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Objective: To investigate the value of predicting axillary lymph node (ALN)

metastasis based on intratumoral and peritumoral dynamic contrast-enhanced

MRI (DCE-MRI) radiomics and clinico-radiological characteristics in

breast cancer.

Methods: A total of 473 breast cancer patients who underwent preoperative

DCE-MRI from Jan 2017 to Dec 2020 were enrolled. These patients were

randomly divided into training (n=378) and testing sets (n=95) at 8:2 ratio.

Intratumoral regions (ITRs) of interest were manually delineated, and

peritumoral regions of 3 mm (3 mmPTRs) were automatically obtained by

morphologically dilating the ITR. Radiomics features were extracted, and ALN

metastasis-related radiomics features were selected by the Mann-Whitney U

test, Z score normalization, variance thresholding, K-best algorithm and least

absolute shrinkage and selection operator (LASSO) algorithm. Clinico-

radiological risk factors were selected by logistic regression and were also

used to construct predictive models combined with radiomics features. Then,

5 models were constructed, including ITR, 3 mmPTR, ITR+3 mmPTR, clinico-

radiological and combined (ITR+3 mmPTR+ clinico-radiological) models. The

performance of models was assessed by sensitivity, specificity, accuracy, F1 score

and area under the curve (AUC) of receiver operating characteristic (ROC),

calibration curves and decision curve analysis (DCA).

Results: A total of 2264 radiomics features were extracted from each region of

interest (ROI), 3 and 10 radiomics features were selected for the ITR and 3

mmPTR, respectively. 5 clinico-radiological risk factors were selected, including
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lesion size, human epidermal growth factor receptor 2 (HER2) expression,

vascular cancer thrombus status, MR-reported ALN status, and time-signal

intensity curve (TIC) type. In the testing set, the combined model showed the

highest AUC (0.839), specificity (74.2%), accuracy (75.8%) and F1 Score (69.3%)

among the 5 models. DCA showed that it had the greatest net clinical benefit

compared to the other models.

Conclusion: The intra- and peritumoral radiomics models based on DCE-MRI

could be used to predict ALN metastasis in breast cancer, especially for the

combined model with clinico-radiological characteristics showing promising

clinical application value.
KEYWORDS

breast cancer, DCE-MRI, axillary lymph node, metastasis, radiomics
1 Introduction

Breast cancer has become the leading cause of cancer-related

death among women worldwide (1). It has been reported that the 5-

year survival rate for breast cancer patients with axillary lymph

node (ALN) metastasis is 14% lower than that without metastasis

(2). Accurate assessment of ALN status is critical for the clinical

staging, selection of appropriate management and prognosis

evaluation of breast cancer patients (3). Axillary lymph node

dissection (ALND) remains the definitive treatment for palpable

axillary positive patients, but this invasive procedure may result in

postoperative complications. Sentinel lymph node biopsy (SLNB)

has replaced ALND as the standard ALN assessment procedure for

palpable axillary negative patients. However, it has a high false-

negative rate of 7.8-27.3%, potentially causing challenges in

subsequent treatment and management (4–7).

Imaging examinations, such as mammography, ultrasound, and

MRI, are commonly used for preoperative assessment in ALN

metastasis clinically. However, the results of these examinations

can be subjectively affected by the experience of radiologists, which

could lead to relatively elevated rates of missed diagnoses (8).

Preoperative ultrasound-guided needle biopsy is also one of the

clinically utilized methods for the assessment of ALNmetastasis (9).

However, it is difficult to reflect the whole heterogeneity due to the

limited tissue samples obtained, and patients with negative biopsy
d MRI; ALN, axillary
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hrinkage and selection
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results still need to undergo surgery to confirm the ALN

pathological staging. Hence, the major problem is how to

precisely evaluate the ALN with a noninvasive method.

Radiomics involves extracting quantitative features from medical

images. Its goal is to explore connections between radiomics features

and clinical information for better diagnosis and prognosis (10). DCE-

MRI could provide crucial tumor hemodynamic information based on

the multisequence imaging, and radiomics based on DCE-MRI has

been corroborated by multiple studies for predicting ALN metastasis

(11, 12). Peritumoral radiomics can reflect the microenvironment

closely related to tumor growth and invasion (13), while research

exploring their relevance to ALN metastasis remains limited.

