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Lung cancer remains the leading cause of cancer death globally. More than 50%

of new cases are diagnosed in an advanced or metastatic stage, thus contributing

to the poor survival of such patients. Mutations in the KRAS (Kirsten rat sarcoma

virus) gene occur in nearly a third of lung adenocarcinoma and have for decades

been deemed an ‘undruggable’ target. Yet, in recent years, a growing number of

small molecules, such as the GTPase inhibitors, has been investigated in clinical

trials of lung cancer patients harboring KRAS mutations, yielding promising

results with improved outcomes. Currently, there are only two approved

targeted therapies (adagrasib and sotorasib) for advanced or metastatic KRAS-

mutated NSCLC from the second-line setting onwards. In this narrative review,

we will focus on KRAS, its molecular basis, the role of its co-mutations, clinical

evidence for its inhibition, putative mutation to resistance, and future strategies

to overcome resistance to KRAS inhibition.
KEYWORDS
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1 Introduction

Lung cancer is the leading cause of cancer-related mortality worldwide (1). The poor

survival rate of lung cancer patients is mainly due to the late stage of disease found in over

half of them at the time of diagnosis (2). Therapeutic progress has been achieved in non-

small cell lung cancer (NSCLC) through the introduction of immune checkpoint inhibitors

(ICI) (3) and personalized treatment strategies against driver mutations within the tumor,

including targeted therapy (4). These driver or oncogenic mutations are localized within

kinase domains of receptor tyrosine kinases (RTKs) (5) and are not equally distributed

among histologic subtypes of NSCLC (6). Most notably, lung adenocarcinoma (LUAD)

harbors those driver mutations and rearrangements that can be therapeutically addressed,
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such as EGFR, BRAF, ALK, ROS1, RET, NTRK, and also KRAS (6,

7). Mutations in the KRAS (Kirsten rat sarcoma virus) gene occur in

approximately 29–32% of LUAD and, until recently, have been

considered to be ‘undruggable’ for the past several decades (8–10).

In the last few years, an increasing number of small-molecule

anti-cancer drugs, the so-called GTPase inhibitors as well as others,

has been tested in clinical trials, generating encouraging results with

improved efficacy of lung cancer treatment for KRAS-mutated

NSCLC. Presently, sotorasib and adagrasib are the only approved

targeted therapies in locally advanced or metastatic KRAS-mutated

NSCLC patients, but just in those who have received at least one

prior systemic therapy. In this narrative review, we will focus on

KRAS, its molecular basis, the role of its co-mutations, clinical

evidence for its inhibition, putative mutation to resistance, and

future strategies to overcome resistance to KRAS inhibition.
2 Molecular basis of KRAS as an
oncogenic driver in lung cancer

The RAS proto-oncogenes encode intracellular guanine

nucleotide binding proteins that belong to the GTPase family

harboring a catalytic domain and a hypervariable region (11). The

former binds guanine nucleotides and activates signaling while the

latter determines how RAS proteins are localized on the cell

membrane (11). RAS GTPases control downstream signaling by

switching between the active nucleotide guanosine triphosphate
Frontiers in Oncology 02
(GTP)-bound and inactive nucleotide guanosine diphosphate

(GDP)-bound states in response to extracellular signals (11).

RAS-GTP commonly activates multiple signaling cascades

including the canonical RAS-RAF-MEK-ERK (= mitogen-

activated protein kinase, [MAPK]), PI3K-AKT-mTOR, and RAS-

like (RAL and tumor invasion and metastasis-inducing protein 1

[TIAM1-RAC1]) pathways (11, 12). The first two signaling

pathways are most relevant to tumor biology since they play an

essential role in cell cycle regulation, thus cell proliferation, and

tumor cell survival (Figure 1).

