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risks based on a time scale
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1Department of Biostatistics, School of Public Health (Guangdong Provincial Key Laboratory of
Tropical Disease Research), Southern Medical University, Guangzhou, China, 2Department of Statistics
and Data Science, School of Economics, Jinan University, Guangzhou, China
Background: Patients with early-stage breast cancer may have a higher risk of

dying from other diseases, making a competing risks model more appropriate.

Considering subdistribution hazard ratio, which is used often, limited to model

assumptions and clinical interpretation, we aimed to quantify the effects of

prognostic factors by an absolute indicator, the difference in restricted mean

time lost (RMTL), which is more intuitive. Additionally, prognostic factors of breast

cancer may have dynamic effects (time-varying effects) in long-term follow-up.

However, existing competing risks regression models only provide a static view

of covariate effects, leading to a distorted assessment of the prognostic factor.

Methods: To address this issue, we proposed a dynamic effect RMTL regression

that can explore the between-group cumulative difference in mean life lost over

a period of time and obtain the real-time effect by the speed of accumulation, as

well as personalized predictions on a time scale.

Results: A simulation validated the accuracy of the coefficient estimates in the

proposed regression. Applying this model to an older early-stage breast cancer

cohort, it was found that 1) the protective effects of positive estrogen receptor

and chemotherapy decreased over time; 2) the protective effect of breast-

conserving surgery increased over time; and 3) the deleterious effects of stage

T2, stage N2, and histologic grade II cancer increased over time. Moreover, from

the view of prediction, the mean C-index in external validation reached 0.78.

Conclusion: Dynamic effect RMTL regression can analyze both dynamic

cumulative effects and real-time effects of covariates, providing a more

comprehensive prognosis and better prediction when competing risks exist.
KEYWORDS

breast cancer, competing risks, restricted mean time lost, dynamic effect, personalized
prediction
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1 Background

Older patients with early-stage breast cancer (particularly when

comorbidities are advanced) tend to die from other diseases. That is,

the number of deaths from non-breast cancer is large (1). Patients

may experience a variety of outcomes: death from breast cancer,

death from heart disease and so on. Assuming the outcome we are

interested in is death from breast cancer (event of interest), then we

hope to observe the time from the start of follow-up to the

occurrence of the event of interest, but this will not be observed

for the patient dying from heart disease (competing event). In this

case, traditional single-endpoint survival analysis, such as the Cox

proportional hazards model, only considers the event of interest

and treats patients who die of heart disease as censored simply.

However, this doesn’t meet the non-informative censoring

hypothesis. That is, the risk of dying from breast cancer among

women who have already died of heart disease needs to be the same

as that among women who remain in follow-up. However, patients

who have already died of heart disease will not die of breast cancer

again. So it is improper to simply treat patients who experience

competing events as censored, which will overestimate the

cumulative incidence of the event of interest and result in bias

(2–4). To solve the situation where multiple outcomes compete with

each other, we should consider competing risks models.

In traditional multivariate analysis of competing risks, cause-

specific Cox regression and Fine-Gray regression are often used,

and the corresponding effect sizes are the cause-specific hazard ratio

(cHR) and subdistribution hazard ratio (sHR). However, both the

cHR and sHR are relative indicators, defined as the ratio of the

hazard function. It is difficult for clinicians to interpret them as

intuitive clinical benefits and communicate with patients (5, 6). For

example, when the sHR of estrogen receptor (ER) is 0.43, that is, the

risk of death in the ER-positive group is 0.43 times that in the ER-

negative group, and because the baseline hazard is unknown

generally, the absolute risk of death of two groups cannot be

known. In addition, both cause-specific Cox regression and Fine-

Gray regression models need to satisfy the proportional hazards

assumption. From a clinical perspective, clinicians or patients are

more interested in direct (absolute) effect sizes on a time scale, e.g.,

how long will I live? How long will surgery extend my life

expectancy? As Blagoev (6) points out, “While a hazard ratio has

some value, for the clinician caring for a patient and, more

importantly, the patient, it does not convey benefit in terms that

are meaningful—how much longer will the patient live or live

without experiencing disease progression.” Therefore, restricted

mean time lost (RMTL) has been proposed as an alternative

measure to the hazard ratio (7–12). The RMTL is the area under

the cause-specific cumulative incidence function (CIF) over a

period of time (from 0 to a restricted time point t), which can be
Abbreviations: cHR, cause-specific hazard ratio; sHR, subdistribution hazard

ratio; RMTL, restricted mean time lost; CIF, cause-specific cumulative incidence

function; IPCW, inverse probability of censoring weighting; SEER, Surveillance,

Epidemiology, and End Results; PR, progesterone receptor status; ER, breast-

conserving surgery; ALND, axillary lymph node dissection; SLNB, lymph node

biopsy; 95%CI, 95% confidence interval.
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interpreted as the life expectancy lost due to a specific cause in this

period of time. Compared with the hazard ratio, the interpretation

of RMTL is more intuitive, giving the life lost of each group due to

death from breast cancer over a period of time and measuring the

effect of a factor by the difference in RMTL between groups. For

example, Figure 1 shows areas under the CIF for patients in the ER-

positive group and ER-negative group. During the 10.5 years

(t = 10:5), the mean life lost due to death from breast cancer was

0.9 (S0) years for patients in the ER-positive group and 2.4 (S0 + S1)

years for patients in the ER-negative group, and ER-negative

patients lost an additional 1.5 (2.4–0.9) years of life on average.

