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Cervical cancer (CC) is a significant health problem, especially in low-income

countries. Functional studies on the human papillomavirus have generated

essential advances in the knowledge of CC. However, many unanswered

questions remain. This mini-review discusses the latest results on CC

pathogenesis, HPV oncogenesis, and molecular changes identified through

next-generation technologies. Interestingly, the percentage of samples with

HPV genome integrations correlates with the degree of the cervical lesions,

suggesting a role in the development of CC. Also, new functions have been

described for the viral oncoproteins E5, E6, and E7, resulting in the acquisition

and maintenance of cancer hallmarks, including proliferation, immune response

evasion, apoptosis, and genomic instability. Remarkably, E5 oncoprotein affects

signaling pathways involved in the expression of interferon-induced genes and

EGFR-induced proliferation, while E6 and E7 oncoproteins regulate the DNA

damage repair and cell cycle continuity pathways. Furthermore, next-generation

technologies provide vast amounts of information, increasing our knowledge of

changes in the genome, transcriptome, proteome, metabolome, and epigenome

in CC. These studies have identified novel molecular traits associated with

disease susceptibility, degree of progression, treatment response, and survival

as potential biomarkers and therapeutic targets.
KEYWORDS

cervical cancer, human papillomavirus, E6, E7, oncogenesis
Cervical cancer pathogenesis

Cervical cancer (CC) remains a public health problem and ranks fourth in cancer

mortality in women worldwide (1). The main etiologic factor for CC development is a

persistent infection with high-risk (HR) human papillomavirus (HPV), responsible for

almost 100% of all CC cases (2). However, some studies report that between 5 and 8% of

CC cases are HPV-negative; significantly, the majority are adenocarcinomas (3, 4).
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More than 200 HPV types have so far been identified. Around

15 types are classified as high-risk types, including HPV 16, 18, 31,

33, 45, 52, and 58, associated with cervical, anogenital, and

oropharyngeal cancers, and HPV16 is found in approximately

60% of the CC cases (5). Low-risk HPV types, mainly types 6 and

11, commonly cause benign anogenital warts.

HPVs are small, non-enveloped viruses with an 8-kb circular

double-stranded DNA contained in a 55 nm icosahedral capsid. The

viral genome holds the long control region (LCR) that regulates

genome replication and transcription of the early (E1-E7) and the

late-expressed genes L1 and L2 (6).

HPV infection targets the cervix transformation zone, a region

susceptible to the development of premalignant cervical lesions and,

potentially, cancer. Initially, these lesions were categorized based on

their severity and extent of atypical epithelial tissue changes, leading

to the classification of cervical intraepithelial neoplasia (CIN)

grades I, II, and III, as well as carcinoma in situ (CC). Later the

Bethesda classification was introduced, revising the terminology.

Under this system, CIN I was renamed low-grade squamous

intraepithelial lesion (LSIL), whereas CIN II-III were collectively

designated as high-grade SIL (HSIL). This updated classification

reflects a more refined understanding of the progression and

implications of HPV-related cervical lesions (7).

Through micro-wounds, HPV infects the basal cells of the

stratified cervical epithelium. A mandatory cellular uptake

receptor for HPV has not yet been identified; however, it has

been proposed that the virus may attach to the host cell

membrane via heparan sulfate proteoglycans (HSPGs) (8), a6b4
integrin complex (9), tetraspanins (10), keratinocyte and epidermal

growth factor receptors (KGFR and EGFR, respectively), being

EGFR signaling essential for HPV16 endocytosis (11). The virus

internalizes by endocytic uptake and, sequentially, in endosomal

compartments, the viral capsid binds to retromer components such

as Sortin-nexin 17 and 27, helping the L2-DNA complex to escape

lysosomal degradation (12, 13) to be then transported to the nucleus

via dynein-mediated transport through microtubules (14).

Synthesized E1 and E2 interact with the origin of replication site

in the LCR. Subsequently, E2 partially represses the expression of E6

and E7; however, the small amount of oncoproteins produced is

sufficient to induce a delay in differentiation, resulting in a low copy

number of genome replication. Paradoxically, cell differentiation is

required to activate the productive phase of the viral cycle. As the

epithelium differentiates, the expression of the early viral genes,

including E5 and E4, augments in the middle and upper layers, and

genome amplification increases (15). E5 maintains cell proliferation

and delays cell differentiation by modulating EGF/KGF receptor

activities, complementing the functions of E6 and E7 (16). L1 and

L2 capsid proteins are produced in the differentiated keratinocytes,

where virions are assembled and released due to the disruption of

the cytoskeleton promoted by the E4 (17). Most HPV infections are

eliminated by the immune system, where 60% of HPV infections are

cleared spontaneously within one year and 90% within two years

(18). HPV infections that persist over two years exhibit an increased

risk of developing cervical intraepithelial neoplasia (CIN) (19).

