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Background:Gap junction proteins (GJPs) are a class of channel proteins that are

closely related to cell communication and tumor development. The objective of

this study was to screen out GJPs related prognostic signatures (GRPS)

associated with clear cell renal cell carcinoma (ccRCC).

Materials and Methods: GJPs microarray data for ccRCC patients were obtained

from The Gene Expression Omnibus (GEO) database, along with RNA sequencing

data for tumor and paired normal tissues from The Cancer Genome Atlas (TCGA)

database. In the TCGA database, least absolute shrinkage and selection Operator

(LASSO) and Cox regressionmodels were used to identify GJPs with independent

prognostic effects as GRPS in ccRCC patients. According to the GRPS expression

and regression coefficient from the multivariate Cox regression model, the risk

score (RS) of each ccRCC patient was calculated, to construct the RS prognostic

model to predict survival. Overall survival (OS) and progression-free survival (PFS)

analyses; gene pan-cancer analysis; single gene survival analysis; gene joint

effect analysis; functional enrichment analysis; tumor microenvironment (TME)

analysis; tumor mutational burden (TMB) analysis; and drug sensitivity analysis

were used to explore the biological function, mechanism of action and clinical

significance of GRPS in ccRCC. Further verification of the genetic signature was

performed with data from the GEO database. Finally, the cytofunctional

experiments were used to verify the biological significance of GRPS associated

GJPs in ccRCC cell lines.

Results: GJA5 and GJB1, which are GRPS markers of ccRCC patients, were

identified through LASSO and Cox regression models. Low expression of GJA5

and GJB1 is associated with poor patient prognosis. Patients with high-RS had

significantly shorter OS and PFS than patients with low-RS (p< 0.001). The risk of

death for individuals with high-RS was 1.695 times greater than that for those

with low-RS (HR = 1.695, 95%CI= 1.439-1.996, p< 0.001). Receiver Operating

Characteristic (ROC) curve showed the great predictive power of the RS

prognostic model for the survival rate of patients. The area under curve (AUC)
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values for predicting 1-year, 3-year and 5-year survival rates were 0.740, 0.781

and 0.771, respectively. The clinical column chart was also reliable for predicting

the survival rate of patients, with AUC values of 0.859, 0.846 and 0.796 for

predicting 1-year, 3-year and 5-year survival, respectively. The GRPS was

associated with immune cell infiltration, the TME, the TMB, and sensitivity to

chemotherapy drugs. Further in vitro experiments showed that knockdown of

GJA5 or GJB1 could promote the proliferation, migration and epithelial-

mesenchymal transition (EMT) and inhibit apoptosis of ccRCC cells.

Conclusion: GJA5 and GJB1 could be potential biological markers for predicting

survival in patients with ccRCC.
KEYWORDS

gap junction protein, clear cell renal cell carcinoma, biomarkers, prognostic model,
cellular verification
1 Introduction

Among all types of cancer, renal cancer is the 16th most

common cancer, accounting for approximately 1.8% of cancer-

related deaths (1). Clear cell renal cell carcinoma (ccRCC) is the

most common histological type of cancer and represents 75% of all

cases (2, 3). More than 50% of renal cancer cases are detected

through health examination (4). At the time of initial diagnosis,

approximately 30% of patients have already developed distant

metastasis (5–7). The 5-year survival rate for patients with ccRCC

varies depending on the stage of the disease. The survival rate

ranges from 20% to 95% for patients in the early, middle, and

advanced stages, while for patients with metastatic ccRCC, the

survival rate is only between 0% and 10% (8, 9). Early diagnosis

plays a crucial role in improving overall survival (OS) and

progression-free survival (PFS) in ccRCC patients. Therefore, it is

clinically important to explore valuable prognostic indicators that

can be used for personalized prognosis assessment and treatment

planning, to ultimately improve the overall prognosis of patients.

Gap junction proteins (GJPs) are a family of hexamer-structured

channel proteins that facilitate molecular and ion exchange between

neighboring cells, thereby regulating various biological processes (10–

12). The functional diversity of GJPs is attributed to variations in the

molecular weight of the constituent proteins that form the gap

junction channels (13). These proteins are involved in multiple

biological processes, such as apoptosis, proliferation, immune

response, and digestion (14, 15). Presently, 35 genetic diseases in

humans are known to result frommutations in 11 different GJPs (16,

17). In addition, the obstruction of gap junction channels diminishes

communication between immune cells and reduces the permeability

of chemotherapy drugs. These findings suggest that GJPs potentially

play a crucial role in cancer development and treatment, as well as in

maintaining intercellular signal transmission and the stability of the

tumor microenvironment (TME). To our knowledge, no reports have
02
explored the clinical significance of GJPs in ccRCC, necessitating

further investigation. This study identified a GJP-related prognostic

signatures (GRPS) in ccRCC. Subsequently, an in-depth analysis was

conducted to explore the clinical value of the GRPS in assessing

ccRCC prognosis, as well as its influence on the tumor mutational

burden (TMB) and the tumor microenvironment (TME).