At the same time, RMTL does not need to meet the proportional

hazards assumption.

The existing multivariate analysis of RMTL includes two

methods: regression based on the pseudo-value method (11) and

regression based on inverse probability of censoring weighting

(IPCW) (12). The regressions mentioned above only concern the

cumulative effects of prognostic factors during a t-year follow-up,
which are constant values (static or time-fixed effects). However, the

real-time effects of many covariates (e.g.,: covariates with time-

varying effects) vary, for example, the real-time effect of

chemotherapy tends to decrease with increasing follow-up time. It

has been documented that the effects of age, histological grade, and

ER status on the survival of patients with breast cancer change over

time (13, 14), so it may not be comprehensive to fit only the static

effects of prognostic factors.

Given covariates with time-varying effects in the field of

competing risks, we proposed a dynamic effect RMTL regression

model. Monte Carlo simulation was used to assess the accuracy of

the coefficient estimates of the model. At the same time, we applied

this model to older patients with early-stage breast cancer in the

Surveillance, Epidemiology, and End Results (SEER) database to

explore the dynamic cumulative effects and real-time effects of
FIGURE 1

Cumulative incidence curves for death from breast cancer in the
ER-positive group and ER-negative group. S0, S1 correspond to the
blue and red areas, respectively.
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prognostic factors, as well as to establish a prediction model to

predict mean life lost due to death from breast cancer over a period

of time among patients. We hope to guide doctors to better

determine the prognosis of patients, select better therapeutic

regimens, and improve the survival time of patients.
2 Methods

2.1 Model construction

Let T be the time to event and C be the censoring time so that

the observed time is U = min (T ,C). An event indicator e equals 1,
2, or 0 when the observed outcome is an event of interest, a

competing event, or censoring, respectively. At the same time, let

Z∗ = (1,Z) denote the n� (p + 1) matrix of covariates allowing an

intercept term. Thus, for patient i(i = 1,…, n), the observed data

include Ui, ei,Z∗
if g.

Let a continuous variable l(0 ≤ l ≤ t ;  t ≤ tmax) be the pre-

specified end time of follow-up, where t is the pre-specified

maximum follow-up time, and tmax is the natural maximum

follow-up time of data. J time points lj are selected from 0 to t in

ascending order and recorded as (l1, l2,…, lJ ).

For the need of the method, we advance the end time of follow-

up from tmax to lj. Correspondingly, each patient’s survival outcome

will change at different pre-specified end times of follow-up. When a

patient experienced the event of interest or the competing event

before lj, e(lj) is equal to 1 or 2; in other cases, e(lj) is equal to 0. e(lj)
denotes the survival outcome after restraint. Let T(lj) = min (T , lj)

and U(lj) = min(U,lj) be the event time and observed time after

constraint, respectively. For patient i, the observed data consist of

Ui(lj), ei(lj),Z∗
i

� �
.

A regression model is developed to assess the dynamic effects of

covariates in RMTL:

g m1(ljZ∗
i )f g = g E½(l − Ti(l))� I(ei(l) = 1)�f g = Z∗

i b(l)

with link function g(·) using the identity function. m1(ljZ∗
i ) is

the life expectancy lost due to the event of interest of patient i

during the l-year follow-up. Regression coefficients b(l) = (b1(l),

b2(l),…, bp+1(l)), where bk(l) is defined as (bk0, bk1, bk2)� (1, l, l2).

Because Z∗
ik � bk(l) = (bk0, bk1, bk2)� (Z∗

ik, l � Z∗
ik, l

2 � Z∗
ik) =

bk � Z∗
ik(l), the model can be rewritten as

g m1(ljZ∗
i )f g = Z∗

i (l)b

Regression coefficients are estimated by solving the estimating

equation

F(b) =o
J

j=1
o
n

i=1
I(ei(lj) ≠ 0)Z∗

i (lj) (lj − Ti(lj))� I(ei(lj) = 1) − g−1(Z∗
i (lj)b)

� �
= 0

The model assumes the life lost of individuals with the event of

interest is (lj − Ti(lj))� I(ei(lj) = 1) = lj − Ti(lj); the life lost of

individuals with the competing event is (lj − Ti(lj))� I(ei(lj) = 1) =

0; and censored observations have I(ei(lj) ≠ 0) = 0, which means

they do not contribute to the estimating equation. E(F(b)) ≠ 0 in

the presence of censoring. However, when applying IPCW to the
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estimating equation, its expectation is 0 (15). Therefore, the

estimating equation changes to

F(b) =o
J

j=1
o
n

i=1

I(ei(lj) ≠ 0)

Ĝ (Ti(lj), lj)
Z∗
i (lj) (lj − Ti(lj))� I(ei(lj) = 1) − g−1(Z∗

i (lj)b)
� �

= 0 :

The fitted data are actually obtained by stacking J datasets. The

j-th dataset is the risk set with lj-year follow-up (as shown in

Figure 2). Ĝ (t, lj) is the Kaplan-Meier estimator of the non-

censoring distribution in the j-th dataset.

