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Introduction: Chimeric Antigen Receptor (CAR) T cell therapy has demonstrated

remarkable success in treating hematological malignancies. However, its efficacy

against solid tumors, including cervical cancer, remains a challenge. Hypoxia, a

common feature of the tumor microenvironment, profoundly impacts CAR T cell

function, emphasizing the need to explore strategies targeting hypoxia-inducible

factor-1a (HIF-1a).

Methods: In this study, we evaluated the effects of the HIF-1a inhibitor PX-478

on mesoCAR T cell function through in-silico and in vitro experiments. We

conducted comprehensive analyses of HIF-1a expression in cervical cancer

patients and examined the impact of PX-478 on T cell proliferation, cytokine

production, cytotoxicity, and exhaustion markers.

Results: Our in-silico analyses revealed high expression of HIF-1a in cervical

cancer patients, correlating with poor prognosis. PX-478 effectively reduced

HIF-1a levels in T and HeLa cells. While PX-478 exhibited dose-dependent

inhibition of antigen-nonspecific T and mesoCAR T cell proliferation, it had

minimal impact on antigen-specific mesoCAR T cell proliferation. Notably, PX-

478 significantly impaired the cytotoxic function of mesoCAR T cells and induced

terminally exhausted T cells.

Discussion: Our results underscore the significant potential and physiological

relevance of the HIF-1a pathway in determining the fate and function of both T

and CAR T cells. However, we recognize the imperative for further molecular

investigations aimed at unraveling the intricate downstream targets associated

with HIF-1a and its influence on antitumor immunity, particularly within the

context of hypoxic tumors. These insights serve as a foundation for the careful
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inducible factor-1a; IFN-g, Interferon-gamma; IL-2, Inte
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development of combination therapies tailored to counter immunosuppressive

pathways within hypoxic environments and fine-tune CAR T cell performance in

the intricate tumor microenvironment.
KEYWORDS

CAR T cell therapy, pharmacological targeting, HIF-1a, PX-478, cervical cancer,
T cell exhaustion
1 Introduction

Cervical cancer (CC) ranks as the fourth most prevalent cancer

among women (1). Despite the existence of various preventive and

treatment modalities for CC, such as HPV screening, prophylactic

vaccines, surgical interventions, radiotherapy, and chemotherapy,

the global burden of the disease remains substantial (2). Therefore,

there is an urgent need for new treatment strategies to improve the

prognosis of patients with CC.

In recent years, the development of chimeric antigen receptor

(CAR) T cell therapies for treating solid tumors has garnered

significant interest (3). Currently, numerous clinical trials are

underway to assess the effectiveness of CAR-T cell therapy in

cervical cancer patients (NCT01583686) (NCT04556669)

(NCT03356795). Mesothelin (MSLN) stands out as a crucial target

antigen in the pursuit of novel immunotherapies for solid tumors (4).

Clinical trials involving anti-MSLN CAR T cells have demonstrated

commendable safety profiles but limited efficacy (5). The tumor

microenvironment (TME) is widely recognized as a major obstacle,

as it impedes T cell survival, proliferation, and cytotoxicity, thereby

limiting the application of CAR T cell therapies in the clinical

management of solid tumors (6). A common feature of the TME is

hypoxia, characterized by inadequate oxygen supply (less than 2% O2)

due to heightened metabolic demands and inefficient vasculature, in

stark contrast to healthy tissues with oxygen levels of 5%–10% (7).

Hypoxia is clinically associated with a poor prognosis and resistance to

chemotherapy and radiotherapy (8–10) and it significantly

compromises the fitness and efficacy of CAR T cells (11).

At the heart of the cellular response to hypoxia is hypoxia-

inducible factor-1 (HIF-1), a master transcription factor that

orchestrates the regulation of numerous downstream targets (12).