Furthermore, additional cytological experiments validated the

analysis results, providing evidence that the GRPS may serve as a

novel biomarker for predicting the survival prognosis of

ccRCC patients.
2 Materials and methods

2.1 Bioinformatics analysis

The RNA sequencing data, clinical trait data, pan-cancer data

and simple nucleotide variation data of ccRCC were obtained from

The Cancer Genome Atlas (TCGA) database (https://

portal.gdc.cancer.gov/); Microarray data (GSE29609, GSE95425,

GSE73731) were retrieved from Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). This study

constructed and validated the GRPS for ccRCC prognosis using

various statistical methods. The detailed workflow of this analysis is

depicted in Figure 1. The general clinical information of the

ccRCC patients in the TCGA database can be found in

Supplementary Table 1.

2.1.1 Identification of GRPS in ccRCC
A total of 21 GJPs were observed to be expressed in ccRCC. This

study combines the survival information of ccRCC patients in the

TCGA database (including survival status and survival time) with

the gene expression data of GJP to generate a total sample (total

sample, TS) for data analysis. Subsequently, a sequence of univariate
frontiersin.org
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Cox regression models (p< 0.001, KMP = 1 for filtration criteria),

LASSO regression models, and multivariate Cox regression models

was constructed for TS.

2.1.2 Analysis of the combined effects of GJA5
and GJB1 on single gene and dual genes

Pan-cancer data for 33 tumors were obtained from the TCGA

database. The differential expression of GJA5 and GJB1 in 33

cancers was examined via pan-cancer analysis. The difference

analysis data of GRPS in ccRCC tumor tissue and normal tissue

were obtained from TCGA database and GEO database (GSE73731

and GSE95425). Single-and dual-gene combined survival (Kaplan-

Meier, [KM]) analyses were used to determine the significance of

GJA5 and GJB1 in survival and prognosis of patients with ccRCC.

2.1.3 Construction and validation of the
prognostic risk score model

To further explore the prognostic significance of the GRPS in

ccRCC, a computation was performed based on the coefficients

derived from the multivariate Cox regression model, along with the

corresponding gene expression levels. Subsequently, an risk scores

(RS) prognostic model was constructed utilizing the RS values. The

RS formula employed in the RS model was as follows:

Risk score  =  o(Coefficient of  gene * expression of  gene) :

The high-RS group and low-RS group were divided according to

the median RS. The RS prognostic model was developed and

validated. The 70% of the samples randomly selected from the TS

were assigned to the training dataset, while the remaining 30% of

the samples and the GSE29609 dataset were used as the testing set

(18), to confirm the generalizability of the GRPS. KM analysis, ROC
Frontiers in Oncology 03
curve analysis, and comparisons of clinical traits (including age, sex,

grade, stage, and metastasis) between risk groups were also

performed to assess the clinical significance of the GRPS.

2.1.4 Construction of a clinical nomogram
This study developed a clinical nomogram incorporating

patient clinicopathologic characteristics, risk groupings, and GJA5

and GJB1 expressions. Furthermore, calibration curve, ROC curve,

and Decision Curve Analysis (DCA) analyses were performed to

assess the clinical availability of the nomogram.

2.1.5 Enrichment analysis
The biological function and underlying mechanisms of GRPS

were investigated through gene enrichment analysis. Genes with

statistical significance in the risk grouping (selected using the R

package “Limma” with the criteria of p< 0.05, logFC = 1, and FDR<

1) were subjected to GO and KEGG enrichment analysis.

2.1.6 Analysis of immune cell infiltration, TME
and TMB

Alterations in the TME and the infiltration of immune cells

have garnered significant attention in the field of cancer therapy.

The mechanism triggering immune escape was investigated by

examining the TME and immune cell infiltration in risk groups.

After the calculation of the levels of 22 immune cells and the

abundance of TME-related molecules in patients with ccRCC, the

differences in the levels of immune cells and the abundance of

TME-related molecules between risk groups were analyzed, and

p< 0.05 was considered statistically significant. TMB refers to the

number of gene mutation sites that occur in tumor tissues and

includes somatic gene coding errors, base substitutions, insertions
FIGURE 1

Workflow chart.
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or deletions (19). The TMB values of patients in the TS cohort were

calculated based on simple nucleotide variation data from ccRCC

patients in the TCGA database. The estimated TMB was calculated

as the ratio of the total mutation frequency to the length of human

exons (20). Finally, the TMB values of the ‘high-RS and low-RS

groups were compared for any significant difference.

2.1.7 Drug sensitivity analysis
The GDSC2 dataset used for drug sensitivity analysis was

derived from the GDSC database (https://www.cancerrxgene.org).

We calculated the susceptibility of ccRCC patients to 198

chemotherapeutic agents from the TCGA database. To provide

accurate individualized treatment plans for patients, we used p<

0.001 as the filtering standard to analyze the difference in the

sensitivity of patients with advanced ccRCC to targeted drugs

according to risk group, which is helpful for providing

medication guidance for different groups of patients with ccRCC.