In contrast to colorectal cancer and pancreatic adenocarcinoma,

the point mutation G12C is the most prevalent genetic alteration in

the KRAS gene of LUAD, occurring in 39% of cases, followed by the

point mutations G12V (18.1%), G12D (13.8%), and G12A (7.2%)

(13). However, to date, KRAS G12C is the only molecular target for

which the two therapeutic agents, sotorasib and adagrasib, have

been approved in NSCLC. Conversely, 61% of all KRAS point

mutations in LUAD are still ineligible for targeted therapy.
3 Role of co-mutations with KRAS

It is well known that KRAS altered NSCLC frequently shows co-

occurring mutations with other genes, including tumor protein 53

(TP53), serine/threonine kinase 11 (STK11), and Kelch-like ECH-

associated protein 1 (KEAP1), also known as liver kinase B1 (LKB1),

as well as concurrent amplifications in the MET and erb-b2 RTK 2
FIGURE 1

Overview of approved or clinically tested (direct/indirect) KRAS-targeted therapy inhibitors. AKT, protein kinase B; ERK, extracellular signal-regulated
kinase; GAP, GTPase activating proteins; GDP, guanosine diphosphate; GEF, guanine nucleotide exchange factor; GRB2, growth factor receptor-
bound protein 2; GTP, guanosine triphosphate; KRAS, Kirsten rat sarcoma virus; MEK, mitogen-activated protein kinase kinase; mTOR, mechanistic
target of rapamycin; P, phosphorylated tyrosine residues; PI3K, phosphoinositide 3-kinases; RAF, rapidly accelerated fibrosarcoma; RTK, receptor
tyrosine kinase; SOS1, son of sevenless 1; SHP2, Src homology region 2 domain-containing phosphatase-2.
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(ERBB2) genes (9, 14–18). Both the triple (KRAS + KEAP1 +

STK11) and quadruple (KRAS + KEAP1 + STK11 + TP53) co-

mutations have been shown to serve as a negative prognostic and

predictive factor compared to the single KRAS mutational status

(15, 18).

Chapter 9 will further elaborate on co-mutations in the context

of mechanisms of resistance to KRAS inhibition.
4 Clinical evidence for KRAS inhibition
in KRAS-mutant NSCLC

Historically considered undruggable, KRAS-mutant NSCLC

now has two approved targeted therapies as well as other

potential therapeutic agents that are still under clinical

development (10, 13, 19–22). This recent milestone in modern

medicine was achieved thanks to the discovery of the allosteric

regulatory site of KRAS G12C, thereby leading to the design of

irreversible covalent inhibitors (23). Such small compounds bind to

the switch-II binding pocket of KRAS G12C (24). Previous

crystallography studies were paramount in finding molecules

capable of interacting with the unique conformation of the KRAS

protein (25). A major scientific breakthrough was made in 2013

with the identification of the switch-II pocket of KRAS by the

Shokat Lab, resulting in the structure-based validation of direct

targeting of the compound binding region of KRAS in a “mutant-

specific” and selective manner (26). The stage was set for the

optimization of compounds, leading to the creation of the current

KRAS G12C inhibitors available for clinical use today (27). By

binding specifically to the inactive GDP-bound form of the KRAS

oncoprotein in its switch-II pocket, a covalent bond is created with

the mutant cysteine residue of KRAS G12C, blocking the

reactivation of KRAS by nucleotide exchange (from GDP to GTP)

(27, 28). Hence, KRAS G12C inhibitors essentially trap KRAS G12C

in an inactive KRAS-GDP state (off state), hindering a switch to the

active KRAS-GTP state (on state), and, thereby, impeding
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oncogenic activity. This has led to improved drug efficacy

and selectivity (29). Currently, sotorasib and adagrasib are

recommended by the National Comprehensive Cancer Network

(NCCN) guidelines as a subsequent treatment option for patients

with KRAS G12C-mutant NSCLC in second-line or beyond, if no

previous KRAS G12C-targeted therapy was given (30). Given their

similar mechanism of action, it is not recommended to switch

between these two therapeutic agents at the time of progression

(30). Table 1 summarizes the efficacy data of KRAS G12C inhibitors

from published clinical trials.