We treat the inverse probability censoring weight as a fixed

value rather than a random variable (16). Thus, the variance in the

regression coefficients will not consider the variation brought by the

weight. Therefore, we have
ffiffiffi
n

p
(b̂ − b)∼N(0,A� 1BA), V̂ ar(b̂ ) =

Â−1B̂ Â−1, where

Â = E o
J

j=1
Z∗
i (lj)

⊗ 2h(Z∗
i (lj)b̂ )

" #

B̂ = E o
J

j=1
eij(b̂ )⊗ 2

" #

e ij(b̂ ) =
I(ei(lj) ≠ 0)

Ĝ (Ti(lj), lj)
Z∗
i (lj) (lj − Ti(lj))� I(ei(lj) = 1) − g−1(Z∗

i (lj)b̂ )
n o

where a⊗ 2 = aaT and h(x) = ∂ g−1(x)= ∂ x.

Then, we estimate regression coefficients by a generalized

estimating equation, thereby correcting for data correlation.
2.2 Simulation designs

Next, we assessed the performance of the estimation of

dynamic-effect RMTL regression by a simulation. We used the

mean bias, mean relative bias, root mean squared error, relative

standard error, and empirical coverage rate as evaluation indicators.

2.2.1 Data generation
First, we generated two independent variables Z = (Z1,Z2),

which were generated by an independent Bernoulli distribution.
FIGURE 2

Composition of the stacked dataset.
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We let the subdistribution hazard function for the event of interest

follow a Gompertz distribution, l1(tjZ) = gz exp (rzt), where gz and
rz were set according to four strata of (Z1,Z2).

We defined the CIF for the event of interest as F1(tjZ) = P(T ≤

t, e = 1jZ) = 1 − exp −∫t0l1(sjZ)ds
� �

and the CIF for the competing

event as F2(tjZ) = P(T ≤ t, e = 2jZ) = exp (gz=rz) 1 − exp (− t)f g.
Survival outcome was generated by Bernoulli distribution, P(e =

1jZ) = 1 − exp (gz=rz). Thus, the conditional CIF for the event of

interest and the competing event were P(T ≤ tje = 1,Z) = ½1 −
exp −∫t0l1(sjZ)ds

� ��=½1 − exp (gz=rz)� and P(T ≤ tje = 2,Z) = 1 −

exp ( − t), respectively. Next, we used the inverse method to

generate event time T . Finally, we generated right censoring and

determined the final observed survival outcome.

We calculated the sHRs of independent variables based on the

subdistribution hazard function: sHR(Z1, t) = g(1,0) exp (r(1,0)t)=g(0,0)
exp (r(0,0)t), sHR(Z2, t) = g(0,1) exp (r(0,1)t)=g(0,0) exp (r(0,0)t). We let

r(1,0) ≠ r(0,0),  r(0,1) ≠ r(0,0); then, the sHRs changed over time, and

the proportional subdistribution hazards assumption of two variables

was not satisfied.

2.2.2 Parameters, scenarios, and true values
of simulation

Consider (g(0,0), g(0,1), g(1,0), g(1,1)) = (2:88, 1:95, 2:29, 1:55), (r(0,0),
r(0,1), r(1,0), r(1,1)) = ( − 1:7,−1:4, −2:9,−2:8) (12). The range of l was

between the 10th percentile and 95th percentile of the time of

patients with the event of interest in the simulated data. Figure 3

shows that the sHRs of the independent variables changed over

time. Z1 was a protective factor in the early period and a risk factor

in the late period, while the protective effect of Z2 increased

over time.

Twelve scenarios were simulated considering varying sample

sizes (250, 500, 1000), proportions of exposure (both P(Z1 = 1) and

P(Z2 = 1) equal to 0.25 or 0.5), and censoring rates (0.1 or 0.25).

Each scenario was simulated 2000 times.
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By integrating the CIF, we obtained the true value of the RMTL

of each group at different Z, m1(ljZ) =
Z l

0
F1(tjZ)dt. Moreover, the

true values of regression coefficients were obtained by the difference

in RMTL between groups: the baseline is b0(l)( = m1(ljz1 = 0, z2 =

0)); the cumulative effect of Z1 is b1(l)( = m1(ljz1 = 1, z2 = 0) −

m1(ljz1 = 0, z2 = 0)); and the cumulative effect of Z2 is b2(l)( =
m1(ljz1 = 0, z2 = 1) − m1(ljz1 = 0, z2 = 0)). Taking l = (0:75,  1,  1:5),

then (b0(0:75), b0(1), b0(1:5)) = (0:368, 0:550, 0:937), (b1(0:75), b1(1
), b1(1:5)) = ( − 0:093,−0:15,−0:284), (b2(0:75), b2(1), b2(1:5)) = (

−0:074,−0:100,−0:146). We found that the regression coefficient bk(l)
was a cumulative quantity, and its absolute value increased as l increased.
3 Results

3.1 Simulation results

Tables 1, 2 demonstrate the accuracy of b̂ (l) at different l. In
all cases, the mean relative bias was small, in which the mean

relative bias of b0(l) was less than 2%; the relative standard error

was approximately 1; and the coverage rate was approximately

95%. Because the absolute value of true value of the regression

coefficient increased with increasing l, it was reasonable that the

mean bias increased with increasing l. The simulation showed

that the estimation of dynamic effect RMTL regression

was accurate.