HIF-1 exists as a heterodimeric transcription factor composed of the

oxygen-sensitive HIF-1a subunit and the constitutively expressed

HIF-1b (ARNT) subunit (13). Under normal oxygen conditions

(normoxia), HIF-1a is rapidly degraded through ubiquitin-

mediated pathways, primarily governed by proline hydroxylation

(14). However, during hypoxia, the inhibition of HIF-1a
ors; HIF-1a, Hypoxia-

rleukin 2; mesoCAR T,

microenvironment; CC,
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hydroxylases interferes with VHL-HIF binding, leading to the

stabilization of HIF-1a protein and enabling HIF-1 dimerization,

which, in turn, activates its transcriptional function (14).

Numerous studies have unveiled the connection between HIF-

1a overexpression and poorer prognosis in cervical cancer patients

(15–18). Currently, several HIF-1a inhibitors are in development

for various cancer types, exhibiting promising antitumor efficacy

and manageable toxicity profiles (19–21). Nonetheless, it remains

uncertain whether agents that inhibit HIF-1a can enhance the

response to CAR-T cell therapy. To elucidate these questions, we

explore the impact of the selective HIF-1a inhibitor PX-478 on the

antitumoral function of second-generation mesoCAR T cells.
2 Material and methods

2.1 Bioinformatics analysis

Gene expression analysis was conducted using the GEPIA2

database (http://gepia2.cancer-pku.cn), which utilizes data from the

TCGA and GTEx databases (22). To compare HIF-1a gene expression

levels between squamous cell carcinoma of the cervix (SESC) and

corresponding normal tissues, the “box plot” function for expression

analysis was employed. The following statistical parameters were

utilized: a Log2FC (Logarithm to the base 2-fold change) cutoff value

of 1, and a p-value cutoff value of 0.01. Additionally, GEPIA2 was

employed to assess the overall survival of SESC patients using the

“Survival Analysis” module, with the Group Cutoff set to the Quartile.

Hazard ratios (HRs) with 95% confidence intervals (CIs) and log-rank

P-values were computed to ascertain survival outcomes. The

representative immunohistochemistry image of HIF-1a expression

was obtained from the Human Protein Atlas (HPA) database (23).
2.2 Cell lines

HEK293T, Jurkat, Hela, and PANC-1 cell lines were acquired

from the Iranian Biological Resource Center (IBRC). HEK293T,

Hela, and PANC-1 cells were maintained in D10 media, comprising

DMEM (Gibco, Life Technologies), 10% fetal bovine serum (FBS),

and 1% penicillin/streptomycin (Gibco, Life Technologies). Jurkat

cells were cultured in R10 media, containing RPMI-1640 (Gibco,
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Life Technologies) supplemented with 10% FBS, 25 mM HEPES

(Sigma Aldrich), 2 mM glutamine (Gibco), and 1% penicillin/

streptomycin. Flow cytometry was used to validate mesothelin

expression in the relevant cell lines prior to experiments. Regular

mycoplasma contamination checks were conducted on all cell lines.
2.3 Primary human cells

Peripheral blood mononuclear cells (PBMCs) were isolated from

fresh blood using standard methods with Histopaque®-1077 (Sigma

Aldrich). Primary human T cells were negatively selected with

immunomagnetic beads (Pan T Cell Isolation Kit, Miltenyi Biotec)

and stored at -80°C. T cells were cultured in TM10 media, composed

of TexMACS™ Medium (Miltenyi Biotec), supplemented with 10%

human serum and 100 IU/mL premium-grade rhIL-2 (Miltenyi Biotec).

Blood samples were obtained from healthy volunteers under approval

from the Research Ethics Committees of the School of Medicine, Tehran

University of Medical Sciences [IR.TUMS.BLC.1402.015].
2.4 Lentiviral vector production

Lentiviral vectors were produced following previously established

protocols (24). HEK293T cells were transfected with lentiviral CAR

and packaging plasmids using the calcium phosphate method.

Lentiviral supernatants were collected at 48- and 72-hour time points

post-transfection and then concentrated through high-speed

centrifugation. The concentrated lentivirus batches were resuspended

in cold RPMI-1640 media and stored at -80°C. Titration of lentiviral

vectors was performed using Jurkat cells.
2.5 Lentiviral transduction

mesoCAR T cells were generated as per previous descriptions (25).