2.1.8 Statistical analysis
The analysis of the data and the generation of graphs were

carried out with R language (version 4.2.1). The LASSO regression

model, univariate and multivariate Cox regression models were

constructed through the “glmnet” package; The “survival,

survminer” package was used to perform KM analysis of the

combined effect of a single gene and dual genes. The “timeROC”

package was used to perform ROC curve analysis; The clinical

nomogram was developed through the “survival”, “regplot” and

“rms” packages; The “ggDCA” package was used for DCA analysis;

GO enrichment analysis was carried out through the package

“clusterProfiler, org.Hs.eg.db, enrichplot, ggplot2” ; The

“clusterProfiler, org.Hs.eg.db, enrichplot, ggplot2, circlize,

RColorBrewer, ComplexHeatmap” package was used for KEGG

enrichment analysis. We calculated the proportions of 22 immune

cells in ccRCC tissue using the CIBERSORT algorithm and

evaluated the abundance of related molecules in the TME using

the R package “estimate”. The oncoPredict package was used to

calculate a sensitivity score for ccRCC patients to chemotherapy

drugs. The chi-square test was used to analyze the difference in

clinicopathological information between the training set and the

testing set. Unless otherwise stated in this paper, p< 0.05 was

considered to indicate statistically significant.
2.2 Cell function experiment

2.2.1 Cell culture and transfection
The HK2 and A498 cells were cultured in Dulbecco’s modified

eagle medium (DMEM) supplemented with 10% fetal bovine serum

(FBS) at 37°C in a 5% CO2 incubator; the 786-O cells were cultured

in Roswell Park Memorial Institute-1640 (RPMI-1640)

supplemented with 10% FBS at 37°C in a 5% CO2 incubator.

Cells in logarithmic phase were chosen for functional

experiments. Interference of GJA5 was performed using small

interfering RNA (si-GJA5-NC; si-GJA5-1, si-GJA5-2, and si-

GJA5-3) sequences synthesized by RiboBio Biotechnology
Frontiers in Oncology 04
(Guangzhou, China). The sequences used were as follows: si-

G JA5 -1 (AGGCTGATTTCCGGTGTGA) , s i -G JA5 -2

(CATGGCTATCATAGTGACA), si-GJA5-3 (AATCCCTTC

AGCAATAATA). Interference of GJB1 was performed using

small interfering RNA (si-GJB1-NC; si-GJB1-1, si-GJB1-2, and si-

GJB1-3) sequences synthesized by RiboBio Biotechnology

(Guangzhou, China). The sequences used were as follows: si-

GJB1-1 (GCTGCAACAGCGTTTGCTA), si-GJB1-2 (TGTTCCG

GCTGTTGTTTGA), si-GJB1-3 (CGTGAACCGGCATTCTACT).

Transfection was performed using Lipofectamine 3000 (Invitrogen,

Shanghai, China). The relevant experiments were conducted 48

hours post transfection.

2.2.2 The quantitative reverse transcription-
polymerase chain reaction

Total RNA was extracted from HK2, A498, and 786O cells using

TRIzol Reagent (Servicebio, Wuhan, China). The quality of the

extracted RNA was assessed by measuring the OD ratio (A260/

A280) using a Nano-400A spectrophotometer (Allsheng, Hangzhou,

China). Subsequently, total RNA was transcribed into

complementary DNA (cDNA) using the HiScript II Q RT

SuperMix Kit (Vazyme). Amplified products were then detected

using SYBR Green (Vazyme, Nanjing, China). b-actin was selected

as the endogenous references. The specific primers used were GJA5:

5′-GAACACAGACAGGCAGAGGAT-3′ (F), 5′-GGAAGCTCAAT
CGCCCATC-3′ (R); GJB1: 5′-CCTGCACAGACATGAGACCA-3′
(F), 5′-AGAGCCATACTCGGCCAATG-3′ (R); and b-actin: 5′-
CCTAGAAGCATTTGCGGT -3′ (F), 5′- GAGCTACGAGCTGCC
TGACG-3′ (R).

2.2.3 5-Ethynyl-2-deoxyuridine assay
An EdU Kit (Beyotime, Shanghai, China) was used to detect cell

proliferation. Then, the A498 and 786O cells were incubated with

EdU solution, fixed with 4% paraformaldehyde and infiltrated with

Triton X-100 solution (Solarbio, Beijing, China). Then, the cells

were stained with 4’,6-diamidino-2-phenylindole (DAPI; Beyotime,

Shanghai, China). Ultimately, the EdU-positive cells (EdU+ DAPI-

stained cells) were counted under a fluorescence microscope.

2.2.4 Wound healing assay
The cells were seeded in 6-well plates. The confluent cell

cultures were then scratched using a sterile tip. The wound

healing process was monitored at different time points, and

images of the scratches were captured using an inverted

microscope after 12 hours.
2.2.5 Transwell assay
Cell migration was assessed using the transwell assay. In this

assay, we seeded 1.5×104 cells into the upper chamber and cultured

them in a serum-free medium, while the lower chamber was

supplemented with DMEM or RPMI-1640 containing 10% FBS as

a chemoattractant. After 24 hours of incubation, the cells that had

migrated through the pores of the transwell membrane were fixed

with 4% methanol. Subsequently, the sections were stained with
frontiersin.org

https://www.cancerrxgene.org
https://doi.org/10.3389/fonc.2024.1354049
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Huang et al. 10.3389/fonc.2024.1354049
crystal violet, images were captured and cell counts were performed

using an inverted microscope.

2.2.6 Western blot
Total protein was extracted using radioimmunoprecipitation

assay (RIPA) lysis buffer (Servicebio, Wuhan, China) supplemented

with phenylmethylsulfonyl fluoride (Beyotime, Shanghai, China) at

a ratio of 50:1. The protein concentration was determined using the

bicinchoninic acid (BCA) assay (Solarbio, Beijing, China).

