected features, reached an AUC of 0.73 and accuracy of 0.72. For

phases E and F, the optimal AUC values were 0.67 and 0.65, with

accuracies of 0.72 and 0.69 respectively. Ultimately, the radiomics

model of the pretherapeutic plain phase (A) was deemed superior.

Clinicopathological and laboratory data was analyzed based on

feature importance in the same way. The combination of

clinicopathological characteristics and hematological indicators

cannot establish a model-based ranking, as the amount of data is

small, and the ranking would easily change with parameters.
Frontiers in Oncology 07
Eventually, after repeated training, the selected characteristics

consist of post-HALP, pathological differentiation, post-LDH,

DHB, post-APC, DPALB, prePLR, and post-ANC.
3.3 Joint model

We combined these selected radiomics features of the preoperative

contrast-enhanced CT plain phase, clinicopathological characteristics,

and hematological indicators for reanalysis. These features included

GLCM_JointEntropy, GLCM_DifferenceAverage, GLDM

_DependenceEntropy, Firstorder_Skewness, Firstorder_

RootMeanSquared, GLSZM_SizeZoneNonUniformityNormalized,

NGTDM_Complexity, post-HALP, pathological differentiation, post-

LDH, DHB, post-APC, DPALB, prePLR, and post-ANC. Because the

combination of the two may cause new feature redundancy, the

XGBoost algorithm was used to perform feature importance analysis

to remove features with low importance. Five-fold cross-validation was

employed to score different feature subsets and select the best-scoring

set of features. The model identified crucial predictors. These were
TABLE 2 Radiomics model parameters of each contrast-enhanced CT phase model.

Phase model
pretherapeutic
plain phase

pretherapeutic
venous phase

preoperative
arterial phase

preoperative
venous phase

learning_rate 0.11 0.12 0.09 0.17

min_child_weight 2.65 0.22 2.95 0.54

max_depth 13 14 8 11

max_delta_step 3.46 2.81 2.98 0.02

subsample 0.83 0.79 0.60 0.75

colsample_bytree 0.91 0.84 0.76 0.99

colsample_bylevel 0.83 0.88 0.95 0.90

reg_lambda 0.55 0.33 0.61 0.82

reg_alpha 0.33 0.32 1.00 0.04
A B

FIGURE 2

Performance metrics and ROC curves of predictive models across CT imaging phases. (A) Model Scores: This bar chart compares the accuracy,
precision, and recall of predictive models developed for different phases of contrast-enhanced CT scans. Each model corresponds to a specific
phase: Phase A (pretherapeutic plain), Phase B (pretherapeutic venous), Phase C (preoperative arterial), and Phases E and F (preoperative venous),
revealing variations in their predictive performance. (B) ROC Curves of the Predictive Models Across CT Imaging Phases: This graph displays the ROC
curves for each predictive model, with the true positive rate plotted against the false positive rate for various threshold settings.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1350914
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2024.1350914
postHALP, DHB, post-ALB, firstorder_Skewness, GLCM

_Di ff e r enc eAve ra g e , GLCM_Jo in tEn t ropy , GLDM_

DependenceEntropy, and NGTDM_Complexity. As shown in

Figure 3, GLCM_ JointEntropy contributed the most in the joint

mode l to predic t the outcome, fo l lowed by GLDM

_DependenceEntropy, and postHALP had the smallest contribution.

Concurrently, the overarching trend of the joint model was observed to

possess a positive correlation, as highlighted in Figure 4.

Figure 5A contrasts the predictive performances of

clinicopathological and hematological analyses, radiomics, and

clinical-radiomic model. With an AUC of 0.84 for the joint

model, it outperformed the radiomics (AUC 0.81) and clinical

model (AUC 0.80). The joint model also exhibited superior

clinical applicability compared to individual analyses, as depicted

in Figure 5B.
5 Discussion

In pat ien ts wi th resec tab le di sease , neoadjuvant

chemoradiotherapy (nCRT) combined with esophagectomy

remains the primary treatment. However, the pCR rate for nCRT,

which ranges between 29.2% to 43.2%, is not entirely satisfactory.