Briefly, 1 × 106 T cells were seeded in each well of 12-well tissue culture

plates and activated using Dynabeads™ Human T-Expander CD3/

CD28 (Gibco, Life Technologies, 11161D) at a 1:1 ratio in TM10

media. Activated T cells were infected with lentiviral vectors

supplemented with 8 mg/mL Polybrene (Santacruz) 24 hours after

activation. Centrifugation at 850g for 1 hour at 32°C was employed to

enhance transduction efficiency. Two hours later, 2 mL/well of TM10

media was added to the transduced T cells. At day 4 post-transduction,

Dynabeads™ were removed from transduced T cells using a

DynaMag™ magnet, and GFP expression, indicative of mesoCAR

expression, was assessed via flow cytometry.
2.6 PX-478 dose-response

PX-478 (MedChemExpress, USA) was dissolved in Dimethyl

sulfoxide (DMSO). To assess the impact of PX-478 on T cell

proliferation, 2 × 105 CFSE-labeled T cells were seeded in 96-well
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tissue culture plates and exposed to varying concentrations of PX-

478. Human T Cell-Expander Dynabeads™ CD3/CD28 (Gibco,

Life Technologies, 11161D) were used at a 1:1 ratio in TM10

medium to activate T cells. After three days, T cells were

harvested, and their proliferation was evaluated via flow cytometry.
2.7 Protein extraction and western blotting

Adherent cells were washed twice with PBS, scraped, and

transferred to 1.5 ml tubes. T cells were also harvested and washed

twice with PBS. After centrifugation, cells were lysed using RIPA buffer

containing 1mM PMSF at a ratio of 60 ml per 106 cells. Proteins were
separated by 10% SDS-PAGE under reducing conditions and

subsequently transferred to PVDF membrane. The membrane was

then blocked for 1 hour using a 5% BSA blocking reagent in Tris-

Buffered Saline (pH=7.5) containing 0.05% Tween-20 (v/v) (TBST)

and incubated with Rabbit anti-HIF-1a antibody diluted at 1:2,000

(Novus Biologicals NB100-449, Centennial, Colorado, USA) or Rabbit

anti-b-actin antibody (Sigma-Aldrich) diluted at 1:2,000, overnight at

4˚C. The blots were further incubated with anti-Rabbit horseradish

peroxidase-conjugated antibodies for 1 hour. Protein bands were

detected using ECL method and X-ray film was used for

visualization. Quantification was conducted using image J (imagej.org).
2.8 Hypoxia assay

Culture plates were incubated either under normoxic

conditions (37°C in humidified air, 5% CO2) or under hypoxic

conditions (1% O2, 5% CO2, 94% N2). Hypoxia was induced using

a hypoxia incubator chamber (StemCell Technologies, Inc.) purged

at 25L/min for 4 minutes with a gas mixture containing 1% O2, 5%

CO2, and 94% nitrogen as a balance before sealing the chamber.
2.9 In vitro cytotoxicity assay

For in vitro cytotoxicity assays, 1x104 target cells were seeded in

96-well U‐bottomed tissue culture plates and pretreated with 25µM

PX-478 for 24 hours under both hypoxic and normoxic conditions.

Transduced or non-transduced T cells were then added to the wells

at effector-to-target ratios of 1:1, 10:1, and 20:1 for 4 hours in TM10

media, with a final volume of 200 ml/well. To distinguish between

effector and target cells, effector cells were stained with CFSE. Prior

to flow cytometry analysis, 7-AAD (Miltenyi Biotec) was added to

stain dead cells. Flow cytometry analysis utilized CFSE and 7-AAD

staining to differentiate T cells from dead tumor cells. The

frequency of lysed target cells (CFSE-/7-AAD+ cells) was

calculated by subtracting the percentage of spontaneous lysis of

target cells from the percentage of lysis of target cells in coculture

with mesoCAR T cells. Normalized lysis of target cells (Specific

lysis) was reported based on mesothelin expression on target cells.
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2.10 In vitro proliferation and cytokine
production assays