Subsequently, the samples were mixed with loading buffer and

boiled for 10 minutes to denature the proteins before further

analysis. Subsequently, 20 mg of protein was loaded into each lane

and separated by sodium dodecyl sulfate-polyacrylamide gel

electrophoresis (SDS-PAGE) with an 8-15% acrylamide gradient

gel. The separated proteins were then transferred onto

polyvinylidene fluoride (PVDF) membranes. To prevent

nonspecific binding, the membranes were blocked with 5% nonfat

dry milk in Tris-buffered saline supplemented with 0.1% Tween 20

(TBST) for a period of 2 hours. Primary antibodies against GJA5

(1:1,000; ABclonal, Wuhan, China), GJB1 (1:1000; ABclonal,

Wuhan, China), GADPH (1:10,000; Proteintech, Wuhan, China),

E-cad (1:1000; ABclonal, Wuhan, China), N-cad (1:1000; ABclonal,

Wuhan, China), VIM (1:1000; ABclonal, Wuhan, China), Bax

(1:1000; ABclonal, Wuhan, China), and Bcl-2 (1:1000; ABclonal,

Wuhan, China) were incubated with the membrane overnight at

4°C. After the membranes were washed with TBST for 10 minutes,

they were incubated with secondary antibodies (1:5000;

Proteintech, Wuhan, China) for 2 hours, after which the

membranes were washed 3 times with TBST. Finally,

electrochemiluminescence (ECL, Thermo, China) was applied to

visualize the results.
2.2.7 Flow cytometric analysis
Apoptosis was detected with an annexin V apoptosis kit

(Vazyme, Jiangsu, China). Fluorescence-activated cell sorting

(FACS) was performed on a BD Accuri® C6 Plus [Becton,

Dickinson, and Co. (BD) Biosciences, Franklin Lakes, NJ, USA]

and analyzed by FlowJo software (https://www.flowjo.com/).
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Briefly, 1×106 cells were collected and resuspended after adding

100 mL of binding buffer. Next, 100 mL of binding buffer containing

4 mL of annexin V-FIFC and 4 mL of propidium iodide (PI) staining

solution were added. Finally, 400 mL of binding buffer was added to

the culture tube, which was subsequently analyzed after 10 to 15

minutes using flow cytometry.

2.2.8 Statistical analysis
All the statistical analyses were conducted using GraphPad

Prism 8.0 software. Significance was determined using Student’s t-

test or one-way analysis of variance (ANOVA), as appropriate. Each

experiment was performed in triplicate, and p< 0.05 was considered

to indicate statistical significance.
3 Results

3.1 Bioinformatics analysis results

3.1.1 Identification of GRPS in the TCGA database
Firstly, a univariate Cox regression model for TS was

constructed in this study, yielding five OS-related GJPs (OR-

GJPs) that were most significantly related to the patients’ OS. To

prevent data overfitting, a LASSO regression model for OR-GJPs

was constructed (Figures 2A, B). Ultimately, a multivariate Cox

regression model was constructed based on the outcomes of the

LSAAO regression analysis. This model identified two genes (Gene

GJA5 and Gene GJB1) with independent prognostic impacts on

ccRCC (Table 1), which were identified as GRPS genes for

subsequent data examination, clinical validation, and cellular

functional experiments. The univariate Cox regression analysis for

all 21 GJPs and the corresponding KM survival analysis for 5 GJPs

with differential survival significance can be found in

Supplementary Table 2 and Supplementary Figure 1.

3.1.2 Pan-cancer analysis, single gene analysis
and combined effect analysis of GJA5 and GJB1

The Pan-cancer analysis revealed that GJA5 exhibited

the highest expression level in ccRCC, whereas GJB1 was the 12th
A B

FIGURE 2

LASSO regression model of OR-GJPs: (A) Coefficient distribution diagram. (B) Parameter change diagram.
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highest in terms of expression in ccRCC (Supplementary

Figures 2A, B). Notably, GJA5 and GJB1 were differentially

expressed between tumor tissues and matched normal tissues in

15 distinct cancers (Supplementary Figures 2C, D), including breast

invasive carcinoma, renal chromophobe cell carcinoma, renal clear

cell carcinoma, renal papillary cell carcinoma, endometrial

carcinoma, thyroid carcinoma, prostate cancer, hepatocellular

carcinoma, and lung squamous cell carcinoma. These findings

suggested that GJA5 and GJB1 might play crucial roles in the

development and progression of urological tumors, as well as a

variety of human malignant tumors. These findings warrant further

in-depth investigation. Employing the TS dataset, a comprehensive

analysis was conducted to examine the differences in gene

expression between GJA5 and GJB1 in tumor tissues and normal

tissues. The findings demonstrated that both GJA5 and GJB1

exhibited decreased expression in tumor tissues and elevated

expression in normal tissues (p< 0.001) (Figures 3A, B). These

findings suggested that the expression of GJA5 and GJB1 was

repressed during the occurrence of ccRCC, a phenomenon that

was consistent with that observed in additional independent

cohorts (GSE73731, GSE95425) (Figures 3C, D). Finally, this

study further validated the differential expression of GJA5 and

GJB1 in ccRCC using the oncopression database (http://

www.oncopression.com/downloads.html) (Supplementary

Figure 3. The results showed that the expression of GJA5 and

GJB1 in normal tissue of ccRCC was significantly higher than that

in tumoral tissue. Ultimately, the prognostic significance of GJA5

and GJB1 was further assessed. In the TS dataset, KM analysis

revealed a significant correlation between low expression of GJA5

and GJB1 and a shorter OS (p< 0.05) (Figures 3E, F). Patients

exhibiting concurrent low expression of GJA5 and GJB1 had the

shortest OS, while those with high expression of GJA5 and GJB1

had a prolonged OS (Figure 3G). Given the results of the differential

expression analysis, we speculated that GJA5 and GJB1 act as tumor

suppressors in ccRCC.