The following chapters will give an overview of direct inhibitors

of KRAS G12C in NSCLC.
5 Sotorasib (AMG 510)

The first drug to enter clinical trials geared toward targeting

mutant KRAS, sotorasib (previously known as AMG 510), was

granted accelerated approval by the U.S. Food and Drug

Administration on May 28, 2021, for adult patients with

previously treated (immunotherapy and/or chemotherapy) locally

advanced or metastatic NSCLC harboring the KRAS p.G12C

mutation (38, 39). In turn, Health Canada approved this KRAS

G12C inhibitor in September 2021 (23), while the European

Medicine Agency followed suit in January 2022 (Amgen, 2022).

These approvals were based on the results of phase 2 of the

CodeBreaK 100 trial (32). Preclinical analyses of sotorasib were

very promising, showing inhibition of tumor cell growth in both in

vitro and murine models (40). Sotorasib first entered clinical trial in

2018, and the results of the phase 1 CodeBreaK 100 trial

demonstrated encouraging anticancer activity of sotorasib

monotherapy in the NSCLC subgroup as follows: 32.2% had an

objective response (complete or partial) rate (ORR), 88.1% had

disease control (objective response or stable disease), and the

median progression-free survival (PFS) was 6.3 months (31). A

durable clinical benefit of monotherapy with daily sotorasib
TABLE 1 Published clinical trials for KRAS G12C inhibitors.

Inhibitor Study
name, phase

Line
of treatment

#
of
patients2

Control ORR2

(%)
PFS2

(median
months, HR)

OS2

(median
months, HR)

Ref.

Sotorasib CodeBreaK100,
Phase 1

≥2 59 None 32.2 6.3 NA (31)

CodeBreaK100,
Phase 2

≥2 124 None 37.1 6.8 12.5 (32)

CodeBreaK200,
Phase 3

≥2 171 vs. 174 Docetaxel 28.1
vs. 13.2

5.6 vs. 4.5,
0.66 (P=0.0017)1

10.6 vs. 11.3,
1.01 (P=0.53)1

(33)

Adagrasib KRYSTAL-1
Phase 1/2

≥2 116 None 42.9 6.5 12.6 (34)
(35),

Divarasib3 GO42144,
Phase 1

≥2 58 None 60.3 13.1 NR (36)

Garsorasib Phase 1 ≥2 74 (all doses)
62 (RP2D)

None 40.5
38.7

8.2
7.6

NA
NA

(37)
frontie
1One-sided P-value, 2KRAS inhibitor versus control, 3neither approved by FDA nor EMA, #, number; ORR, objective response rate (number of patients with complete response plus partial
response); HR, hazard ratio; NA, not available; NR, not reached; PFS, progression-free survival; Ref., reference; RP2D, recommended phase 2 dose; OS, overall survival; vs., versus.
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(administered orally at a dose of 960 mg) was confirmed in the

phase 2 CodeBreaK 100 trial, showing a 37.1% ORR, median PFS of

6.8 months, and median overall survival (OS) of 12.5 months in

KRAS p.G12C-mutant advanced NSCLC patients previously treated

with standard therapies (Table 1) (32). The two-year pooled

analysis of the CodeBreaK 100 phase 1/2 clinical trial showed that

almost 25% of these previously treated advanced stage KRAS G12C-

mutant NSCLC patients derived long-term benefit from additional

sotorasib treatment, with few late-onset treatment-related toxicities

(41). These results support the continuing clinical use of sotorasib

both in the current therapeutic setting and in studies (ongoing and

future) examining its potential role in earlier lines of therapy (41).

In the CodeBreaK 200 study, a randomized, open-label, phase 3

trial (June 2020 to April 2021) of sotorasib (n=171) versus docetaxel

(n=174) in the second-line setting and beyond of advanced NSCLC

patients with KRAS G12C mutation, sotorasib significantly

increased PFS (i.e., median PFS 5.6 months [95% CI, 4.3–7.8] vs.