ICIs have dramatically shifted the treatment paradigm for

numerous advanced cancers, EC included. Recent evidence has

suggested that neoadjuvant immunotherapy can potentially boost

survival rates in patients with resectable cancers. Early clinical trials

assessed neoadjuvant immunotherapy in tandem with

chemoradiotherapy, with most of these studies originating from

China and focusing on ESCC. Yet, neoadjuvant immunotherapy in

EC is still nascent, and many questions linger. One challenge is in

assessing the response. Pathological response frequently acts as the

surrogate endpoint for both relapse-free survival and overall

survival in neoadjuvant cancer therapy (39). Currently, pCR and

MPR are the preferred metrics for gauging response to

neoadjuvant immunotherapy.
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In our study, we enrolled 60 ESCC patients who underwent

ICRT. We delved into the correlation between hematologic

indicators, clinicopathological traits, and radiomics features

extracted from the primary tumor’s region across various CT

phases, and prognosis in ESCC patients undergoing nICRT. Our

findings indicated that postHALP, DHB, post-ALB, firstorder

_Skewness, GLCM_DifferenceAverage, GLCM_JointEntropy,

GLDM_DependenceEntropy, and NGTDM_Complexity are

potential biomarkers to forecast pCR. The general trend from the

joint model appears to be positively inclined. Previous research has

corroborated that a rise in petherapeutic inflammatory biomarkers

significantly aligns with the prognosis for esophageal cancer

patients who have undergone either curative esophagectomy or

definitive chemoradiotherapy (40–45). Yet, for those treated with

nICRT, the relevant studies are scant. One notable study aimed to

create and validate a predictive model, the integrative inflammatory

and nutritional score (IINS), for locally advanced esophageal

squamous cell carcinoma patients receiving neoadjuvant

immunotherapy combined with chemotherapy (nICT), to project

the pCR. This was devoid of radiomics correlation (46).

Furthermore, most research predicting neoadjuvant efficacy for

esophageal cancer primarily harnesses enhanced CT or 18F-FDG-

PET-CT to predict pCR following neoadjuvant therapy (27, 47, 48).

Given that therapeutic effect is a dynamic process, the data

involving RFs changes during treatment would be more

informative. Moreover, there are differences in RFs due to the

uptake of contrast agents during the different phases of contrast-

enhanced CT. Consequently, we introduced longitudinal images to

assess the connection between RFs and outcomes, including pre-

and post- neoadjuvant treatment, and to enhance clinical usefulness

further. Our joint model not only encompasses clinical features,

laboratory metrics, and contrast-enhanced CT evaluations but also

extends CT analysis based on phase. Both hematologic biomarkers,

sourced from peripheral blood, and CT emerge as straightforward

and accessible tools to anticipate the prognosis for ESCC patients.

We posit that the clinical-radiomic assessment in our study offers
FIGURE 3

Ranking of feature importance in clinical-radiomic model. This figure displays the relative importance of various radiomic and clinical features as
determined by the XGBoost algorithm in our predictive model. Features like GLCM_JointEntropy and GLDM_DependenceEntropy top the chart,
emphasizing the significance of tumor textural heterogeneity and internal structure in predicting the response to neoadjuvant therapy. Clinical
markers such as post-treatment albumin and changes in hemoglobin levels also feature prominently, highlighting their influence on treatment
efficacy, alongside measures of tumor density contrast and complexity. This graph underscores the intricate relationship between radiologic and
clinical factors in determining therapeutic outcomes.
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promising diagnostic markers to predict postoperative pathological

outcomes in EC patients treated with nICRT regarding

pCR achievement.

We endeavored to predict pCR quantitatively using radiomics

features from plain, arterial, and venous phase CT, targeting the

identification of the phase with the most significant applications. To

mitigate complexity and overfitting, we deployed the XGBoost
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algorithm for feature selection. Prior CT radiomics investigations

were singularly based on either one temporal or one level of RFs,

rendering the attainment of the optimal model for specific clinical

concerns elusive (49). Our feature extraction rooted in a three-

dimensional ROI is arguably more adept at delineating tumor

spatial heterogeneity compared to a single layer. In addition, we

leveraged richer RFs from multi-temporal CT, promoting a
FIGURE 4

Correlation matrix of radiomic and clinical features in predictive modeling. This figure showcases a correlation matrix that quantifies the relationships
between radiomic features and clinical variables in our predictive model. Each cell in the matrix represents the correlation coefficient between
feature pairs, indicated by a color gradient from blue (low correlation) to red (high correlation). Notably, a strong positive correlation is observed
between GLCM_DifferenceAverage and GLCM_JointEntropy, suggesting a link in tumor texture attributes. Moderate correlations are seen between
features like GLDM_DependenceEntropy and the predictive Target, while features such as post-HALP exhibit lower correlation values. This matrix
provides insights into which features might combine effectively to enhance the model and which offer unique predictive information, aiding in the
development of a nuanced, multidimensional predictive tool for clinical use.
A B