3.1.3 Establishment of the RS prognostic model
and validation by using clinical characteristics

The RS for each patient was calculated using the following

formula:

Risk score  = GJA5�  ( − 0:0003)  + GJB1�  ( − 0:0005)

The OS and PFS of patients in the high-RS subgroup were

markedly inferior to those in the low-RS subgroup (p< 0.001)
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(Figures 4A, B). A prognostic model for RS was developed,

encompassing hazard curves, survival scatter plots, and heatmaps

of GJA5 and GJB1 expression. The model revealed that patients in

the high-RS subgroup exhibited shorter survival, greater mortality,

and decreased GJA5 and GJB1 expression (Figure 4C). The ROC

curve demonstrated that the RS prognostic model exhibited a

potent ability to predict patient survival rates (the AUC for

predicting 1-year, 2-year, and 3-year survival rates were 0.740,

0.781, and 0.771, respectively). In comparison with other clinical

traits, the RS model exhibited strong credibility in predicting patient

survival rates (Figures 4D, E). Finally, the differences in clinical

characteristics between the high-RS and low-RS subgroups were

verified. The findings indicated that, in the high-RS subgroup,

ccRCC patients exhibited a greater malignancy grade and a

greater probability of tumor metastasis, with a greater proportion

of male patients than female patients (Table 2).

3.1.4 Validation of the RS prognostic model
Combined with the GSE29609 dataset, a training set and a testing

set of TSs were constructed to assess the prognostic significance of the

GRPS in ccRCC. The chi-square test revealed no significant

differences in the clinicopathological traits between the training and

testing sets (Table 3), indicating that the study’s grouping was

random and reasonable. In both the training and testing sets,

patients in the high-RS subgroup exhibited significantly poorer OS

and PFS than did those in the low-RS subgroup (Figures 5A, B, E, F).

Subsequently, the RS prognostic model was constructed on the

training cohort and validated using ROC curve analysis

(Figures 5C, D). These results align with those for TS,

demonstrating that the RS prognostic model in the training cohort

was also reliable at predicting the patient survival status (the AUC for

predicting 1-year, 3-year, and 5-year survival rates were 0.750, 0.778

and 0.775, respectively). Finally, comparable outcomes were obtained

in the testing cohort (Figure 5G). The AUC of the RS prognostic

model in the testing cohort for predicting 1-year, 3-year, and 5-year

survival was 0.708, 0.696, and 0.741, respectively (Figure 5H).

3.1.5 Construction and validation of
clinical nomograms

To further explore the relationship between the RS prognostic

model and clinical characteristics, univariate and multivariate

stepwise Cox analysis were performed. The results showed that

risk score, age, and tumor stage were closely associated with survival

time and clinical outcomes of ccRCC patients, and could serve as

independent prognostic factors (Table 4). The risk of death for
TABLE 1 Univariate and multivariate Cox regression models of GRPS.

Univariate Cox regression model Multivariate Cox regression model

HR 95% CI p coef HR 95% CI p

GJA5 0.9995 0.9993~0.9996 <0.001 -0.0005 0.9995 0.9993~0.9997 <0.001

GJB1 0.9992 0.9989~0.9994 <0.001 -0.0004 0.9996 0.9993~0.9999 0.014
front
The results with bold font indicate statistical significance (p < 0.05).
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individuals with high-RS was 1.695 times greater than that for those

with low-RS (HR = 1.695, 95%CI = 1.439-1.996, p< 0.001).

A nomogram incorporating clinicopathological traits (tumor

grade, tumor stage), the gene expression pattern of the GRPS, and

risk grouping was constructed to assist clinicians in making initial

predictions of OS in ccRCC patients (Figure 6A). The clinical

nomogram was subsequently validated. The calibration curves

demonstrated good agreement between the predicted probabilities

generated by the nomogram and the actual observed OS values at 1,

2, and 3 years (Figure 6B). The results of the ROC curve and DCA

analyses revealed that the nomogram exhibited excellent reliability

in predicting the survival rate of ccRCC patients (the AUC of the

nomogram for predicting the survival rate of patients at 1, 3 and 5

years was 0.876, 0.853 and 0.816, respectively) (Figure 6C).
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3.1.6 GO and KEGG enrichment analysis

Among the total differential expressed 899 genes, 540 genes

were highly expressed in the high-RS subgroup, while the other 359

genes exhibited high expression in the low-RS subgroup

(Supplementary Figure 4). To determine the biological functions

and pathways active in the high-RS subgroup, further exploration

was conducted. The results of GO enrichment analysis (Figure 7A)

revealed that Biological Processes such as “negative regulation of

proteolysis”, Cellular Component such as “collagen-containing

extracellular matrix”, and Molecular Function such as “enzyme

inhibitor activity” were enriched in the high-RS population.