4.5 months [3.0–5.7]; hazard ratio 0.66 [0.51–0.86]; p=0.0017) and

exhibited a better safety profile (33). In addition, sotorasib elicited a

more rapid (1.4 months vs. 2.8 months) and longer response (8.36

months vs. 6.8 months) compared with docetaxel (33).

Unfortunately, although PFS, ORR, and disease control rate

(DCR) were improved in the sotorasib group, these results were

disappointing when compared to the phase 1 and 2 CodeBreaK 100

trials that showed a longer PFS (6.3 and 6.8 months, respectively)

and had a similar ORR and DCR (42).

In addition to sotorasib monotherapy, ongoing clinical studies

are also investigating sotorasib-based combinations for the possible

treatment of pretreated KRAS G12C-mutant NSCLC (20). The

single-arm, phase-2 SCARLET study enrolled 30 patients with

chemotherapy-naïve, advanced non-squamous, KRAS G12C-

mutant NSCLC between October 2021 and July 2022 (43). Results

from this clinical trial were recently presented in June 2023 at the

American Society for Clinical Oncology (ASCO) Annual Meeting,

and showed a favorable ORR (88.9%; 80% CI, 78.5–94.8%) (n=27)

and tolerability (n=29) for sotorasib plus platinum-doublet

chemotherapy (carboplatin/pemetrexed). The PFS and OS rates at

6 months were 61.2% and 87.0%, respectively; median PFS was not

reached given the shorter follow-up period (median 4.2 months).

Most recently, exciting positive data from the study arm of

sotorasib in combination with carboplatin and pemetrexed for

KRAS G12C-mutant advanced NSCLC in the ongoing, phase 1b,

CodeBreaK 101, global clinical trial have further endorsed the

approach to repositioning sotorasib with novel therapeutic

combinations into earlier lines of therapy within the treatment

paradigm (44). These highly anticipated results, based on a median

follow-up of 3 months, were presented at the 2023 International

Association for the Study of Lung Cancer (IASLC) World

Conference on Lung Cancer (2023) on September 10th, 2023, in

Singapore. Patients (n=20) treated in the frontline (i.e., first-line)

setting experienced a better ORR and DCR than their counterparts

(n=13) treated in the second-line setting (ORR 65% vs. 54%,

respectively; and DCR 100%; 95% CI: 83.2, 100, vs. 85%; 95% CI:

54.6, 98.1, respectively). Similar ORRs were reported among

patients with programmed cell death ligand-1 (PD-L1) expression

less than 1% (i.e., 62% vs. 50% in the frontline vs. second-line
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setting, respectively). Mature PFS and OS data were unavailable.

Due to the very promising results from the global CodeBreaK 101

trial, a new multicenter, randomized, open-label, phase 3 study

(CodeBreaK 202) of sotorasib plus carboplatin and pemetrexed as

frontline therapy of PD-L1 negative, KRAS G12C-mutant advanced

NSCLC has been recently initiated by Amgen and is currently

recruiting patients (enrollment start date: November 26, 2023;

estimated study completion date: March 1, 2031) (45).
6 Adagrasib (MRTX849)

Adagrasib is the second approved, orally administered, potent,

covalent KRAS G12C inhibitor that selectively and irreversibly

binds the switch-II pocket of KRAS G12C (46). Adagrasib was

granted accelerated approval by the FDA in December 2022 as a

targeted treatment option for locally advanced or metastatic NSCLC

with a KRAS G12C mutation (47). This decision was based on the

results of the ongoing phase 1/2 KRYSTAL-1 clinical trial (Table 1)