Additionally, clinico-radiological characteristics of breast cancer have

been shown to be correlated with ALN metastasis (14, 15). This study

aims to construct and validate preoperative predictive models for ALN

metastasis based on both intra- and peritumoral DCE-MRI radiomics

features and clinico-radiological characteristics in breast cancer.
2 Methods

2.1 Patient population

The study was approved by the Ethics Committee of Henan

Provincial People’s Hospital (No: 2022-124), and the participants

informed consent requirement was waived. Breast cancer patients

who underwent initial DCE-MRI examination in our hospital from

Jan 2017 to Dec 2020 were retrospectively enrolled. The inclusion

criteria were as follows: (1). Patients were initially confirmed with

invasive breast cancer of nonspecific type (IBC-NST) by pathology; (2).

Patients with complete and available clinicopathologic information; (3).

All cases have ALN pathological results confirmed by ALND, puncture

pathology or SLNB; (4). Image quality was satisfactory. The exclusion

criteria were as follows: (1). Breast cancer patients who underwent

biopsy, radiotherapy or chemotherapy before MRI examination; (2).
frontiersin.org
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Patients with a lesion diameter less than 1 cm; (3). Patients presenting

non-mass enhancement on DCE-MRI (In consideration of the

accuracy of ROI delineation, non-mass enhanced lesions were

excluded because of their unclear boundaries and various

distribution patterns). In this study, positive ALNs were determined

by the results of ALND and puncture biopsy, while negative ALNs were

mainly determined by the results of ALND and SLNB. Patients with

negative SLNB were directly considered to have no ALN metastasis.

According to this criterion, patients were divided into ALN-positive

and ALN-negative groups. A total of 473 patients were enrolled based

on the inclusion and exclusion criteria, including 162 positive and 311

negative ALN patients. Patients were randomly divided into training (n

= 378, mean age 50.20 ± 10.21) and testing sets (n = 95, mean age 47.45

± 9.15) at a ratio of 8:2. The study flow chart is shown in Figure 1.
2.2 DCE-MRI examination

Breast MRI examination was performed by 3.0T MR imaging

devices and dedicated breast phased-array surface coils (GE Medical

Systems Discovery MR750, Milwaukee). All enrolled patients lay in the

prone position on the breast coil, with both breasts freely hanging

pendulous. The main MRI sequence scanning parameters were as

follows: unenhanced T1-weighted axial sequences (TR/TE=792/10

mms, FOV=340340 mm, matrix=512 512, slice thickness=5 mm,

interval=2.5 mm, and number of slices=24). Dynamic contrast-

enhanced scanning was performed using the T1-weighted volume

imaging for breast assessment (VIBRANT) technique (TR/TE,3.8/1.6

mms; slice thickness, 1.1 mm; field of view, 751 340 mm; matrix scan,

512 512; phase,8). Intravenous access was established using a 12G

intravenous indwelling needle before the examination. The contrast

medium (Gado-linium-DTPA; Magnevist, Schering, Germany, 0.2

mmol/kg) was intravenously administered as a bolus injection to the

patients undergoing contrast-enhancedMRI, followed by a 20ml saline

flush. A total of 8 phases were scanned, with 124 scanning layers for

each phase.
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2.3 Clinico-radiological characteristics

Clinical characteristics were obtained from the electronic

medical records, including age, pathological grade, expression of

estrogen receptor (ER), progesterone-receptor (PR), human

epidermal growth factor receptor 2 (HER2), antigen Ki67, and

vascular cancer thrombus status. ER expression was categorized

into low (≤10%) and high (> 10%) groups. PR and Ki67 expression

were classified as low (PR ≤ 20%, Ki67 <20%) and high (PR>20%,

Ki67≥20%) groups based on a cut-off of 20% (16, 17). HER2 status

was confirmed by immunohistochemistry (IHC) and fluorescence

in situ hybridization (FISH). Radiological characteristics were

analyzed by 2 radiologists with more than 5 years of experience

in breast imaging. They were blinded to the pathological results, and

a consensus decision was made in cases of discrepancy. All the

original images acquired after scanning were transmitted to the

AW4.6 postprocessing workstation. The ROIs were selected at the

obvious lesion enhancement site, avoiding areas with hemorrhage,

necrosis and calcification to analyze the time-signal intensity curve

(TIC), which were classified into 3 classical types: type I – inflow

type, type II – platform type, and type III – outflow type. The

assessment was mainly based on the second edition of the Breast

Imaging Reporting and Data System (BI-RADS) for breast MRI

(18). Background parenchymal enhancement (BPE) type, lesion size

(longest diameter), MR-reported ALN status and TIC type were

recorded as the radiological characteristics.
2.4 Image segmentation

The workflow of the radiomics analysis is illustrated in Figure 2.