With the increase in sample size, the mean bias, mean relative

bias, and root mean squared error were more likely to decrease.

Moreover, different censoring rates had little effect on the mean

relative bias and root mean squared error.
3.2 Model application

In this study, we extracted data from the SEER database for

older patients with early-stage breast cancer.

Covariates included race, age, marriage, T stage, N stage,

histological grade, estrogen receptor (ER) status, progesterone

receptor (PR) status, breast surgery, axil lary surgery,

chemotherapy, and radiotherapy (17). Breast surgery includes

mastectomy or breast-conserving surgery (BCS); while axillary

surgery includes axillary lymph node dissection (ALND) and

lymph node biopsy (SLNB).

We used 3892 patients diagnosed from 2000 to 2012 as a

training set and another 1561 patients diagnosed from 2013 to

2015 as an externally validated set. Details of data collection and

variables can be found in the Supplementary Material.

There were 769 deaths from breast cancer and 998 deaths from

non-breast cancer in the training set, giving an approximately 55%

censoring rate. The follow-up time ranged from 0.17 to 18.92 years,

with a median of 8 years.

Table 3 shows the result of the static effect RMTL regression

(t = 10:5 years) (12). The regression coefficient b indicates a

cumulative difference in mean life lost during the 10.5-year

follow-up due to death from breast cancer between groups of the

prognostic factor. For example, bER = −0:638 showed that patients
FIGURE 3

Subdistribution hazard ratios (sHRs) of two independent variables for
the event of interest in the simulation.
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TABLE 1 Performance of dynamic-effect RMTL regression in the simulation when the proportion of exposure is 0.25.

b1 b2

el
ias

RMSE
Rel
SE

Cov
Bias

(× 102)
Rel
bias

RMSE
Rel
SE

Cov

028 0.044 0.992 0.944 0.136 -0.018 0.043 1.000 0.951

.014 0.061 0.995 0.943 0.065 -0.007 0.059 0.994 0.950

.026 0.098 0.998 0.944 -0.498 0.034 0.096 0.981 0.943

025 0.047 0.989 0.940 0.170 -0.023 0.046 1.001 0.950

.022 0.066 0.993 0.941 0.163 -0.016 0.065 0.993 0.950

.041 0.119 0.987 0.936 -0.187 0.013 0.119 0.973 0.938

029 0.032 0.979 0.938 0.034 -0.005 0.030 1.018 0.953

.014 0.043 0.980 0.939 -0.059 0.006 0.041 1.016 0.955

.027 0.070 0.984 0.940 -0.628 0.043 0.066 1.005 0.948

033 0.033 0.994 0.939 0.051 -0.007 0.032 1.000 0.949

.014 0.047 0.993 0.939 -0.029 0.003 0.045 1.000 0.950

.036 0.084 0.987 0.938 -0.558 0.038 0.083 0.984 0.941

042 0.022 1.023 0.949 0.126 -0.017 0.022 0.989 0.944

.004 0.029 1.024 0.952 0.066 -0.007 0.030 0.989 0.947

.020 0.048 1.025 0.949 -0.451 0.031 0.048 0.987 0.950

040 0.023 1.026 0.951 0.118 -0.016 0.023 0.990 0.944

.006 0.032 1.033 0.955 0.089 -0.009 0.032 0.988 0.944

.022 0.056 1.042 0.958 -0.298 0.020 0.058 0.985 0.943

, root mean square error; Rel SE, mean estimated standard error/Monte Carlo empirical error; Cov, empirical coverage rate.

Y
u
e
t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
4
.13

5
2
111

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

0
5

b0

N Cen l
Bias

(× 102)
Rel
bias

RMSE
Rel
SE

Cov
Bias

(× 102)
R
b

250 0.1 0.75 -0.120 -0.003 0.024 1.005 0.948 -0.265 0

1 -0.689 -0.013 0.033 1.003 0.946 0.205 -0

1.5 1.257 0.013 0.051 1.003 0.930 0.729 -0

0.25 0.75 -0.126 -0.003 0.025 1.035 0.953 -0.233 0

1 -0.699 -0.013 0.035 1.041 0.952 0.323 -0

1.5 1.245 0.013 0.059 1.092 0.949 1.160 -0

500 0.1 0.75 -0.068 -0.002 0.017 0.979 0.945 -0.270 0

1 -0.642 -0.012 0.024 0.986 0.934 0.208 -0

1.5 1.244 0.013 0.037 1.010 0.931 0.777 -0

0.25 0.75 -0.060 -0.002 0.018 1.013 0.957 -0.309 0

1 -0.633 -0.012 0.025 1.032 0.954 0.217 -0

1.5 1.246 0.013 0.042 1.102 0.951 1.015 -0

1000 0.1 0.75 -0.068 -0.002 0.012 1.000 0.947 -0.387 0

1 -0.646 -0.012 0.017 1.001 0.928 0.055 -0

1.5 1.235 0.013 0.028 1.010 0.921 0.558 -0

0.25 0.75 -0.064 -0.002 0.013 1.029 0.959 -0.370 0

1 -0.645 -0.012 0.018 1.038 0.946 0.087 -0

1.5 1.222 0.013 0.031 1.099 0.942 0.635 -0

N, the sample size; Cen, the censoring rate; l, end time of follow-up pre-specified; Rel bias, mean bias relative to true parameter; RMS
.