(34, 35). This multicenter single-arm study included patients with

histologically confirmed unresectable or metastatic KRAS G12C-

mutant NSCLC whose disease progressed with frontline

chemotherapy and/or immunotherapy. With respect to efficacy

outcome measures, 42.9% (95% confidence interval [CI], 33.5 to

52.6) of the 112 patients with measurable disease at baseline had a

confirmed objective response. The median duration of response

(DOR) was 8.5 months (95% CI, 6.2 to 13.8) and the median PFS

was 6.5 months. Confirmed ORRs were similar across PD-L1

expression subgroups (41.7 to 46.8%). The ORRs in patients with

co-mutations in STK11, KEAP1, TP53, and CDKN2A ranged from

28.6% (KEAP1) to 58.3% (CDKN2A). As of January 15, 2022

(median follow-up, 15.6 months), the median OS was 12.6

months (95% CI, 9.2 to 19.2).

Updated, longer follow-up data from the KRYSTAL-1 trial,

recently presented on September 10, 2023, at the World Congress

on Lung Cancer 2023 (WCLC 2023) in Singapore, confirmed

durable clinical activity and benefit of adagrasib in advanced

KRAS G12C-mutant NSCLC across patient groups, including

those with CNS metastases and co-mutations (48). Gadgeel and

colleagues presented favorable safety and efficacy data (ORR, DOR,

PFS, and OS) from a two-year follow-up pooled analysis of the

Phase 1/1b Cohort and Phase 2 Cohort A of KRYSTAL-1. As of

January 1, 2023, 132 patients received adagrasib, and showed an

ORR of 43.0%, with a median DOR of 12.4 months. The median

PFS was 6.9 months (95% CI 5.4–8.7), and the median OS was 14.1

months (95% CI 9.2–18.7). Approximately one in three patients

(31.3%) remained alive at two years. Exploratory analyses suggested

heterogeneity of clinical benefit based on the presence of co-

mutations, requiring further evaluation. The safety profile was

consistent with previous reports. A confirmatory, multi-center,

randomized Phase 3 study, KRYSTAL-12, evaluating adagrasib

monotherapy versus docetaxel in patients with previously treated

advanced KRAS G12C-mutant NSCLC, is ongoing (Table 2) (51).

It is important to mention that preliminary pharmacodynamics

and mechanistic biomarker analysis on pre- and post-treatment

tumor NSCLC biopsies of patients (n=3) treated with adagrasib
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(phase 1/1b and 2) demonstrated down-regulation of KRAS/MAPK

pathway genes, including DUSP6 and SPRY4 (53). Patients with

STK11-co-mutations had an impressive ORR of 64%. This was a

surprising finding given that STK11 mutations typically portend a

poor response and survival to immune checkpoint inhibitors in

metastatic NSCLC (54). However, Riely et al. (2021) showed that

treatment with adagrasib increased the expression of immune

transcripts (e.g., CD4 and CD8) that are minimal at baseline,

suggesting a potential immune response to therapy (53).

As noted by Cheema and colleagues (2022), data from

preclinical and clinical studies have revealed that drug resistance

to single-agent KRAS G12C-targeted therapy occurs quite early

after treatment initiation (often within a few months) (23). This

suggests that the use of KRAS G12C-targeted therapies in

combination with other treatments may help overcome drug

resistance observed with anti-G12C monotherapies. Updated,

late-breaking data (safety and efficacy results) from the phase 2

KRYSTAL-7 study were recently presented at the European Society

of Medical Oncology (ESMO) Congress 2023 in Madrid, Spain

(October 20–24, 2023) (55). The results of the KRYSTAL-7 trial,

with three patient cohorts stratified according to PD-L1 tumor

proportion score (TPS), found that concurrent adagrasib and

pembrolizumab in patients with treatment-naïve, advanced,

unresectable, or metastatic NSCLC harboring KRAS G12C

mutation demonstrated encouraging preliminary efficacy with

clinically meaningful antitumor activity, especially in patients

with high PD-L1 expression (TPS ≥ 50%), and a manageable

safety profile (Table 2). The patients in this cohort (PD-L1 TPS ≥
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50%) had an ORR of 63% (32/51; 95% CI, 48–76) and a DCR of 84%

(43/51; 95% CI, 12.6-not evaluable [NE]). This ORR for the

adagrasib-pembrolizumab combination compares favorably with

the ORR of pembrolizumab as a single agent (range: 39% to 45%).