Target cells were treated with 50 mg/ml of mitomycin C (Sigma

Aldrich) for 30 minutes at 37°C and subsequently washed. 2x105 target

cells were seeded in 48-well tissue culture plates and pretreated with

25µM PX-478 for 24 hours under both hypoxic and normoxic

conditions before removal of the media. For cell proliferation

analysis, mesoCAR T cells and untransduced T cells were stained

with 5mMCFSE at room temperature for 8minutes. An equal amount

of FBS was added to halt the reaction. After washing three times with

complete RPMI 1640 medium, CFSE-labeled cells (0.2 × 106/well) were

cocultured with either target cells or media, in the absence of exogenous

IL‐2, in 48‐well plates, with a final volume of 800 µl/well. After 24

hours, 200 µl of the supernatants were harvested and stored at −80°C.

The subsequent cytokine analysis was carried out by enzyme-linked

immunosorbent assay (ELISA) to quantify IFN-g and IL-2. After 72

hours, cells were stained with PerCP-conjugated anti-human CD3

antibody (Clone: HIT3a, BioLegend), and CFSE dilution of CD3+ cells

was determined by flow cytometry, as an indicator of proliferation.
2.11 Flow cytometric analysis

The purity of isolated T cells was confirmed using APC-conjugated

anti-human CD3 (Clone: UCHT1, BioLegend). PE-conjugated anti-

human mesothelin (Clone: #420411, R&D Systems) was used to detect

mesothelin expression. FITC-conjugated anti-human CD3 (Clone:

HIT3a, BioLegend), PE-conjugated anti-human CD279 (PD-1)
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(Clone: EH12.2H7, BioLegend), and APC-conjugated anti-human

CD366 (Tim-3) (Clone: F38-2E2, BioLegend) antibodies were used

to measure the expression of exhaustion markers. For proliferation

assays, cells were loaded with CellTrace™ CFSE (Life Technologies,

#C34554) according to manufacturer’s instructions, and T cells were

detected using PerCP-conjugated anti-human CD3 antibody (Clone:

HIT3a, BioLegend). Data were collected using a BD FACSCalibur (BD

Biosciences) and analyzed with FlowJo software (v10.6). All assays were

performed in duplicate and repeated two to three times.
2.12 Statistical analysis

Normality tests and one-way/two-way analysis of variance

(ANOVA) were performed using GraphPad Prism software (v9)

to identify differences among various treatment groups. p-values

below 0.05 were considered statistically significant.
3 Results

3.1 Association of HIF-1a overexpression
with adverse prognosis in cervical
cancer patients

To assess the significance of HIF-1a expression in cervical

cancer, we utilized the GEPIA2 database to visualize the mRNA

expression levels of HIF-1a in cervical cancer. The analysis involved

13 normal tissue samples and 306 samples from cervical cancer
A B

C

FIGURE 1

HIF-1a overexpression is associated with poor prognosis in cervical cancer patients. (A) HIF1A expression levels in biopsies from cervical cancer (CC)
patients (highlighted in red) and corresponding normal tissue samples (depicted in grey) were analyzed using data from the TCGA dataset. The data
was log2 transformed (TPM+1). (B) Representative images from the Human Protein Atlas database illustrate HIF-1a expression in normal (left) and CC
(right) tissue samples. (C) Kaplan-Meier survival curves present the overall survival time of CC patients categorized into high and low HIF-1a
expression groups. Dotted lines indicate a 95% confidence interval.
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patients. Our data unequivocally demonstrate an upregulation of

HIF-1a in cervical cancer patients (Figure 1A). Complementing

this, the immunohistochemistry image of HIF-1a protein levels in

tissue samples from the Human Protein Atlas (HPA) dataset

confirmed similar findings (Figure 1B).