The determinants of HR-HPV persistent infections are not

precise. Still, they may be related to the inability of the host to
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mount an adequate innate immune response and a robust cell-

mediated immunity, as well as the ability of the viral proteins to

evade immune detection (20–22). Although only 0.6% of HPV

infections are known to progress to cancer, a 16-year follow-up

study has shown that the risk of developing cancer is 75.4 times

higher in women with persistent HR-HPV infections compared to

HPV-negative women (23). It is proposed that during persistent

HPV infections, mutations and chromosomal abnormalities

accumulate over time, promoting integration of the viral genome

into the cellular genome and contributing to cancer progression

(24). Some studies report that the frequency of HPV genome

integration gradually increases as cervical lesions progress,

observed in 26-30% of CINI cases, 40-64% of CINII-III, and 77%

of CC (25, 26).

In many cases of CC, the viral genome integration frequently

occurs in the E1 and E2 genes, affecting their expression and leading

to the uncontrolled expression of the oncogenes E6 and E7. The

maintenance of the tumor phenotype requires the continuous

expression of the E6 and E7 oncogenes (27). It has been shown

that in the HPV genome of CC tumors HPV16-positive, gene losses

of more than 10% occur most frequently within E1, E2, and E5

genes, with the loss of E2 in 27% of CC cases (28). However, viral

integration does not occur in all CC; in some cases, HPV DNA

remains as an episome (29), and methylation at E2 binding sites

within the LCR has been shown to prevent E2 binding and

consequently promote the continued expression of the viral

oncoproteins (30).

Gene loss, duplication, or overexpression is a common feature

of the HPV genome in CC (31). This is due to deletions, errors

during the replication process, or mutations in genes of the HPV

genome that increase the expression of the HPV gene products.

HPV gene diversity and duplication have been reported in CC (32).

Overexpression of E6 and E7 after HPV integration is considered

the trigger for malignant progression due to cell cycle disruption

and induction of genome instability; also, multiple HPV integration

events have been associated with poor prognosis (31). Alterations

that occur in the host genome due to the integration of HPV are

fundamental in the development of CC.
HPV-associated cervical
cancer oncogenesis

The contribution of HPV to CC development is due to the

transformation capacity of a variety of interactions of E6, E7, and E5

viral oncoproteins with diverse cellular proteins, which affect the

normal regulation of cell signaling pathways involved in

proliferation, DNA damage repair, immune system, apoptosis,

and metabolism (33–35).

The viral oncoprotein E5 is a viroporine capable of increasing

cell proliferation by modulating ionic homeostasis through the

inhibition of the vacuolar H+ ATPase-16 kDa subunit (36). E5

regulates endosomal pH and inhibits the interaction of EGFR with

c-Cbl ubiquitinase, decreasing its degradation and allowing

increased mitogenic signal transduction (37). E5 negatively
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modulates the CDK inhibitors p27Kip-1 and p21Waf-1 (16), which

allows the cell to remain in the cell cycle, maintaining viral

persistence. E5 also impairs keratinocyte differentiation by

downregulating KGFR and increases EGFR activity, slowing the

differentiation process (38). All these events lead the cell to a

continuous proliferation that could finally transform the

cells (Table 1).

Additionally, E5 oncoprotein interferes with the host’s immune

system, promoting HPV persistence and resistance to

immunotherapy; this has been demonstrated through E5

interaction with the simulator of interferon genes (STING), which

suppresses interferon (IFN) signaling pathway (60). E5 obstructs

the immune response by retaining MHC-I molecules in the ER and

Golgi, reducing cell surface antigen presentation, and preventing
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viral antigen recognition and T and NK cell maturation (39). E5 also

affects antigen presentation through MHC-II by preventing

invariant chain degradation by inducing endosome alkalinization,

thus reducing the activity of this molecule on the cell surface (39,

40). Interestingly, HPV16 E5 has been shown to suppress the

expression of keratinocytes-specific IFN with the subsequent

inactivation of the JAK/STAT pathway and the suppression of

IFN-stimulated genes, which finally impacts the maintenance and

integrity of the viral episomes (61).

One of the main targets of E6 is the tumor suppressor p53,

promoting its degradation through the interaction with the

ubiquitin ligase E6AP (42, 62), which induces cells to enter S-

phase without arresting in G1. Moreover, E6 can stimulate the

transcriptional factor OCT-4 expression, which binds to the p53
TABLE 1 Target proteins of HPV oncogenes.