.

.

.

.

.

E
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TABLE 2 Performance of dynamic-effect RMTL regression in the simulation when the proportion of exposure is 0.5.

b1 b2

el
ias

RMSE
Rel
SE

Cov
Bias

(× 102)
Rel
bias

RMSE
Rel
SE

Cov

011 0.037 1.005 0.948 0.282 -0.038 0.039 0.958 0.940

.021 0.051 1.007 0.946 0.139 -0.014 0.053 0.960 0.937

.019 0.081 1.012 0.946 -0.763 0.052 0.084 0.970 0.935

011 0.039 0.999 0.945 0.329 -0.044 0.041 0.962 0.942

.022 0.055 1.004 0.955 0.191 -0.019 0.057 0.961 0.935

.022 0.094 1.009 0.954 -0.738 0.051 0.098 0.966 0.930

024 0.026 0.998 0.946 0.178 -0.024 0.026 1.000 0.947

.010 0.036 1.001 0.946 0.010 -0.001 0.036 0.998 0.948

.010 0.057 1.009 0.952 -0.928 0.064 0.059 0.993 0.943

022 0.028 1.006 0.951 0.128 -0.017 0.028 0.997 0.948

.011 0.038 1.014 0.954 -0.067 0.007 0.039 0.994 0.951

.010 0.065 1.026 0.952 -1.066 0.073 0.068 0.990 0.944

018 0.018 1.027 0.949 0.289 -0.039 0.019 0.980 0.944

.015 0.025 1.031 0.952 0.160 -0.016 0.026 0.987 0.952

.013 0.040 1.033 0.954 -0.697 0.048 0.041 1.001 0.946

018 0.019 1.013 0.949 0.281 -0.038 0.020 0.987 0.948

.014 0.027 1.012 0.951 0.139 -0.014 0.028 0.991 0.946

.013 0.047 1.008 0.953 -0.766 0.052 0.048 1.000 0.942

, root mean square error; Rel SE, mean estimated standard error/Monte Carlo empirical error; Cov, empirical coverage rate.
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250 0.1 0.75 -0.169 -0.005 0.033 0.974 0.939 -0.101 0

1 -0.677 -0.012 0.045 0.977 0.938 0.314 -0

1.5 1.518 0.016 0.070 0.992 0.932 0.545 -0

0.25 0.75 -0.179 -0.005 0.034 0.997 0.947 -0.105 0

1 -0.668 -0.012 0.047 1.002 0.949 0.324 -0

1.5 1.615 0.017 0.080 1.027 0.942 0.613 -0

500 0.1 0.75 -0.131 -0.004 0.023 0.997 0.953 -0.219 0

1 -0.619 -0.011 0.031 1.000 0.948 0.146 -0

1.5 1.627 0.017 0.050 1.010 0.940 0.284 -0

0.25 0.75 -0.100 -0.003 0.024 1.016 0.957 -0.206 0

1 -0.561 -0.010 0.033 1.023 0.951 0.159 -0

1.5 1.762 0.019 0.057 1.045 0.945 0.281 -0

1000 0.1 0.75 -0.190 -0.005 0.016 1.017 0.956 -0.167 0
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1 -0.682 -0.012 0.024 1.029 0.953 0.217 -0

1.5 1.550 0.017 0.041 1.049 0.939 0.358 -0

N, the sample size; Cen, the censoring rate; l, end time of follow-up pre-specified; Rel bias, mean bias relative to true parameter; RMS
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in the ER-positive group died of breast cancer 0.638 years later than

those in the ER-negative group during the 10.5 years, so ER

positivity was a protective factor. In general, a prognostic factor

was protective when b was negative and deleterious when b was

positive. Table 3 shows that patients with ER positivity, PR

positivity, breast-conserving surgery (relative to mastectomy), and

chemotherapy had a better prognosis, while patients with older age,

higher T stage, higher N stage, and higher histological grade had a
Frontiers in Oncology 07
worse prognosis. Race, marriage, axillary surgery, and radiation

therapy had no statistical significance on survival.

The significant covariates did not meet the proportional

subdistribution hazards assumption, indicating that dynamic

effects might exist. However, static effect RMTL regression only

gives the static cumulative effect, and the real-time effect in the

cumulative process cannot be known. Therefore, we fitted the

proposed dynamic effect RMTL regression and used a backward
TABLE 3 Regression coefficients of static-effect RMTL regression (t = 10.5 years).