We further conducted a Kaplan-Meier survival analysis using

GEPIA2 to investigate the prognostic value of HIF-1a. Our results
reveal a statistically significant association between high expression

of the HIF1A gene and shorter overall survival in cervical cancer

patients (Figure 1C).
3.2 PX-478 reduces HIF-1a protein levels
under hypoxic conditions

PX-478, previously identified as a compound that decreases

cellular HIF-1a levels, was evaluated in our study. To validate the

increase of HIF-1a under hypoxic conditions and assess the

inhibitory effect of PX-478, HeLa and T cells were cultured under

normoxic and hypoxic (1% O2) conditions while exposed to varying

doses of PX-478 for 24 hours. Western blot analysis confirmed the

efficient stabilization of HIF1a in hypoxic conditions and

demonstrated that PX-478 inhibits the hypoxia-induced increase in

HIF-1a protein levels in a dose-dependent manner (Figures 2A-D).
3.3 Effective antitumor activity of mesoCAR
T cells against cervical cancer cells

We generated and characterized second-generation mesoCAR T

cells, as described previously (25). Briefly, human CD3+ T cells were

efficiently infected with lentiviral particles encoding the second-
Frontiers in Oncology 05
generation mesoCAR transgene (Figure 3A). We subsequently

assessed the in vitro antitumor capacity of these cells. We used

PANC-1 and HeLa cells, which represent mesothelin-negative and

positive tumor cells respectively (Figures 3B, C). T cells expressing the

mesoCAR transgene exhibited specific cytotoxicity against

mesothelin-positive HeLa cells, while no cytotoxicity was observed

against mesothelin-negative PANC-1 cells (Figure 3D). To test the

effectiveness of mesoCAR T cells against HeLa cells, we investigated

their proliferation and their capacity to produce IL-2 and IFN-g
cytokines in vitro. mesoCAR T cells demonstrated a high mesothelin-

specific proliferation rate comparable to untransduced T cells after

being stimulated with Hela and PANC-1 cells (Figure 3E). After CAR

T cell stimulation with HeLa, mesoCAR T cells showed high

mesothelin-specific proliferation rates and produced large amounts

of IFN-g and IL-2, comparable to untransduced T cells (Figures 3E-

G). No IL-2 and IFN-g secretion was detected in cultures of T cells

alone, tumor cells alone, or when irrelevant target cells like PANC-1

were involved (Figures 3F, G).
3.4 Impact of PX-478 on mesoCAR T
cell proliferation

The efficacy of CAR T cell immunotherapies against solid

tumors hinges on T cell proliferation, persistence, and

accumulation (26). To investigate the influence of PX-478 on

mesoCAR T cell proliferation, we performed a series of

experiments. Initially, T cells activated with anti-CD3/CD28-

coated beads were exposed to varying concentrations of orally

available PX-478, revealing that PX-478 can dose-dependently

reduce antigen-nonspecific T cell proliferation (Figure 4A), while

concurrently maintaining T cell viability unchanged (Figure 4B).
A B

DC

FIGURE 2

PX-478 decreases HIF-1a protein levels in a dose-dependent manner. (A, C) Hela and T cells were exposed to varying concentrations of PX-478 for
24 hours under hypoxic conditions, and the levels of HIF-1a protein were assessed through Western blot analysis. (B, D) PX-478 demonstrates a
dose-dependent inhibition of HIF-1a protein expression. Densitometric quantification of the blots was performed relative to b-actin as a reference
protein. Each experiment was repeated two to three times.
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Consistent with the data obtained from T cells, we observed that

the antigen-nonspecific proliferation of mesoCAR T cells in an IL-

2-containing medium was also impeded by PX-478 (Figure 4C).