HPV
Oncoprotein

Target protein Related Activity Reference

E5 EGFR Up-regulated mitogenic activity (37)

Cbl Modulation of EGFR degradation by ubiquitination (37)

p21Waf-1, p27Kip-1 Down-regulated inhibitors to remain in the cell cycle (16)

KGFR Regulation of cell differentiation (38)

H+ ATPase-16 kDa Modulation of endosomal pH (36)

MHC-I and MHC-II Evasion of immune response (39, 40)

E6 TNF Apoptosis modulation (41)

p53 Inhibition of apoptosis (42)

IRF3 Disruption of INF-b signaling (43, 44)

TLR9 Evasion of immune response (45)

Telomerase Inhibition of senescence (46)

Proteins with PDZ domains
Proteolytic degradation of different target proteins (hDlg, hSCRIB, MAGI-1, -2, -3,
NHERF-1)

(47, 48)

Wnt/b-catenin pathway Enhanced transcription of growth and proliferation genes (49)

E7 pRb, p107, p130, p600 Release of cell cycle (50, 51)

Cullin 2 Polyubiquitination of pRb (52)

E2F1 Increased transcription of cell cycle genes (51, 52)

CDK2/Histone H1 kinase Increase viral DNA replication and cell cycle G1/S checkpoint inhibition (53)

Hijacks RNF168 E3

ubiquitin ligase
Reshape of DNA damage response (54)

PI3K/AKT/SGK Promotion of cell cycle and cell survival involving NCAPH function (55)

HIF-1a Increase HIF-1 transcription activity (56)

External cofactors

Hypoxia E6/E7 Evasion of senescence (57)

Microbiome Lactobacillus spp Alteration of cervical microenvironment (58, 59)
Overexpression and Subexpression induced by the viral oncogenes or external factors.
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promoter recruiting the NCOR1 co-repressor, representing a new

mechanism by which E6 decreases p53 levels (63). E6 has anti-

apoptotic activities, which may occur by the degradation of p53,

leading to the down-regulation of the proapoptotic genes PUMA

and Bax and genes related to senescence modulation (64, 65).

Moreover, E6 and E7 activate the transcription of Survivin and

the apoptosis inhibitor c-IAP2, conferring resistance to apoptosis

(66). E6 also prevents apoptotic signals through direct interaction

with interferon regulatory factor 3 (IRF3), inhibiting the IFN-b1
response (43), and through hypermethylation of the promoter of

the tumor suppressor death-associated protein kinase 1 (DAPK1)

leading to the down-regulation of IFN genes, which consequently

impairs the cellular antiviral response (44).

E6 sensitizes to radiation therapy by hijacking cellular target

proteins involved in DNA damage repair, such as CHEK2, CLK2/3,

ERCC3 MNAT1, PER1, RMI1, RPA1, UVSSA, and XRCC6, which

promotes their colocalization in HPV replication foci, facilitating

viral replication and increasing cellular genome instability (67).

Additionally, E6 increases telomerase activity through the

degradation of the telomerase inhibitor NFX1-91 and, in

conjunction with Myc, transactivates the hTERT catalytic subunit,

allowing cell immortalization due to the inhibition of

senescence (46).

HR-HPV E6 proteins contain a PDZ-binding motif through

which they bind proteins containing PDZ domains, sending them

to degradation by ubiquitination, such as hDLG, hSCRIB, MAGI-1,

-2, -3, and NHERF-1. In this condition, MAGI-2 cannot interact

with PTEN to suppress AKT activation, while degradation of

NHERF-1 activates the PI3K signaling pathway, thus promoting

cell survival and proliferation (47, 48). In addition, degradation of

NHERF1 by the E6/E6AP complex activates the Wnt/b-catenin
signaling pathway, leading to the accumulation of b-catenin that

induces transcription of genes that regulate cell growth and

proliferation (e.g., c-Jun, c-myc, cyclin D, survivin, COX-2) (49).

Recent studies using the mouse papillomavirus (MmPV1)

model demonstrated that E6 oncoprotein modulates the Notch

signaling pathway by interacting with MAML1, component of the

Notch pathway, affecting cell density and delaying differentiation,

which allows viral persistence (68).