Variable Coefficient SE Z value P value

Intercept 1.766 0.480 3.680 <0.001

Race (ref: other)

white 0.027 0.174 0.158 0.874

black -0.011 0.244 -0.045 0.964

Age (ref: 65–74)

≥75 0.361 0.125 2.900 0.004

Marry (ref: other)

married -0.023 0.106 -0.217 0.828

T stage (ref: T1)

T2 0.679 0.115 5.886 <0.001

N stage (ref: N1)

N2 0.668 0.159 4.203 <0.001

N3 1.540 0.249 6.185 <0.001

Grade (ref: grade I)

II 0.272 0.132 2.061 0.039

III & IV 0.769 0.159 4.832 <0.001

ER status (ref: negative)

positive -0.638 0.208 -3.070 0.002

PR status (ref: negative)

positive -0.303 0.153 -1.978 0.048

Breast surgery (ref: mastectomy)

BCS -0.328 0.140 -2.342 0.019

Axillary surgery (ref: ALND)

SLNB -0.105 0.113 -0.933 0.351

Chemotherapy (ref: no)

yes -0.320 0.123 -2.603 0.009

Radiation (ref: no)

yes -0.527 0.400 -1.317 0.188
Except for race, marriage, breast surgery, and axillary surgery, none of the other variables met the proportional subdistribution hazards assumption.
The regression formula of the static effect RMTL model is as follows:
RMTL = 1:766 + 0:027� I(race = white) − 0:011� I(race = black) + 0:361� I(age ≥ 75) − 0:023� I(marry = married) + 0:679� I(T  stage = T2) + 0:668� I(N  stage = N2)

+1:54� I(N  stage = N3) + 0:272� I(grade = II) + 0:769� I(grade = III & IV) − 0:638� I(ER = positive) − 0:303� I(PR = positive) − 0:328� I(breast surgery = BCS)

−0:105� I(axillary surgery = SLNB) − 0:32� I(chemotherapy = yes) − 0:527� I(radiation = yes)
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stepwise approach to screen covariates. As a result, race, marriage,

axillary surgery, and radiation were screened out.

Table 4 shows the results of the dynamic effect RMTL

regression. Because the cumulative effect of the k-th prognostic

factor was assumed by bk(l) = (bk0, bk1, bk2)� (1, l, l2), which

would be screened by the stepwise method, the regression

coefficients would include at least one of bk0, bk1, bk2. For

example, bER(l) = 0:291 − 0:141l + 0:005l2, which was dynamic

and varied with l. In the case of, bER(4:5) ≈ � 0:25 ( = 0:291 −
Frontiers in Oncology 08
0:141� 4:5 + 0:005� 4:52), which means ER-negative patients

lost an additional 0.25 years of life on average during the 4.5

years follow-up. Figures 4A–J shows the regression coefficients of

different prognostic factors in different l. For example, Figure 4G

shows bER(l) (solid black line), with breast cancer deaths occurring
an average of 0.25 years later (y-axis bER(4:5) ≈ −0:25) in ER-

positive patients than in ER-negative patients during the 4.5-year

follow-up (x-axis l = 4.5); breast cancer deaths occurring an

average of 0.42 years later (y-axis bER(6:5) ≈ −0:42) in
TABLE 4 Regression coefficients of dynamic-effect RMTL regression (2.5 years ≤ l ≤ 10.5 years).

Variable Time function Coefficient SE Z value P value

Intercept 1 0.237 0.077 -3.071 0.002

l 0.140 0.026 5.311 <0.001

Age (ref: 65–74)

age 75+ 1 -0.104 0.035 -2.951 0.003

l 0.047 0.012 4.062 <0.001

T stage (ref: T1)

T2 l2 0.006 0.001 7.010 <0.001

N stage (ref: N1)

N2 l2 0.006 0.001 4.865 <0.001

N3 1 -0.404 0.082 -4.919 <0.001

l 0.177 0.026 6.701 <0.001

Grade (ref: grade I)

II l2 0.002 0.001 2.881 0.004

III & IV 1 -0.233 0.044 -5.317 <0.001

l 0.093 0.015 6.383 <0.001

ER status (ref: negative)

positive 1 0.291 0.061 4.731 <0.001

l -0.141 0.024 -5.823 <0.001

l2 0.005 0.001 3.970 <0.001

PR status (ref: negative)

positive l -0.027 0.010 -2.694 0.007

Breast surgery (ref: mastectomy)

BCS l2 -0.003 0.001 -2.687 0.007

Chemotherapy (ref: no)

yes 1 0.160 0.044 3.648 <0.001

I -0.092 0.017 -5.329 <0.001

l2 0.004 0.001 3.166 0.002
The regression formula for the dynamic-effect RMTL regression is as follows:

RMTL(l) = −0:237 + 0:14l + ( − 0:104 + 0:047l)� I(age ≥ 75) + 0:006l2 � I(T  stage = T2) + 0:006l2 � I(N  stage = N2) + ( − 0:404 + 0:177l)� I(N  stage = N3) + 0:002l2 � I(grade = II)

+ ( − 0:233 + 0:093l)� I(grade = III & IV) + (0:291 − 0:141l + 0:005l2)� I(ER = positive) − 0:027l � I(PR = positive) − 0:003l2 � I(breast surgery = BCS) + (0:16 − 0:092l + 0:004l2)

�I(chemotherapy = yes) :
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ER-positive patients than in ER-negative patients during the 6.5

years (x-axis l = 6:5).