The third phase of DCE-MRI images, in which lesions achieved

sufficient enhancement (19), were anonymously exported from the

picture archiving and communication systems (PACS) and saved in

DICOM format. Using ITK-SNAP software (Version 3.8.0, http://

www.itk-snap.org), a breast radiologist with more than 5 years of

experience manually delineated the intratumoral region (ITR) slice-

by-slice, avoiding necrotic areas. The ITRs were verified by an

associate chief physician with over 10 years of experience in breast

radiology. The peritumoral region (PTR) was generated by

morphologically dilating the ITR outwards by 3 mm using the

uRP platform (uAI research portal, https://www.uii-ai.com/en/uai/

scientifific-research), which is a clinical research platform

integrating AI module algorithms (20). PTR portions extending

beyond the breast parenchyma were removed manually. Each lesion

obtained 2 ROIs, including ITR and 3 mm PTR (Figure 3).
2.5 Radiomics feature extraction
and selection

A total of 2264 radiomics features were extracted from each ROI

through the uRP platform. Feature selection was performed to avoid

overfitting the models, and this process was conducted in the

training set. Firstly, Mann-Whitney U test was performed to
FIGURE 1

Flow chart for selection and grouping of populations according to
inclusion and exclusion criteria.
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select ALN metastasis -related features. Subsequently, Z score

normalization was used to reduce feature dimensionality

differences, features with variance over threshold (0.1) were

retained by variance threshold, and high p value features were

filtered using K-Best (i.e., F value method). Finally, least absolute

shrinkage and selection operator (LASSO) regression was applied to

remove features with high collinearity, thereby obtaining the

optimal feature subset based on the 2 ROIs. The detailed features

and the i r r e spec t i ve coe ffic i en t s a re shown in the

Supplementary Data.
2.6 Model construction and
performance assessment

First, univariate analysis and binary logistic regression were

used to select clinico-radiological independent factors of ALN

metastasis. Second, the optimal radiomics features and clinico-
Frontiers in Oncology 04
radiological independent factors were standardized using

preprocessing methods to unify dimensions respectively. Bagging

decision tree was applied to construct predictive models. Detailed

preprocessing methods are shown in the Supplementary Data.

Finally, based on the model performance assessment indices, 3

optimal models were selected, including ITR, 3 mm PTR and

clinico-radiological models. Then, 2 additional models were

constructed based on the optimal radiomics features from intra-

and peritumoral regions and clinico-radiological independent

factors, including the ITR + 3 mm PTR model and the combined

(ITR+3 mmPTR+ clinico-radiological) model.

The performance of the models was assessed by sensitivity,

specificity, accuracy, F1 score and area under the curve (AUC) of

receiver operating characteristic (ROC). The calibration of the

models was assessed using the Hosmer-Lemeshow goodness-of-fit

test and calibration curves. Decision curve analysis (DCA)

compared the net clinical benefits of the models across a range of

threshold probabilities.
BA

FIGURE 3

Schematics (A) and examples (B) of different ROI segmentation schemes. The red region represents the ITR, and the green region represents the
3 mm PTR. ITR: intratumoral region; 3mmPTR: peritumoral region of 3 mm.
FIGURE 2

The workflow of radiomics. (1) Outlining ROI by manual joint automatic algorithm (2) Extraction of high-throughput features based on 2 different
ROIs respectively (3) Feature selection (4) Model construction and validation. ITR: intratumoral region; 3mmPTR: peritumoral region of 3 mm.
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2.7 Statistical analysis

Statistical analysis was performed using SPSS software (V.26.0)

and R software (V. 4.3.1). Quantitative variables were compared

using the t test or Mann-Whitney U test, while qualitative variables

were compared using the c2 test or Fisher’s test, if one of the

theoretical frequencies was less than 1, the likelihood ratio chi-

square was adopted. The ordered classified variables were compared

with the rank sum test. Binary logistic regression analysis was

performed to select clinico-radiological independent factors,

which were used to construct predictive models combined with

radiomics features. The AUCs of different models were compared

by the DeLong test, The correction for multiple comparisons was

conducted using Bonferroni correction. The value of sensitivity,

specificity, accuracy, and F1Score were obtained based on the cut-

off 0.5. P <0.05 was considered statistically significant.