The E7 oncoprotein promotes cell cycle progression by

sequestering and degrading the tumor suppressor protein pRB via

polyubiquitination by cullin 2 (CUL2) (52), which releases the E2F

transcription factor from the pRb complex, allowing the cell cycle to

progress to the S-phase (50, 51). Another player in the pRb-CUL2

degradation pathway is miR-154-5p, which targets CUL2 and is

down-regulated by E7 (52). Also, HR-HPV E7 oncoprotein can

trigger tumorigenesis in a pRB-independent pathway by binding

directly to the E2F1 transcription factor (50) and overexpressing

eIF4E translation factor (69), promoting cell proliferation and

migration while inhibiting apoptosis. Furthermore, E7 also

modulates the G2/M cell cycle phase by upregulating the kinase

activity of the histone H1 through the Cyclin A/CDK2/p107/E7

complex, which promotes HPV replication but utilizes ATM

signaling to activate the p38/MK2 pathway also required for viral

replication (52, 70). Moreover, E7 binds the RN1698 E3 ubiquitin

ligase, hijacking its activity to promote viral replication;
Frontiers in Oncology 04
consequently, cellular response to DNA damage is reshaped,

promoting genome instability (54). Interestingly, E7, through

E2F1, promotes the expression of the NCAPH gene, which is

involved in the activation of PI3K/AKT/SGK signaling and has

also been implicated in proliferation, migration, invasion,

epithelial-mesenchymal transition and restricts tumor formation

(55). Recent findings reveal a complex interplay between PI3K/

AKT/mTOR in virus-host cell communication. E6/E7 inhibits cell

senescence under normoxia. Still, oxygen deprivation leads to the

impairment of mTOR signaling, and hypoxic HPV-positive cells

can evade senescence, although E6/E7 is down-regulated due to the

activation of AKT (57).

External cofactors are also crucial for HPV-induced

carcinogenesis, as is the case of the microbiome. Alterations in

the cervicovaginal microbiome occur during the progression of

HPV-associated lesions to CC, where an increase in resident

bacteria diversity occurs along with a reduction of the resident

Lactobacillus spp. Dysbiosis in the cervical microbiome influences

viral persistence and is a carcinogenic co-factor (58, 59).

Table 1 shows several cellular targets of viral oncoproteins

affecting biological processes.
New advances in molecular
characterization of cervical cancer

The molecular changes in CC are not yet fully elucidated, and

next-generation technologies have generated a large amount of

information that has increased knowledge in this area.

Bioinformatic data analysis has provided relevant information on

the genome sequence, transcriptome, proteome, glycome,

epigenome, etc. Several studies have revealed molecular changes

that occur during the development and progression of CC and have

identified potential biomarkers and molecular targets associated

with susceptibility to the disease, degree of advancement, response

to treatment, and survival.

CC depends largely on the genetic characteristics of the host.

Koel et al. (2023) (71) performed a genome-wide association study

(GWAS) to identify genomic variants associated with the full

spectrum of cervical disorders, including ectropion, cervicitis,

dysplasia, and CC. The variants that were mainly identified

overlapped between cervicitis, dysplasia, and cancer and appeared

different for ectropion. A genetic risk score (GRS) associated with

CC was constructed. GRS identified people at risk of developing CC,

which could be used to personalize the screening strategies for

susceptible people. Most of the predictive power of the variants

identified comes from the HLA region (HLA-DQA1), but it also

includes regions where the closest genes are CDC42, PAX8,

CLPTM1L, and ORMDL3.

During HPV carcinogenesis, somatic mutations are

accumulated in the host genome. Through the whole exon-,

genome- and transcriptome sequencing, driver mutations have

been identified in the genomic landscape of an important number

of CC samples paired with normal cervical tissue (72). Among the

most frequent alterations found in CC were somatic mutations in
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MAPK1 (8%), EP300 (16%), FBXW7 (15%), PIK3CA (14%), PTEN

(6%), NFE2L2 (4%), TP53 (5%), ERBB2 (6%) and HLA-B

inactivating mutations (9%). Furthermore, in cases of cervical

adenocarcinoma, the most frequent somatic mutations were

found in ELF3 (13%) and CBFB (8%). Moreover, Zhou L. et al.

(2022) (31) characterized virus-human integration events in CC

samples, combined with the corresponding RNA-seq analysis.

Among the genes frequently found disrupted by HPV integration

were IL20RB, SOX14, LENG8, LENG9, CDC42EP5, CASC21,

CCAT2, CASC8, and AKAP13, while genes whose expression was

altered included LINC00290, LENG9, CCAT2, ARHGAP42, HNF1B,

FOXD2, TMC1, IL15, and RPS6KA.