FIGURE 5

ROC and DCA curves comparing predictive models. [(A) ROC curves of the three models (radiomic model, clinical model and clinical-radiomic
model)]: This panel presents the Receiver Operating Characteristic (ROC) curves for three models: the radiomic model (A) with an AUC of 0.81, the
clinical model (Clinic) with an AUC of 0.80, and the combined clinical-radiomic model (Union) with an AUC of 0.84, demonstrating that combining
radiomic and clinical data provides the most accurate prediction of treatment response. (B) DCA curves of the three models (radiomic model,
clinical model and clinical-radiomic model)): The Decision Curve Analysis (DCA) for the same models illustrates the net benefits across a spectrum
of risk thresholds. The combined model (Union) shows the highest net benefit, suggesting its greater clinical value in making informed treatment
decisions for esophageal cancer.
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comprehensive analysis of the association between images and

disease mechanisms. Interestingly, the AUC value under the ROC

of the plain phase displayed an uptick. We conjecture this is

attributed to tumor heterogeneity. Tumor heterogeneity is a

hallmark of malignancies, directly influencing their growth rate,

invasive capacity, drug sensitivity, and prognosis (50). Evidence

suggests that tumor heterogeneity’s nuances are challenging to

encapsulate through a singular method. However, it can be

quantitatively explored through RFs (25). The plain phase

meticulously chronicles the intensity and spread of all RFs within

the tumor. Post-enhancement, with the influx of positive contrast

agents into the tumor’s blood vessels, some may be absorbed by

tumor cells. While this may shed light on specific other tumor

biological behaviors, it also alters the tumor’s inherent texture

feature distribution, particularly grayscale intensity, hence,

modifying its predictive capacity for nICRT’s efficacy in

esophageal cancer. This could potentially clarify the reduced

predictive performance seen in arterial and venous phases.

Numerous machine algorithms are available for radiomics model,

including mainstream ones like random forest, logistic regression,

support vector machine, and decision tree. The choice of the

appropriate algorithm is pivotal for constructing the model. Our

study employed a decision tree algorithm to predict the efficacy of

neoadjuvant immunotherapy combined with chemoradiotherapy

for esophageal squamous cell carcinoma.

Nevertheless, our study has its limitations. Firstly, the sample size

might be considered modest, which could introduce bias.

Incorporating a larger sample size would undoubtedly enhance and

authenticate its utility as a valuable prediction tool to aid treatment

decisions. Secondly, our conclusions stem from a retrospective

design. The joint model’s performance in prospective studies awaits

exploration. Lastly, owing to CT’s constrained spatial resolution,

discerning the demarcation between the lesion and regular

esophageal tissue during ROI segmentation might be susceptible to

bias. Further advancements in medical imaging techniques and

precision are imperative. Thus, in subsequent research, our

ambition is to acquire multi-center data, bolster the sample size,

and undertake radiomics feature extraction more scientifically and

effectively, enhancing the predictive capability and clinical

applicability of the predictive model. Our study, at this juncture,

provides insights for devising novel strategies to assess the efficacy in

locally advanced resectable esophageal cancer patients post-nICRT

followed by surgical intervention, undoubtedly supplementing the

existing predictive tools.
6 Conclusion

In summation, our clinical-radiomic model, anchored on

postHALP, DHB, post-ALB, firstorder_Skewness, GLCM_Difference

Average, GLCM_JointEntropy, GLDM_DependenceEntropy, and

NGTDM_Complexity, seeks to predict pathologic complete response.
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Our aspiration is to present an alternative tool to identify prospective

best responders to nICRT prior to the commencement of treatment for

ESCC patients, thereby aiding clinical decision-making.
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