In the dynamic effect RMTL regression, in addition to obtaining

dynamic cumulative effects b(l), real-time effects of prognostic
Frontiers in Oncology 09
factors can also be obtained by the speed of accumulation of b(l)
at different moments. We obtained real-time effects by the absolute

value of the slope of the curve of b(l), which represents the speed of

accumulation. Figures 4G*, 4H* show the regression coefficients
B C

D E F

G H I

J G* H*

A

FIGURE 4

The curves of the regression coefficient changing over time. The panels (A–J) represent different variables. The black solid line represents the
regression coefficient b(l), the black dashed line represents the 95% confidence interval of b(l), and the red dotted line is an auxiliary line (straight line
between two endpoints of b(l)), which is used to judge whether b(l) is a curve. In (G*, H*), the blue dashed line corresponds to the right coordinate
and is the absolute value of the slope of b(l).
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(black solid lines) and the speed of accumulation (blue dashed lines)

of ER and PR, respectively. In Figure 4G*, the speed of decline of

b(l) was decreasing, and the speed of decline was 0.097 when l = 4.5,

which is in units of the difference in life lost between the positive

group and negative group in the 1-year follow-up; the speed of

decline was 0.077 when l = 6:5. Therefore, the real-time effect of ER

decreased with time. In Figure 4H*, the speed of decline of b(l) was
constant, and the speeds of decline were both 0.027 when l = 4.5 and

l = 6.5. Therefore, the real-time effect of PR remained unchanged

with time.

We added an auxiliary line (red dotted line), which is the line

between the two endpoints of the regression coefficient curve b(l) in
Figures 4A–J, to determine whether the real-time effect of the

prognostic factor changed. In general, 1) when b(l) coincided

with the auxiliary line (Figures 4A, D, F, H), the real-time effect

was unchanged; 2) when b(l) decreased with increasing l

(Figures 4G, I, J), if the regression coefficient curve was below the

auxiliary line, that is, the real-time effect decreased (Figures 4G, J),

and conversely, the real-time effect increased (Figure 4I); and

3) when b(l) increased with increasing l (Figures 4B, C, E), the

regression coefficient curve above the auxiliary line corresponded to

a decrease in the real-time effect, and conversely, it corresponded to

an increase in the real-time effect (Figures 4B, C, E). Therefore, it

was concluded that the real-time effects of age, stage N3 (relative to

stage N1), histological grade III&IV (relative to grade II), and PR

positivity were unchanged; the real-time effects of ER positivity and

chemotherapy decreased; and the real-time effects of T2 (relative to

T1), N2 (relative to N1), histological grade II (relative to grade I),

and breast-conserving surgery increased.

In addition to exploring the dynamic cumulative effects and

real-time effects of prognostic factors, another role of dynamic effect

RMTL regression is providing personalized prediction for patients.

Three patients were selected (see Table 5 for details). Figure 5 shows

the predicted RMTL during the l-year follow-up of each patient, and

Table 5 also shows the predicted RMTL during the 5-year and 10-

year follow-up. In the case of patient A, the predicted mean life lost

due to death from breast cancer was 1.5 years in the 5-year follow-

up; in the decade of follow-up, the predicted value was 4.2 years.

Patients B and A differed only in the choice of treatment. Compared

with patient A, patient B received breast-conserving surgery and

chemotherapy, and his predicted RMTL was less than that of

patient A; that is, breast-conserving surgery and chemotherapy

could prolong the survival time of older patients with early-stage

breast cancer. Patient C differed from patient B in N stage and
Frontiers in Oncology 10
histological grade, and because patient C had lower N stage and

histological grade, his predicted RMTL was lower than that of

patient B.

In addition, the accuracy of prediction was evaluated by an

external validation set. Figure 6 shows the C-index and relative

prediction error when the pre-specified end time of follow-up was

different (18). The mean C-index was 0.78, indicating good

discrimination of the model, and the relative prediction error was

within 10%.

The prediction formula can be seen in Table 4, and the prediction

model has been converted into a web-based prediction tool available

on the web at https://m92imi-oscar-0.shinyapps.io/newapp/.
4 Discussion

When the effect of a prognostic factor on competing events is

large, we should use a competing risks approach; otherwise, the

estimate of the effect of this factor on the event of interest will be

biased greatly (19). In our data, the sHRs of age and chemotherapy

on death from non-breast cancer (the competing event) were 2.486

(95% CI: 2.181 to 2.834) and 0.627 (95% CI: 0.545 to 0.722),

respectively. Moreover, the number of those who experienced the

competing event accounted for 26% of the total sample size and

56% of the total number of events, so it is necessary to consider

competing risks in these data.

In the static effect RMTL regression, it only gives the

cumulative effect during the t-year follow-up, and it is

impossible to know the real-time effect in the cumulative

process. In particular, this result is incomplete for covariates

with time-varying effects. Additionally, for patients who have

been followed up for some time, the cumulative effect from 0 to

t years is no longer applicable. In contrast, the dynamic effect

RMTL regression can not only obtain the dynamic cumulative

effect in the l-year follow-up but also explore the real-time effect.

The real-time effect can help doctors and patients to have a better

understanding of the prognosis of breast cancer. For example, the

real-time effect of ER positivity decreased, which means its

protective effect is larger in the first period and smaller in the

later period, suggesting that estrogen therapy should be used as

early as possible; the real-time effect of breast-conserving surgery

increased, which means its protective effect is larger in the later

period, suggesting that the effect of breast-conserving surgery

is delayed.
TABLE 5 The definition of three example patients.