Transcriptome analyses in CC have identified changes in the

expression of genes involved in cell transformation and immune

response. Moreover, other RNAs involved in the disease have been

identified, such as miRNAs, circRNAs, and long ncRNAs, that play

essential roles in cancer pathogenesis as tumor promoters or

suppressors (73–75). Salmerón-Bárcenas et al. (2023) (76)

performed a bioinformatic analysis focusing on miR-182-3p,

which is descr ibed in other cancers associated with

chemoresistance and cancer progression. They identified miR-

182-3p gene targets downregulated in CC and found that it might

participate in angiogenesis and cell migration. They also proposed

this miR as a potential diagnostic biomarker.

Understanding of the biological roles of circRNAs in CC

progression is still under investigation, and the mechanisms by

which circRNAs influence CC development and metastasis have yet

to be completely elucidated. Zhang et al. (2023) (77) performed an

expression analysis using microarray technology and identified

differentially expressed mRNAs, miRNAs, and circRNAs in CC

tissues. Their study focused on analyzing circRNAs with binding

sites for miR-154-5p, a tumor suppressor in CC. hsa_circ_0000276

had the most substantial binding capacity for miR-154-5p

and showed an increased expression in CC tissue. Through

bioinformatic analysis, the authors showed that hsa_circ_0000276

was associated with CD47, LDHA, PDIA3, and SLC16A1, related

to immune system processes; it was also reported that

hsa_circ_0000276 increased proliferation and inhibited apoptosis.

Through lncRNA/mRNA microarray technology, Xin et al.

(2023) (78) identified differentially expressed lncRNAs and

mRNAs in HPV16 and HPV18-positive CC tissues compared

with normal tissues. They found that co-expression of

LINC00511-PGK1 could be important in the HPV-mediated

transformation. Then, a score was proposed based on the co-

expression of LINC00511 and PGK1 that predicted the overall

survival of the patients with CC.

Other studies have focused on analyzing genes involved in

ubiquitination, whose role in CC has yet to be determined. Hao

et al. (2023) (79) identified the ubiquitination-related genes

differentially expressed in CC tumors. They selected those

associated with overall survival and established a prognostic gene

signature that includes RBBP4, SRM, GCH1, USP14, TRAIP, CBX4,

VEZF1, and TOM1 genes. Considering the importance of the anti-

tumor immune response to control cancer development and

progression, other groups have reported immune gene signatures.
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Pu et al. (2022) (80) reported an immune signature composed of 10

genes: CD96, LAG3, PDCD1, TIGIT, CD27, KLRK1, LTA, PVR,

TNFRSF13C, and TNFRSF17; these genes are CD79B associated

immunomodulators, that showed an independent prognostic value.

A study that analyzed RNAseq databases of genes related to the

glycosylation process (glycogens) showed that adenocarcinoma

tumors displayed a unique glycogen expression signature.

Squamous cancers showed more significant heterogeneity since

six different signatures were identified related to different

glycosylation pathways, such as glycosphingolipids, keratan and

heparan sulfate synthesis, and glycosaminoglycan degradation (81).

Epigenetic changes have been evaluated in CC. Analyzing the

Cancer Genome Atlas DNA methylation database, Yang et al, 2020

(82), identified HPV-related methylation sites in the DNA of CC

tumors and classified them into clusters associated with overall

survival. Aberrant mutations, amplifications, and deletions were

identified in the different methylation groups, proposing a

prognostic signature that allows patients to be stratified into high

and low risk. Salta et al. (2023) (83) performed a meta-analysis on

DNA methylation in HR-HPV-positive women with HSILs and

proposed DNA methylation-based markers to discriminate lesions

with a higher risk of progression to CC.
Conclusions

Current research on HPV has primarily focused on E6 and E7

oncogenes due to their impact on the development of CC. These

genes are often found overexpressed in CC cells. Some promising

approaches targeting E6 and E7 include the development of

therapeutic vaccines for preventing the progress of squamous cell

intraepithelial lesions to CC (84), antibodies against viral oncogenes

to inhibit tumor growth (85, 86), strategies that inhibit their

expression (87, 88), and immunotherapy that uses the host’s

immune system to attack HPV-related cancers (89). Furthermore,

E5 has gained relevance for participating in the progression and

maintenance of CC. Moreover, novel bioinformatic analyses have

identified vital genes, miRNAs, lncRNAs, circRNA, and signaling

pathways contributing to CC progression. Some of these findings

have been proposed not only as potential biomarkers but also as

therapeutic targets. As research on CC continues, our knowledge of

the genetic changes contributing to this disease increases, which

could eventually help improve diagnostic tests and treatment

options for this type of cancer.
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