Additionally, KEGG enrichment analysis indicated that

“neuroactive ligand-receptor interaction”, “cAMP signaling
A B

D

E F G

C

FIGURE 3

(A) In the TCGA database, differential expression of GJA5 in tumor tissues and paired normal tissues. (B) In the TCGA database, differential expression
of GJB1 in tumor tissues and paired normal tissues. (C) Differential expression of GJA5 in ccRCC in the GEO database. (D) Differential expression of
GJB1 in ccRCC in the GEO database. (E) KM analysis of GJA5 in ccRCC in the TCGA database. (F) KM analysis of GJB1 in ccRCC in the TCGA
database. (G) Analysis of the combined effect of GJA5 and GJB1 in ccRCC in the TCGA database.
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pathway”, “cytokine-cytokine receptor interaction”, “adrenergic

signaling pathway in cardiomyocytes”, “GnRH secretion”, and

“TGF-beta signaling pathway” were enriched in high-RS

population (Figure 7B).

3.1.7 Immunocyte infiltration, TME and
TMB analysis

Differences in 22 immune cell types and TMB in the RS group

were investigated. Patients in high-RS subgroup presented with

higher TMB than that in low-RS subgroup (Figure 8A). Compared

to those in the low-RS subgroup, the TME in the high-RS subgroup

exhibited greater immune cell infiltration and a lower stromal cell

content (Figures 8B, C). As for TME-related molecular abundance,

statistically significant differences were detected for naive B cells

(p< 0.05), T cell follicular helper cells (p< 0.001), regulatory T cells

(p< 0.05), M0 macrophages (p< 0.05), stationary dendritic

cells (p< 0.01), stationary mast cells (p< 0.01), immune cell

content (p< 0.05) and stromal cell content (p< 0.001)(Figure 8D).
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These findings offer a new perspective for exploring the mechanism

of individualized immunotherapy in ccRCC patients and the role of

GJPs in the occurrence and development of ccRCC. And low

expression of GJA5 and GJB1 might be associated with an

imbalance in immune homeostasis and compromised responses

to immunotherapy in ccRCC patients.
3.1.8 Drug sensitivity analysis
Drug sensitivity analysis of commonly used chemotherapeutic

drugs for ccRCC was conducted based on the RS grouping

(Figures 9A-E). Among the several chemotherapy drugs used to

treat advanced ccRCC, erlotinib (p< 0.001), axitinib (p = 0.0029),

afatinib (p< 0.001), rapamycin (p< 0.001), and sorafenib (p< 0.001)

were found to be significantly different among the risk groups.

Notably, axitinib exhibited lower sensitivity in the low-RS subgroup,

while afatinib, erlotinib, rapamycin, and sorafenib had lower

sensitivity in the high-RS subgroup. These findings offer new
A B

D

E

C

FIGURE 4

(A) OS analysis between the high-RS score group and low-RS score group. (B) PFS analysis between the high-RS score group and low-RS score
group. (C) RS prognosis model for TS (including the RS curve, survival time and survival status of patients, and GRPS gene expression). (D, E) ROC
curve of the RS prognosis model of TS.
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insights into individualized targeted drug therapy for patients with

advanced ccRCC.
3.2 Cytological experimental verification of
GJA5 and GJB1 results

3.2.1 Results of GJA5 and GJB1 expression in
renal cell lines

Furthermore, the expression of GJA5 and GJB1 at the protein

level was detected via Western blot analysis, and the expression of
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GJA5 and GJB1 at the RNA level was detected via qRT-PCR. qRT-

PCR revealed that the mRNA levels of GJA5 and GJB1 in renal

tumor cells (A498 and 786-O) were lower than those in

noncancerous renal cells (HK2) (Figure 10A) and this pattern

was confirmed at the protein level (Figure 10B). Moreover,

according to the qRT-PCR and Western blot detection results,

at both the RNA and protein expression levels, GJB1 was

expressed at higher levels in A498 cells, while GJA5 was

expressed at higher levels in 786-O cells. Therefore, functional

experiments were conducted to knock down GJB1 in the A498 cell

line and GJA5 in the 786-O cell line.
TABLE 2 Differential analysis of clinicopathological parameters between the high-RS subgroup and the low-RS subgroup.

Variable Sum High-RS Low-RS Chi-square value P

Survival state

Survival 259(66.24%) 93(47.69%) 166(84.69%)
58.203 < 0.001

Death 132(33.76%) 102(52.31%) 30(15.31%)

Age

≤65 258(65.98%) 122(62.56%) 136(69.39%)
1.735 0.188

>65 133(34.02%) 73(37.44%) 60(30.61%)

Gender

Female 142(36.32%) 54(27.69%) 88(44.9%)
11.779 < 0.001

Male 249(63.68%) 141(72.31%) 108(55.1%)

Tumor grade

G1-2 142(36.32%) 54(27.69%) 88(44.9%)
18.568 < 0.001

G3-4 249(63.68%) 141(72.31%) 108(55.1%)

Neoplasm staging

Stage I-II 184(47.06%) 70(35.9%) 114(58.16%)
40.380 < 0.001

Stage III-IV 207(52.94%) 125(64.1%) 82(41.84%)
TABLE 3 Analysis of differences in clinical traits between training set and testing set n (n%).