Patient N stage grade surgery chemotherapy RMTL(5) RMTL(10)

A N3 IV mastectomy no 1.5 4.2

B N3 IV BCS yes 1.2 3.5

C N1 I BCS yes 0.5 1.5
Three patients were over 75 years of age, ER negative, PR negative, and had T2 stage cancer. RMTL(5) is the predicted mean life lost due to death from breast cancer during the five-years follow-
up; RMTL(10) is the corresponding predicted value during the decade of follow-up.
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Regarding the prognostic analysis of death from breast cancer,

Yao used Cox regression and cause-specific Cox regression to

analyze the difference in the effects of prognostic factors on breast

cancer in men and women (20), and Xu used Fine-Gray regression

to develop a prediction model for patients with inflammatory

breast cancer (21). However, none of these studies considered the

potential time-varying effects of prognostic factors. Moreover,
Frontiers in Oncology 11
some studies analyzed the time-varying effects of prognostic

factors (13, 14, 17, 22), but these were the results of single-

endpoint survival analysis and did not consider the impact of

competing events, which may result in competing bias.

In this paper, both competing risks and time-varying effects

were considered for the first time, and the real-time effects of the

following prognostic factors were found to be different from the
FIGURE 5

Predicted trajectories of RMTL for different patients. The predicted mean life lost of patient A due to death from breast cancer was 1.5 years in the 5-
year follow-up; in the decade of follow-up, the corresponding predicted value was 4.2 years.
BA

FIGURE 6

C-index (A) and relative prediction error (B) at different end times of follow-up. The C-index refers to the accuracy of the model in predicting the
sequence of occurrence of death from breast cancer in the l-year follow-up. Relative prediction error is the proportion of prediction error to length
of follow-up.
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previous single-endpoint analysis results. First, in a single-endpoint

analysis of breast cancer, the risk effect of stage N2 relative to stage

N1 decreased over time (17). In contrast, we found that stage N2

was also a risk factor, but the real-time effect increased over time

(Figure 4C). Second, previous single-endpoint studies have shown

that the deleterious effect of histological grade II relative to grade I

decreased over time (13, 22). However, we found that the

deleterious effect of histological grade II increased over time

(Figure 4E). Third, in previous single-endpoint studies, ER

positivity was a protective factor in the early period and a

deleterious factor in the late period (13, 22, 23). This was

different from our results, which showed that the protective effect

of ER positivity decreased over time (Figure 4G). Fourth, in terms of

treatment, we found that patients with breast-conserving surgery

had a better prognosis than those with mastectomy (Figure 4I). This

is consistent with Kim’s study and a meta-analysis, which showed

that patients who underwent breast-conserving surgery had a

higher overall survival rate than those who underwent

mastectomy (24, 25). However, we further discovered that the

protective effect of breast-conserving surgery increased over time

(Figure 4I). Finally, chemotherapy was the protective factor, and its

real-time effect decreased (Figure 4J). This is similar to Rakovich’s

study, which found that chemotherapy after breast-conserving

surgery in patients with ductal carcinoma in situ reduced the risk

of early local recurrence but not the risk of late recurrence (26).

Finally, the final dynamic RMTL model was constructed with

the full dataset (see Web Supplementary Table 2 in Supplementary

Material), and the result was similar to that constructed with the

training set (Table 4).

Time-varying covariate and covariate with time-varying effect are

two different types of data, which requires different statistical

methods to analyze (27). Time-varying covariate means the value

of a covariate changes over time, which needs methods related to

longitudinal data to analyze. While covariate with time-varying effect

means the effect on the outcome is time-varying (28). Meanwhile,

covariates do not meet the proportional subdistribution hazards

assumption, tending to have time-varying effect in the competing

risks. Because time-varying effect is difficult to identify, we often

ignore it. And then biased estimates will be obtained, and the

significant effect occurring only in part of the follow-up period will

be missed (29). Among the two types of covariates, this paper focuses

on the latter and proposes an extended RMTL regression model to

depict time-varying effects, which also can be used in single-endpoint

survival data. The extension for time-varying covariates will be the

focus of our future research.

There are still some shortcomings in this study. First, the model

uses IPCW. It should be noted that there are very few patients

remaining at-risk at the end of follow-up, which may lead to large

and unstable weights. 2) The life lost is the time lost due to death

from breast cancer over a period of time (the l-year follow-up)

rather than the reduction in total life in the traditional sense. 3) The

HER2 status is also an important prognostic factor for breast cancer.

Due to the SEER database only beginning to record HER2 status in

2010, we have chosen not to include this variable in our analysis.
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5 Conclusion

To explore the potential time-varying effects of prognostic factors

under competing risks survival data, we develop a dynamic effect RMTL

regression to model the stacked dataset by generalized estimating

equation and IPCW technique. The simulation of regression

coefficients and external validation of prediction demonstrate that

dynamic effect RMTL regression is accurate in both prognosis and

prediction when competing risks exist. The new model can explore

dynamic cumulative effects and real-time effects of prognostic factors on

a time scale, which gives clinical researchers a more comprehensive

understanding of the progression of breast cancer. Moreover, time-

scale-based individual prediction also allows physicians and patients to

more intuitively determine the disease and choose the best treatment.
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