Given the observed direct inhibitory effect of PX-478 on T and

mesoCAR T cell proliferation, we conducted experiments in which
Frontiers in Oncology 06
tumor target cells were pretreated with PX-478 for 24 hours under

both hypoxia and normoxia conditions. After supernatant removal,

mesoCAR T cells were introduced. Interestingly, pretreatment of

tumor cells with PX-478 did not significantly impact mesoCAR cell

proliferation (Figure 4D). This result was supported by the analysis
A B D

E F G

C

FIGURE 4

The effects of HIF-1a inhibitor PX-478 on the antitumor function of mesoCAR T cells. (A) PX-478 significantly inhibits antigen-nonspecific proliferation of T
cells. (B) Viability of T cells remained unchanged in response to PX-478. (C) PX-478 significantly inhibits the IL-2-induced antigen-nonspecific proliferation
of mesoCAR T cells. (D) Antigen-specific proliferative capacity and representative cell count of mesoCAR T cells over a three-day coculture with pre-treated
Hela cells. (E, F) Production of IFN-g and IL-2 by mesoCAR T cells in coculture with pre-treated Hela cells. (G) Overlaid plot demonstrating mesoCAR T cell
cytotoxicity against Hela cells in the presence of PX-478. Statistical analysis was performed using ordinary one-way ANOVA (A, C-F), Student’s t-test
(B), two-way ANOVA (G), and Tukey multiple comparison test. **P < 0.01; ***P < 0.001. Data are presented as mean ± SD. ns, non significant
A B

D E F G

C

FIGURE 3

Antigen specificity of mesoCAR T cells against HeLa cells. (A) Assessment of chimeric antigen receptor (CAR) expression on mesoCAR T cells.
(B, C) Representative dot plots illustrating mesothelin expression on HeLa and PANC-1 cells, respectively. (D) MesoCAR T cells demonstrate specific
cytotoxicity against target cells at varying effector-to-target ratios. (E) Proliferation of mesoCAR T cells in response to target cells. (F, G) Production
of IFN-g and IL-2 by mesoCAR T cells in coculture with target cells. Statistical analysis was conducted using ordinary one-way ANOVA (E–G) and
two-way ANOVA (D), followed by Tukey’s multiple comparison test. Significance denoted by ***(P < 0.001). Data are presented as mean ± SD. ns,
non significant
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of cytokine production, where no significant changes in the levels of

IL-2 and IFN-g were observed (Figures 4E, F). Collectively, our

findings indicate that PX-478 directly inhibits antigen-nonspecific

T and mesoCAR T cell proliferation, while pretreatment of tumor

cells with PX-478 has no influence on mesoCAR T cell proliferation

and cytokine production.
3.5 PX-478 impairs mesoCAR T cell
cytotoxic function

Having established the effect of PX-478 on mesoCAR T cell

proliferation, we sought to examine its impact on the cytotoxicity of

these cells against tumor target cells. HeLa cervical cancer cells were

cultured, pre-exposed to 25µM PX-478 for 24 hours, and then co-

incubated with mesoCAR T cells under normoxic and hypoxic (1%

O2) conditions. mesoCAR T cells demonstrated effective killing of

HeLa cells under both hypoxic and normoxic conditions

(Figure 4G). However, PX-478 significantly reduced the

cytotoxicity of mesoCAR T cells under both hypoxic and

normoxic conditions (Figure 4G).

In an effort to understand the underlying reason for the

impairment of mesoCAR T cell cytotoxic function, we considered

the possibility that these cells become exhausted in the presence of

PX-478. Exhausted T cells can be categorized into progenitor-

exhausted T cells (Tpex) and terminally exhausted T cells (Ttex)

based on their function and phenotype (24, 27, 28). Tpex cells

express PD-1 but not TIM3, retain stem-like characteristics, and

remain polyfunctional. In contrast, Ttex cells express both PD-1 and

TIM3 at high levels, have a limited lifespan, and cannot effectively

suppress tumor growth (29). Immune checkpoint blockade can

rejuvenate Tpex but not Ttex cells (30). To explore this, cells from our

cocultures were analyzed via flow cytometry for the expression of

PD-1 and TIM3. Our results revealed that pretreatment of tumor

cells with PX-478 did not significantly alter the expression of PD-1

but led to an increased expression of TIM3 (Supplementary Figure

S1A, B). Furthermore, the abundance of Ttex cells (PD-1+TIM3+)