3 Results

3.1 Clinico-radiological characteristics

Comparing the clinico-radiological characteristics between the

training and testing sets, there were no significant differences except

for age and MR-reported ALN status (both p<0.05, Table 1). In the

ALN-positive group, the percentages of positive HER2 expression,

positive vascular cancer thrombus, MR reported-positive ALN and

type II~III TIC were higher than those in the negative group, lesion

size was also larger in the positive group (all p<0.05, Table 2), and

they were used to select independent risk factors for ALNmetastasis

by binary logistic regression. The results showed that positive HER2

expression (OR = 1.979, P = 0.011), positive vascular cancer

thrombus (OR = 3.183, P < 0.001), larger lesion size (OR = 1.036,

P = 0.004), MR-reported positive ALN (OR = 1.862, P = 0.010), and

TIC types (II: OR = 3.363, P = 0.027; III:OR = 3.811, P = 0.014) were

independent risk factors for ALN metastasis (Figure 4).

3.2 Feature extraction and selection

A total of 2264 radiomics features were extracted from each

ROI, including 18 first-order statistical features, 14 shape features,

72 texture features and 2160 filtered features (i.e., high-order

statistical features). 3 and 10 features were finally selected as the

optimal features based on ITR and 3 mm PTR using the LASSO

method. The ITR contained 3 high-order statistical features, while

the 3 mm PTR contained 1 first-order statistical feature and 9 high-

order statistical features (20).

3.3 Construction and validation of models

The performances of the models based on ITR, PTR and

clinico-radiological characteristics are shown in Table 3. The

AUC of the combined model (ITR+3 mmPTR+clinico-
Frontiers in Oncology 05
TABLE 1 Comparison of clinico-radiological characteristics between the
training and testing sets.

Characteristics Training
set(n=378)

Testing
set(n=95)

p

Age (year, �x ± s) 50.20±10.21 47.45±9.15 0.017

Pathological grade 0.257

Grade I 5 (1.3%) 3 (3.2%)

Grade II 238 (63%) 63 (66.3%)

Grade III 135 (35.7%) 29 (30.5%)

ER expression 0.759

≤10% 112 (29.6%) 26 (27.4%)

>10% 266 (70.4%) 69 (72.6%)

PR expression 0.984

≤20% 200 (52.9%) 51 (53.7%)

>20% 178 (47.1%) 44 (46.3%)

HER2 expression 0.549

negative 289 (76.5%) 76 (80.0%)

positive 89 (23.5%) 19 (20.0%)

KI67 expression 0.073

<20% 95 (25.1%) 15 (15.8%)

≥20% 283 (74.9%) 80 (84.2%)

Vascular
cancer thrombus

0.342

negative 257 (68.0%) 70 (73.7%)

positive 121 (32.0%) 25 (26.3%)

BPE type 0.552

No enhancement 66 (17.5%) 17 (17.9%)

Mild enhancement 196 (51.9%) 53 (55.8%)

Moderate
enhancement

102 (27.0%) 21 (22.1%)

Marked
enhancement

14 (3.7%) 4 (4.2%)

Lesion Size
[mm/M(Q1,Q3)]

20
(16, 28)

22
(15, 28)

0.828

MR reported- ALN 0.018

negative 236 (62.4%) 46 (48.4%)

positive 142 (37.6%) 49 (51.6%)

TIC type 0.241

I 34 (9.0%) 4 (4.2%)

II 150 (39.7%) 36 (37.9%)

III 194 (51.3%) 55 (57.9%)
frontier
The bold values presented indicate statistically significant p-values.
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radiological) in the testing set was 0.839, which was the highest

compared to the other 4 models (ITR, 3 mm PTR, ITR + 3 mm

PTR, clinico-radiological, Figure 5). The combined model also

achieved the highest specificity (74.2%), accuracy (75.8%) and F1
Frontiers in Oncology 06
Score (69.3%). The DeLong test showed that the AUCs of the 3 mm

PTR and ITR models were significantly different from that of the

combined model in the testing set (P=0.047 and 0.036, respectively),

and the results are shown in Table 4.
TABLE 2 Comparison of clinico-radiological characteristics between different ALN groups in the training and testing sets.