Variable Sum Training Testing Chi-square value P

Survival state

Survival 281(65.50%) 175(63.64%) 106(68.83%)
0.960 0.327

Death 148(34.50%) 100(36.36%) 48(31.17%)

Age

≤65 279(65.03%) 184(66.91%) 95(61.69%)
0.965 0.326

>65 150(34.97%) 91(33.09%) 59(38.31%)

Tumor grade

G1-2 197(45.92%) 125(45.45%) 72(46.75%)
0.025 0.875

G3-4 232(54.08%) 150(54.55%) 82(53.25%)

Neoplasm staging

Stage I-II 250(58.28%) 165(60.00%) 85(55.19%)
0.750 0.386

Stage III-IV 179(41.72%) 69(44.81%) 110(40.00%)
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3.2.2 Construction of GJA5 and GJB1 knockdown
cell lines

Furthermore, to investigate the effects of GJA5 and GJB1

interference on the cytological behavior of ccRCC cells, at

least three independent cell experiments were conducted

(Figures 10C, D). The expression of GJA5 in the 786-O cell
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line and GJB1 in the A498 cell line were specifically targeted and

knocked down by chemically synthesized siRNA. Western blot

analysis revealed that si-GJA5-2, si-GJA5-3, si-GJB1-1 and si-

GJB1-2 had relatively high knockdown efficiencies. Therefore,

the above four kinds of siRNAs were selected for subsequent cell

behavioral experiments.
A B

D
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C

FIGURE 5

(A) OS analysis results in the training set. (B) PFS analysis results in the training set. (C) RS prognostic model in the training set. (D) ROC curve
analysis of the RS prognostic model in the training set. (E) OS analysis results in the testing set. (F) PFS analysis results of testing set. (G) RS
prognostic model of testing set. (H) ROC curve analysis of the RS Prognostic model in the testing Set.
TABLE 4 Univariate and multivariate stepwise Cox regression analysis of RS and clinical characteristics in ccRCC.

Univariate Cox regression Multivariable Cox regression

p-value Hazard ratio p-value Hazard ratio

Age < 0.001 1.032(1.017-1.047) < 0.001 1.036(1.018-1.053)

Gender 0.935 0.986(0.692-1.403) 0.994 1.001(0.695-1.444)

Grade < 0.001 2.204(1.752-2.773) 0.162 1.203(0.929-1.558)

Stage < 0.001 1.845(1.591-2.140) < 0.001 1.574(1.327-1.867)

Risk score < 0.001 1.944(1.685-2.244) < 0.001 1.695(1.439-1.996)
The results with bold font indicate statistical significance (p < 0.05).
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3.2.3 Low expression of GJA5 and GJB1 promote
the proliferation, migration and EMT and inhibit
apoptosis of ccRCC cells

CCK-8 and EdU assays demonstrated that cell viability was

sharply increased in the si-GJA5 and si-GJB1 groups (Figures 11A,

B). Similarly, transwell and wound healing assays demonstrated

that cell migration increased significantly after GJA5 and GJB1 were

knocked down (Figures 11C, D). Western blot analysis revealed that

after GJA5 or GJB1 knockdown, the expression of E-cad and Bax in

ccRCC cells decreased, while the expression of N-cad, VIM and Bcl-

2 increased (Figures 12A, B). Flow cytometry showed that
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knockdown of GJA5 or GJB1 inhibited cells apoptosis

(Figure 12C). Collectively, these results indicate that GJA5 and

GJB1 may inhibit ccRCC development.
4 Discussion

Gap junctions are intercellular channel clusters formed on the

plasma membrane by the connexin family of proteins expressed by

GJPs (21, 22), which allows the diffusion of ions or small molecules

and the transmission of electrical signals (23, 24). As important
A B

FIGURE 7

(A) GO enrichment analysis. (B) KEGG enrichment analysis.
A

B C

FIGURE 6

(A) Clinical nomogram. (B) The calibration curve for predicting 1-year, 3-year and 5-year survival rates with a nomograph. (C) ROC curve and DCA
curve of the nomogram.
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channels of intercellular communication, gap junction proteins

provide a basis for the cooperative work and functional integrity

of various systems and organs in organisms (25, 26). Genetic or

acquired changes in connexin proteins are closely related to cancer

(27). Abnormal GJP expression is related to the recurrence and

metastasis of cancer and to increase patient mortality. This

difference may be due to the loss of channel function, which leads

to a decrease in tumor inhibition ability (usually called tumor

dormancy) (28, 29), and this inhibition ability depends on the

function of gap junction coupling among cells (30). Moreover,

when the gap junction channel is damaged, the permeability and

sensitivity to chemotherapy drugs are reduced (31, 32). For

example, defects in GJA1 function mediate the resistance of

breast cancer to tamoxifen (33). Destruction of GJB1 plays a role

in promoting the occurrence and development of ovarian cancer

and is not conducive to the action of chemical drugs (34). Mutations

and loss of function of the GJA5 gene are closely related to the

occurrence of isolated ventricular fibrillation in humans (35).

Therefore, GJPs are crucial to the steady state of the human body.

However, the role of GJPs in ccRCC is unclear. In our study, we
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comprehensively analyzed the biological function, pathway, clinical

significance and prognostic value of GJPs in patients with ccRCC,

which filled the gap in the study of GJPs in ccRCC.