increased, while the abundance of Tpex cells (PD-1+TIM3-)

decreased under both normoxic and hypoxic conditions

(Supplementary Figure S1C).
4 Discussion

In this study, we delved into the impact of the HIF-1a inhibitor

PX-478 on the antitumoral function of mesoCAR T cells. Our in-

silico analysis compellingly indicated that the overexpression of

HIF-1a in CC patients is strongly associated with an unfavorable

prognosis. It is well-established that HIF-1a becomes stabilized

within the hypoxic core of rapidly growing, poorly vascularized

solid tumors (31). This stabilization of HIFs plays a pivotal role in

promoting tumor survival and metastasis by orchestrating changes

in glycolysis, nutrient uptake, waste disposal, angiogenesis,

apoptosis, and cell migration (32–35).

To target HIF-1a, we employed PX-478, an orally available small

molecule known to interfere with HIF-1a transcription and
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translation, thus leading to reduced deubiquitination of HIF-1a
(36). Our Western blot analyses provided clear evidence that PX-

478 effectively inhibited HIF-1a in a dose-dependent manner in both

T and HeLa cells. Our investigation into the effects of PX-478 on T

cell proliferation revealed a dose-dependent suppression. Notably,

previous studies have shown that T cell receptor activation stabilizes

HIF-1a in T lymphocytes (37), thereby facilitating a metabolic shift

towards glycolysis to support T cell proliferation and effector

functions (38, 39). Furthermore, PI3K/mTOR activity downstream

of TCR and CD28 signaling induces HIF-1a expression by

promoting transcription of two HIF-1a mRNA splice isoforms and

driving increased protein translation in human andmouse T cells (37,

40). Additionally, PX-478 can prevent the G2/M transition by

affecting proteins related to the G2 phase of the cell cycle, such as

cyclin B1, thereby inhibiting cell proliferation (41).

Considering the inhibitory effects of PX-478 on T cell

proliferation, we explored the potential of pre-treatment with PX-

478 prior to CAR-T cell therapy. We pre-treated tumor cells with PX-

478 and meticulously evaluated its influence on the proliferation and

cytokine production of mesoCAR T cells. Proliferation analyses

provided no significant differences in mesoCAR T cell proliferation

between hypoxic and normoxic conditions, as well as PX-478-treated

and untreated groups. Likewise, our analysis of IFN-g and IL-2

cytokine production showed no significant differences, thereby

confirming the results on proliferation. We further assessed how

PX-478 affected the cytotoxicity of mesoCAR T cells. Consistent with

previous research, no significant difference was observed in the

cytotoxicity of mesoCAR T cells under hypoxic and normoxic

conditions (11, 42). However, PX-478 significantly impeded the

cytotoxic function of mesoCAR T cells. Earlier studies have

indicated that HIF-1a is vital for the cytotoxic function of CAR T

cells. For instance, Palazon et al. demonstrated that the deletion of

HIF-1a resulted in reduced expression of several proteins critical for

tumor rejection by cytotoxic T lymphocytes (43). The genetic

ablation of HIF-1a led to decreased production of effector

cytokines such as IFN-g and TNF-a, along with cytolytic molecules

like granzyme B (43). HIF-1a hydroxylation at proline residues in

normoxia leads to VHL-mediated proteasomal degradation (44). It

has been demonstrated that VHL-deficient TILs accumulate and

survive in tumors in an HIF-dependent manner, retaining

polyfunctionality and cytolytic capacity (45), highlighting the

essential role of HIF-1a in T cells’ antitumor function.