Characteristics Training set(n=378) Testing set(n=95)

Positive
(n=129)

negative
(n=249)

p positive (n=33) negative (n=62) p

Age (year, �x ± s) 49.91±10.57 50.35±10.03 0.698 46.58±9.24 47.92±9.15 0.499

Pathological grade 0.088 0.244

Grade I 2(1.6%) 3(1.2%) 0(0.0%) 3(4.8%)

Grade II 73(56.6%) 165(66.3%) 21(63.6%) 42(67.7%)

Grade III 54(41.9%) 81(32.5%) 12(36.4%) 17(27.4%)

ER expression 0.170 0.640

≤10% 44(34.1%) 68(27.3%) 10(30.3%) 16(25.8%)

>10% 85(65.9%) 181(72.7%) 23(69.7%) 46(74.2%)

PR expression 0.143 0.156

≤20% 75(58.1%) 125(50.2%) 21(63.6%) 30(48.4%)

>20% 54(41.9%) 124(49.8%) 12(36.4%) 32(51.6%)

HER2 expression 0.003 0.018

negative 87(67.4%) 202(81.1%) 22(66.7%) 54(87.1%)

positive 42(32.6%) 47(18.9%) 11(33.3%) 8(12.9%)

KI67 expression 0.063 0.191

<20% 25(19.4%) 70(28.1%) 3(9.1%) 12(19.4%)

≥20% 104(80.6%) 179(71.9%) 30(90.9%) 50(80.6%)

Vascular cancer thrombus <0.001 <0.001

negative 64(49.6%) 193(77.5%) 17(51.5%) 53(85.5%)

positive 65(50.4%) 56(22.5%) 16(48.5%) 9(14.5%)

BPE type 0.340 0.540

No enhancement 19(14.7%) 47(18.9%) 6(18.2%) 11(17.7%)

Mild enhancement 75(58.1%) 121(48.6%) 20(60.6%) 33(53.2%)

Moderate enhancement 30(23.3%) 72(28.9%) 6(18.2%) 15(24.2%)

Marked enhancement 5(3.9%) 9(3.6%) 1(3.0%) 3(4.8%)

Lesion Size [mm/M(Q1,Q3)] 24.0
(18.5,31.0)

19.0
(15.0,25.0)

<0.001
27.0

(22.5,33.0)
17.0

(14.8,25.0)
<0.001

MR reported- ALN <0.001 <0.001

negative 64(49.6%) 172(69.1%) 4(12.1%) 42(67.7%)

positive 65(50.4%) 77(30.9%) 29(87.9%) 20(32.3%)

TIC type 0.034 0.043*

I 5(3.9%) 29(11.6%) 0(0.0%) 6(9.7%)

II 51(39.5%) 99(39.8%) 13(39.4%) 28(45.2%)

III 73(56.6%) 121(48.6%) 20(60.6%) 28(45.2%)
frontie
*One of the theoretical frequencies was less than 1, the likelihood ratio chi-square result was adopted here. The bold values presented indicate statistically significant p-values.
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The calibration curves demonstrated good consistency between

predicted risks and observed probabilities across the 5 datasets.

(Figure 6). The DCA showed that the combined model had the best

clinical net benefit across threshold probabilities of 0.04-0.76 and

widest applicable range compared to other models (Figure 7).
4 Discussion

As an essential prognostic factor of breast cancer, ALN status is

critical for therapy decision- making. However, accurate preoperative

assessment of ALN metastasis remains challenging for radiologists

relying on medical imaging, for the high false-negative rate of
Frontiers in Oncology 07
morphological features on images. Radiomics is a method of data

mining to extract crucial information from images, enabling tumor

diagnosis, prognosis prediction, and other clinical applications (21).

DCE-MRI radiomics has been reported to be useful for assessing ALN

metastasis (22–24). Additionally, peritumoral radiomics can capture

the heterogeneity of the tumormicroenvironment, but few studies have

utilized it to predict ALN metastasis. In this study, we constructed and

validated a radiomics model based on features extracted from

intratumoral and peritumoral regions, and the capability of the

model for predicting ALN metastasis is impressive. Integrated with

clinico-radiological characteristics, the combined model showed

excellent performance in predicting ALN metastasis, exhibiting

greater net benefits, which to some extent reduced unnecessary

pathological surgeries.