The median follow-up was longer for patients with PDL-1 TPS ≥

50% versus all patients (10.1 months vs. 8.7 months, respectively).

The median time to response was 1.4 months, and the median PFS

was not reached (95% CI, 8.2-NE).

7 Intracranial responses with the
selective KRAS-G12C inhibitors
sotorasib and adagrasib

Patients with KRAS G12C-mutant NSCLC are prone to

developing brain metastases (BMs) (56, 57). At diagnosis, BMs

were detected in 27% to 42% of patients (56, 58–61). KRAS-mutant

NSCLC patients with untreated central nervous system (CNS)

metastases have poorer clinical outcomes (i.e., worse prognosis

and higher CNS failure) compared to those without KRAS

mutations (62–64). For this very important reason, the efficacy of

selective G12C inhibitors in the CNS and untreated intracranial

lesions remains the subject of intense active research (65). It should

be noted that the initial KRYSTAL-1 and CodeBreak100 trials

excluded patients with active, untreated BMs (66).

Despite their similarities as allele-specific inhibitors and

covalent drugs, sotorasib and adagrasib are indeed different in

many ways, reflecting the speed of drug development and their
TABLE 2 Ongoing phase 3 trials targeting KRAS G12C.

Inhibitor Study
name,
Clinical
trial
identifier

Combination
class

Test arm Control
arm

#
of
patients

Line
of
treatment

ORR
(%)

DCR
(%)

Ref.

Sotorasib CodeBreaK
202,
NCT05920356

Chemotherapy Carboplatin,
pemetrexed, sotorasib

Carboplatin,
pemetrexed,
pembrolizumab

750 1 NA NA (49), no
data
reported
so far

Adagrasib KRYSTAL-7,
NCT04613596

PD-1 Pembrolizumab (PD-
1≥50%), adagrasib

Pembrolizumab
(PD-1≥50%)

51 1 62.7 84.0 (50)

KRYSTAL-12,
NCT04685135

Adagrasib Docetaxel 450 ≥2 NA NA (51),
no data
reported
so far

Opnurasib KontRASt-02,
NCT05132075

Opnurasib Docetaxel 360 ≥2 NA NA (52), no
data
reported
so far

Olomorasib SUNRAY-01,
NCT06119581

PD-1
Chemotherapy
A: PD-L1 ≥50%
B: PD-L1 0–100%

A: Olomorasib,
pembrolizumab
B: Olomorasib,
platinum,
pemetrexed,
pembrolizumab

A:
pembrolizumab
B: platinum,
pemetrexed,
pembrolizumab

1,016 1 NA NA No data
reported
so far
fro
#, number; ORR, objective response rate (number of patients with complete response plus partial response); NA, not available; NR, not reached; PD-1, programmed cell death protein 1; PD-L1,
programmed cell death 1 ligand 1, Ref., reference.
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intrinsic properties (67). Notably, with respect to BMs in KRAS