HIFs have also been found to play a pivotal role in regulating T

cell exhaustion in the context of infections and malignancies (43,

45–47). Consequently, we investigated the impact of PX-478 pre-

treatment of tumor cells on the expression pattern of exhaustion

markers on mesoCAR T cells. Our findings indicated an increase in

the percentage of TIM3+ T cells and Ttex cells under hypoxia

conditions and in PX-478 treated groups. This aligns with

previous studies that have shown that the expression of TIM-3, a

marker of terminally exhausted T cells, is substantially up-regulated

under hypoxic conditions (43, 48, 49). The decrease in cytotoxicity

of mesoCAR T cells in the presence of PX-478 may be explained by

the increase in Ttex cells, which have limited antitumor activity.

Nevertheless, it is essential to acknowledge the limitations of

our study. PX-478 may not be entirely specific for reducing HIF-1a
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levels; prior research suggests that it may affect other intracellular

factors as well (50). In order to exclude off-target effects of PX-478,

more specific approaches targeting HIF-1a, such as genetic

knockdown or using alternative pharmacological inhibitors,

would provide clearer evidence for the role of HIF-1a signaling

in regulating antitumor function of mesoCAR T cells. Additionally,

selectively rescuing HIF-1a protein levels in the presence of PX-478

using stabilizing agents that do not broadly impact other cell

mediators would further elucidate the specific contribution of

HIF-1a to the observed phenotypes. Additionally, HIF-1a is

physiologically activated by hypoxia and plays a critical role in

regulating the expression of several genes, including GLUT1,

LDHA, and VEGF (12). Consequently, some downstream genes

may exert either a positive or negative influence on the antitumoral

function of CAR T cells. Further investigations may uncover specific

downstream targets of HIF-1a that modulate the antitumor function

of CAR T cells in the tumor microenvironment. Considering

previous studies demonstrating HIF-1a can directly regulate

expression of T cell activation-related genes such as CD69 in

tumor-infiltrating lymphocytes (51), it would be informative to

examine how PX-478 impacts levels of canonical activation

markers on mesoCAR T cells.

PX-478 has previously demonstrated antitumor efficacy across

several human tumor models (41, 52). However, our present

investigation exclusively focuses on the in vitro evaluation of the

potential combination therapy involving PX-478 and mesoCAR T

cells. Our data demonstrate PX-478 partially impairs mesoCAR T

cell function, but do not reflect the compound’s direct effects on

cervical tumor cells or overall therapeutic potential in vivo. As we

only assessed a subset of responses using an isolated cell system, our

results should not be interpreted as evidence for negative impacts of

HIF-1a inhibitors in cervical cancer more broadly. It is worth

noting that our study was limited to in vitro assessments using cell

lines and CAR T cell cocultures, while prior research has suggested

that PX-478 may inhibit tumor angiogenesis, resulting in antitumor

effects in vivo. Therefore, future in vivo studies are essential to

provide a more comprehensive understanding of the function of

PX-478 in a natural tumor microenvironment.
5 Conclusions

In summary, our study demonstrates the significant impact of

HIF-1a inhibition using the PX-478 inhibitor on mesoCAR T cell

function within the cervical cancer microenvironment. The

inhibition of HIF-1a markedly impairs the cytotoxicity of

mesoCAR T cells while minimally affecting their proliferation and

cytokine production. Our findings underscore the clinical relevance

of HIF-1a overexpression in cervical cancer patients and highlight

the potential challenges in targeting HIF-1a for enhancing CAR T

cell therapy efficacy. Despite limitations in specificity and the need

for further in vivo validation, our study provides crucial insights

into the interplay between HIF-1a signaling and CAR T cell

function, serving as a foundational framework for the

development of combination therapies aimed at optimizing CAR

T cell performance in solid tumors like cervical cancer.
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SUPPLEMENTARY FIGURE 1

The effects of HIF-1a inhibitor PX-478 on the expression pattern of exhaustion
markers. (A) The percentage of PD1+ T cells. (B) The frequency of Tpex and Ttex
cells. (C) The percentage of TIM3+ T cells. Statistical analysis was performed

using ordinary one-way ANOVA (A-C), and Tukey multiple comparison test. *P
< 0.05; **P < 0.01; ***P < 0.001. Data are presented as mean ± SD.
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