In addition, the occurrence and development of cancer are always

accompanied by changes in the tumor microenvironment and the

triggering of immune escape mechanisms (36, 37). When gap

junctions are blocked, humoral and CD8+ T-cell immune

responses are inhibited or even eliminated (38). It has been proven

that there are many gap junction channels between immune cells,

such as GJA5 in T and B lymphocytes (39), and GJB1 in mast cells

(40), and that communication between cardiac cells is promoted by

cardiac macrophages through gap junctions (41). Therefore, the

stability of GJP function is crucial for the immune system to

function. However, the role of GJPs in ccRCC remains unclear. We

analyzed the clinical significance and biological function of GJPs in

ccRCC through a public database system. Furthermore, we developed

the GRPS, a novel tumor-related prognostic feature. Low expression

levels of GJA5 and GJB1 predict poor prognosis in ccRCC patients,

and could be used as independent prognostic markers and drug

therapeutic targets for ccRCC. Additionally, GJA5 and GJB1 were
A B

D

C

FIGURE 8

(A) Analysis of the difference in TMB between high-RS and low-RS groups. (B) Analysis of the Difference in Immune Score between high-RS and
low-RS Groups. (C) Analysis of the Difference in Stromal Score between high-RS and low-RS Groups. (D) Differential expression of immune cells
between high-RS and low-RS groups (Immune cell content in the low-RS group is represented in red, and that in the high-RS group is represented
in blue. (*p< 0.05, **p< 0.01, ***p< 0.001).
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FIGURE 9

Drug sensitivity analysis of common chemotherapeutic drugs in ccRCC risk groups: (A) Erlotinib. (B) Axitinib. (C) Afatinib. (D) Rapamycin.
(E) Sorafenib.
A B

DC

FIGURE 10

(A) qRT-PCR results of GJA5 and GJB1 expression at the RNA level. (B) Western blot results of GJA5 and GJB1 expression at protein level. (C) qRT-
PCR and Western blot results of GJA5 in 786-O cells after transfection with three small interfering RNAs. (D) qRT-PCR and Western blot results of
GJB1 in A498 cells after transfection with three small interfering RNAs. (*p< 0.05, **p< 0.01, ***p< 0.001).
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FIGURE 12

(A) After knocking down GJA5, the protein expression of E-cad, N-cad, VIM, Bax, and Bcl-2 was detected in the 786-O cell line. (B) After knocking
down GJB1, the protein expression of E-cad, N-cad, VIM, Bax, and Bcl-2 was detected in the A-498 cell line. (C) Flow cytometry analysis of cell
apoptosis after knockdown of GJA5 and GJB1 genes in 786-O and A498 cells, respectively. (*p < 0.05, **p < 0.001, ***p < 0.01).
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FIGURE 11

(A) The CCK8 experiment results of GJA5 and GJB1 knockdown on the cell proliferation in 786-O cells and A498 cells, respectively. (B) The EdU
experiment results of GJA5 and GJB1 knockdown on the cell proliferation in 786-O cells and A498 cells, respectively (Error bar = 50 mm). (C) The cell
scratch test results of GJA5 and GJB1 knockdown on the cell migration in 786-O cells and A498 cells, respectively (Error bar = 500 mm). (D) The Transwell
experiment results of GJA5 and GJB1 knockdown on the cell migration potential in 786-O cells and A498 cells, respectively (Error bar = 100 mm).
(*p < 0.05, **p < 0.001, ***p < 0.01).
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verified by cellular functional experiments, and the results showed

that GJA5 and GJB1 could be used as prognostic markers for ccRCC.

In this study, LASSO and Cox regression models were developed

for 21 GJPs to identify genes with independent prognostic effects, and

the relationships between GRPS and tumor grade, tumor stage and

survival status of patients were further explored. The results showed

that GJA5 and GJB1 have independent prognostic value in ccRCC.

The RS was subsequently calculated for each patient, and an RS

prognostic model was constructed. Analysis of the ROC curve

confirmed that the prediction model developed in this study is

reliable, indicating its potential application in clinical practice for

predicting the prognosis of patients with ccRCC.

Moreover, a clinical nomogram that incorporates the GPRS

score, patient clinical characteristics, and the RS was developed.

ROC curve and DCA analyses demonstrated that the nomogram is

highly sensitive for predicting the survival status of patients (AUC

values for 1-, 3-, and 5-year were 0.876, 0.853 and 0.816,

respectively). To assess the generalizability of the RS prognostic

model, this study combined it with external datasets, and the results

were positive. Further investigations revealed correlations between

the GRPS and immune cell infiltration, the TME, and the TMB.

Drug sensitivity analysis indicated that the high-RS subgroup was

more sensitive to afatinib, erlotinib, rapamycin, and sorafenib, while

the low-RS subgroup exhibited greater sensitivity to axitinib, which

is conducive to the development of individualized chemotherapy

regimens for patients with advanced ccRCC.

This study has certain limitations. Firstly, the dataset examined

in this analysis was merely derived from the public (TCGA and

GEO) database, and has a limited sample size. The findings still

need to be further confirmed by a multi-database and multi-center

study. Secondly, although our constructed model obtained

promising results, further clinical experiments are necessary to

validate and assess the efficacy of our model.

In conclusion, this study established a more economical and

personalized prognostic model that is easy to apply and could

provide clinicians with new ideas for the prognosis and treatment of

ccRCC patients.
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