G12C-mutant NSCLC patients, efficacy data for adagrasib have

become available earlier than for sotorasib. Preclinically, adagrasib

has shown CNS penetration and its efficacy on KRAS G12C-BM in

a LU99Luc mouse model showed CNS tumor regression with dose-

dependent effects (56). Clinically, it has demonstrated cerebrospinal

fluid penetration and BM regression in preliminary findings from

the phase 1b portion of the KRYSTAL-1 trial; a retrospective

database analysis was initially performed to better understand the

clinicopathological features of KRASG12C-mutant NSCLC patients

with BM (56). The registrational phase 2 cohort of the KRYSTAL-1

reported findings consistent with the earlier preclinical models of

tumor shrinkage, demonstrating an intracranial ORR of 33.3% (11/

33 patients) with one intracranial complete response and a median

duration of intracranial response of 11.2 months (35). Furthermore,

Negrao and colleagues (2023) recently published the first

prospective data for the KRAS G12C inhibitor adagrasib in

patients with NSCLC and radiologically evaluable, active, and

untreated CNS metastases (57). The results of this phase 1b

limited BM expansion cohort of the KRYSTAL-1 trial provided

proof-of-concept for adagrasib’s ability to penetrate the CNS and

achieve promising intracranial activity, with a high concordance

rate between intracranial and systemic activity (79%) and a low rate

of CNS failure (37%). In early 2024, a case series taken from the

KRYSTAL-1 CNS metastases cohort showed that most patients did

not discontinue adagrasib because of CNS progression, which was

consistent with the overall KRYSTAL-1 CNS metastases cohort and

indicated that adagrasib may delay development of additional CNS

metastases (68).

Until very recently, published CNS activity data for sotorasib

remained relatively scant in comparison to adagrasib (65). Thus far,

three case reports describe a remarkable intracranial response of

previously untreated, active BMs (69–71). Both Koster et al. (2022)

and Yeh et al. (2022) documented a rapid intracranial response in

less than two months for their patients treated with sotorasib

monotherapy following stereotactic body radiotherapy (SBRT)

alone vs. postoperative stereotactic radiosurgery to the cranial

resection cavity, respectively, and first-line systemic treatment

(i.e., immunotherapy with pembrolizumab) (69, 70). Inno et al.

(2023) reported the case of a long duration of intracranial response

to sotorasib in the second-line setting lasting 16 months in a patient

with both pretreated and untreated symptomatic BMs from KRAS

G12C mutant NSCLC (71). The importance of exploring dose-

dependent CNS response, control, and penetration of the selective

inhibitor is emphasized by Lu & Husain (2023) in their case report

(65). The patient showed intracranial stability for 5 months on the

standard dose of second-line sotorasib monotherapy (960 mg

daily), but following a reduction of the sotorasib to 480 mg daily

as a result of seizures and vasogenic edema (without new BMs)

developed new BMs 5 months later (65).

Clearly, further prospective clinical studies are required to fully

characterize the intracranial efficacy of both sotorasib and adagrasib

as currently approved therapies as well as other selective G12C

inhibitors still in development, including divarasib (GDC-6036)

and opnurasib (JDQ-443), among others (66).
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In addition to sotorasib and adagrasib, several other direct

KRAS G12C inhibitors, such as divarasib (GDC-6063), opnurasib

(JDQ-443), garsorasib (D-1553), olomorasib (LY3537982), MK-

1084, and JAB-21822 are now in clinical development as

monotherapy or in combination with other treatments, as

discussed in several recently published reviews (Tables 2, 3,

Figure 1) (10, 13, 20–22, 82–84). A very recent review touches

quite comprehensively and thoughtfully on the manifold

combinatorial therapeutic strategies in RAS-driven cancers (84).

Two formerly promising, orally available, investigational, small

molecules, LY3499446 and JNJ-74699157 (ARS-3248), were

abruptly removed from the G12C inhibitor landscape (82, 83).

The discontinuation of the initial phase 1 trial of LY3499446 was

due to unexpected toxicity (20, 27). Likewise, JNJ-74699157 (ARS-

3248) was investigated in a phase 1 study of patients with advanced

solid tumors, including NSCLC (n=5), but enrolment was

terminated at just 10 patients due to dose-limiting skeletal muscle

toxicities and the lack of efficacy at the lowest administered dose

(100 mg) (83, 85).

Data from preclinical and in vitro studies have suggested that

divarasib (GDC-6063) is more potent and selective than sotorasib

or adagrasib (86). In a phase 1 clinical trial, among the 60 NSCLC

patients who received divarasib, a confirmed response was observed

in 53.4% of patients (95% confidence interval [CI], 39.9 to 66.7),

and the median PFS was 13.1 months (95% CI, 8.8 to NE), with an

acceptable safety profile (mainly low-grade adverse events) (36).