Our results confirmed that previously reported clinico-

radiological predictors, such as HER2 expression, lesion size and

MR-reported ALN status, could be related to ALN metastasis (25,

26). The results showed that positive vascular tumor thrombus was

a moderate intensity risk factor (OR = 3.183), which could be

explained by the widespread lymphatic vessels in the breast. It make

it easy for cancer cells draining to the ALN through lymphatic

vessels infiltrating the breast lobules (27). Interestingly, type II and

III TICs were also strongly correlated with ALNmetastasis (II: OR =

3.363, III: OR = 3.811), although they were primarily used to

differentiate benign and malignant breast lesions. And MR-

reported ALN status can also contributes to enhance the

predictive performance of the radiomics model in this study (28).

In the testing set, the clinico-radiological model outperformed the

radiomics models with an AUC of 0.826. However, it performed

slightly inferior in the training set, which was probably caused by

the instability of the characteristics or imbalanced grouping.
FIGURE 4

Forest plot of independent factors for predicting ALN metastasis
based on clinico-radiological characteristics of breast cancer. The
results revealed that positive HER2 expression, positive vascular
cancer thrombus, lesion size, MR-reported positive ALN and TIC (II,
III) type were independent risk factors for ALN metastasis.
TABLE 3 Performances of the models based on radiomics features and clinico-radiological characteristics.

Models/Groups Sensitivity Specificity Accuracy F1Score AUC (95% CI)

ITR

Training 66.7% 81.5% 76.5% 65.9% 0.855 (0.818,0.893)

Testing 60.6% 71.0% 67.4% 56.3% 0.750 (0.649,0.850)

3mmPTR

Training 61.2% 71.9% 68.3% 56.8% 0.733 (0.682,0.785)

Testing 66.7% 71.0% 69.5% 60.3% 0.725 (0.614,0.836)

ITR + 3mmPTR

Training 77.5% 78.3% 78.0% 70.7% 0.893 (0.862,0.924)

Testing 72.7% 72.6% 72.6% 64.9% 0.774 (0.675,0.872)

Clinico-radiological

Training 75.2% 68.7% 70.9% 63.8% 0.780 (0.731,0.830)

Testing 81.8% 69.4% 73.7% 68.4% 0.826 (0.741,0.911)

Combined#

Training 73.6% 80.7% 78.3% 69.9% 0.864 (0.827,0.901)

Testing 78.8% 74.2% 75.8% 69.3% 0.839 (0.758,0.920)
#Represents the combined model of ITR + 3mmPTR+ clinico-radiological.
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However, when the ITR+3 mmPTR model was integrated with

clinico-radiological characteristics, the AUC improved from 0.774

to 0.839 in the testing set. Therefore, clinico-radiological

characteristics were valuable for assessing ALN metastasis. For

the selected features in our study, we found the subclass of the

optimal high-order statistical features were first-order statistics and

gray level run length matrix (GLRLM) that belongs to a type of

textural features. The first-order statistics features, such as the mean

and median, reflect the distribution of voxel intensity for images.

The results of our study are consistent with Yan et al (29), they

demonstrated the first-order features were related to LN metastasis

in endometrial cancer. The GLRLM features, commonly utilized to

quantify regional heterogeneity differences, have been validated for

their predictive value in ALN metastasis (30), consistent with our

study findings.

Intratumoral radiomics was one of the most important

components in predicting ALN metastasis. Notably, regarding the

choice of the DCE phase, there is no consensus in defining which

phase of the radiomics offers the best prediction performance. We

chose the third phase of post-contrast DCE-MRI for radiomics

analysis because it offers sufficient tumor enhancement, facilitating

clear visualization of lesion boundaries and providing valuable

hemodynamic and heterogeneity information (31), and the

radiomics model based on the third phase exhibited good

performance in this study. Chai et al (23). constructed a

radiomics model based on the second phase of postcontrast

imaging, obtaining an AUC of 0.850. Liu et al. (31)used

radiomics features of the obvious enhancement phase according

to the TIC, but the predictive performance was similar to that of
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Chai et al. Consequently, the selection of the optimal DCE phase

needs further exploration.

Previous studies in predicting ALN metastasis have focused solely

on the primary tumor but have seldom taken peritumoral radiomics

into account for analysis (32, 33). Peritumoral radiomics is related to

the proliferation and metastasis of malignant cells, infiltration

lymphocytes, angiogenesis, and stromal reactions (34, 35). Studies

have shown that models incorporating peritumoral radiomics can

better identify the molecular subtypes of breast cancer and evaluate

neoadjuvant chemotherapy efficacy (36, 37). In this study, we analyzed

the potential radiomics features of both the primary tumor and

peritumoral region for the assessment of ALN metastasis. Our results

demonstrated that peritumoral radiomics had good performance in the

training (AUC: 0.733) and testing sets (AUC: 0.725). When combined

with intratumoral features, the AUC reached 0.893 (training set) and

0.774 (testing set). Although the AUC did not improve much in the

testing set, the ITR + 3 mmPTR model showed improved sensitivity

and accuracy by 12.1% and 5.2%, respectively, compared to the ITR

model. The improved sensitivity helped avoid missing ALN metastasis

to some extent, underscoring the optimization of the model through

peritumoral radiomics integration. Though the size selection of

peritumoral region is inconclusive currently, it is reported the

performance of radiomics model will reduce when expanding

peritumoral regions from 5 mm to 10 mm (38, 39). Zhou et al. also

found higher accuracy with the proximal peritumoral region compared

to the larger region (13).This maybe have some relationship with the

localization between the tumor and peritumoral tissue. Our study

assessed a 3 mm proximal peritumoral radiomics model with the AUC

value of 0.725, which performed better than previous studies (38).
BA

FIGURE 5

The ROC curves of the 5 models used to predict ALN metastasis in breast cancer patients in the training (A) and testing (B) sets. ROC, receiver
operating characteristic; AUC, area under the curve of ROC; Combined, means the ITR+3 mmPTR+ clinico-radiological model.
TABLE 4 Significant level of Delong test between the combined model and the other models.

Groups 3mmPTR ITR ITR + 3mmPTR Clinico-radiological

Training <0.001 0.681 0.106 <0.001

Testing 0.047 0.036 0.142 0.649
The combined model represents ITR + 3mmPTR+ clinico-radiological model. The bold values presented indicate statistically significant p-values.
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Comparisons of radiomics models with different sizes of peritumoral

regions were not conducted but will be explored using different

sequences in the future.

The combined model was established by incorporating intra-

and peritumoral radiomics features with clinico-radiological risk

factors in our study, which showed higher predictive efficacy than

that of the independent model of radiomics and clinico-radiological

characteristics. The combined model achieved the highest AUC

(0.839), specificity (74.2%), accuracy (75.8%) and F1 Score (69.3%)

among the 5 models in the testing set. DCA also showed that the

combined model had the best clinical net benefit and widest

applicable range compared to the other models, which indicates

that the combined model has promising clinical application value.

There are some strengths in our study. We performed radiomics

feature selection using various preprocessing methods, an approach

that often yields models with stable performance. Additionally, the
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larger sample size in the present study compared to most previous

studies may enhance the reliability of the results. However, there are

also some limitations. First, as a single-center retrospective study,

there may be selection bias. And the results need external validation,

which would be conducted using datasets frommultiple institutions

in the subsequent studies. Second, all pathological types were IBC-

NST and relatively homogeneous, and future studies could expand

to more diverse cancer types. Finally, the peritumoral region was

obtained by dilating the tumor 3 mm in this study, but whether this

is the optimal peritumoral region requires further refinement of the

expanded range and validation.
5 Conclusion

In summary, peritumoral radiomics based on DCE-MRI is

helpful for accurately predicting ALN metastasis preoperatively.

The combined model utilizing clinico-radiological, intratumoral

and peritumoral information has higher predictive performance

than each individual approach. It is expected to be a reliable tool for

predicting ALN metastasis in clinical practice.
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FIGURE 6

Calibration curves of the 5 models in the training and testing sets. The calibration curves show the agreement between the predicted probability of
ALN metastasis and the actual metastasis outcomes. The y-axis represents the actual metastasis rate. The x-axis represents the predicted metastasis
probability. The diagonal line represents ideal prediction. (A) Training set; (B) Testing set; Combined, means the ITR+3 mmPTR+ clinico-
radiological model.
FIGURE 7

The DCA of 5 models in the testing set, with threshold probability
on the x-axis and net benefit on the y-axis. The black solid and
dashed lines represent the ‘treat-all’ and ‘treat-none’ strategies. The
combined model (ITR+3mmPTR+clinico-radiological) showed the
highest net benefit within the threshold probability range of 0.04-
0.76, with the widest applicable range.
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