Opnurasib (JDQ-443), structurally unique and currently in

clinical development, has been optimized by design to overcome

resistance mechanisms through novel interactions with the binding

pocket (83, 87–89). A stable atropisomer with PK/PD activity in

vivo and dose-dependent antitumor activity in mouse xenograft

models, opnurasib has performed in an encouraging manner as

evidenced by the early phase data reported from an ongoing Phase

1b/2 clinical trial, with a confirmed ORR of 41.7% (83, 88, 89). As a

promising therapy, opnurasib is being investigated in the

combination arms of the ongoing, phase 1b/2, multicenter,

KontRaSt-01 study, with either TNO155 (SHP2 inhibitor) or

tislelizumab (anti-PD-1 monoclonal antibody), as well as in a

phase 3 trial of opnurasib monotherapy versus docetaxel

(Table 2) (73, 83, 90). An update of the KontRaSt-01 was recently

presented at the ASCO 2023 Congress, demonstrating promising

efficacy and well-tolerated safety data (73).

Garsorasib (D-1553), a novel small molecule inhibitor that

selectively targets KRAS G12C, is currently in phase 2 clinical

trials (91). Preclinical data have already demonstrated antitumor

activity of garsorasib. In the phase 1, garsorasib dose-escalation

study in KRAS G12C-mutant NSCLC patients (n=62), partial

response occurred in 24 patients (ORR, 38.7%) and stable disease

in 32 patients (DCR, 90.3%) (37).

Olomorasib (LY3537982) monotherapy was tested in a phase-1

clinical trial, in which 5 treatment-naïve and 9 previously treated

patients with KRASG12Cmutational status showed an ORR of 60%

or 0%, respectively, and a DCR of 80% or 67%, respectively (72).
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The phase-3 SUNRAY-01 trial (NCT06119581) will assess the

efficacy of olomorasib in combination with pembrolizumab or

pembrolizumab with chemotherapy in 1,016 patients with locally

advanced or metastatic NSCLC.

MK-1084 is being tested for KRAS G12C mutations as

monotherapy in pretreated patients with advanced solid tumors

(arm 1) and in combination with pembrolizumab in previously

untreated metastatic NSCLC with PD-L1 TPS≥1% in an ongoing,

phase 1, global, dose-escalation trial (arm 2) (23). The
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preliminary results, presented at the ESMO Congress 2023 in

October 2023, showed manageable safety and preliminary

antitumor activity in both arms (ORR 19% and 47% in arm 1

and 2, respectively) (77).

JAB-21822, now designated glecirasib, was tested in a first-in-

human clinical trial comprising 22 patients with advanced NSCLC.

The results proved quite promising showing that ORR and DCR

were 70% and 100%, respectively (78). Results from future clinical

trials are awaited.
TABLE 3 Novel agents for KRAS inhibition.

Inhibitor Clinical
trial
identifier,
study
name,
phase

Line
of
treatment

Mechanism # of patients Control ORR
(%)

DCR
(%)

PFS
(median
months,
HR)

Ref.

KRAS G12C inhibitor

Olomorasib NCT04956640,
Phase 1

≥1 Off
state inhibitor

KRAS G12C inhibitor
naïve, N = 5

None 60.0 80.0 NA (72)

KRAS G12C inhibitor
treated, N = 9

None 0.0 67.0 NA

Opnurasib NCT04699188,
KontRASt-01,
Phase 1/2

≥2 Off
state inhibitor

24 None 42.0 93.0 NA (73)

IBI351 NCT05005234,
NCT05497336,
Phase 2

≥2 Off
state inhibitor

116 None 46.6 90.5 8.3 (74,
75)

RMC-6291 NCT05462717,
Phase 1

≥2 On state, tri-
complex
inhibitor

KRAS G12C inhibitor
naïve (N = 7)

None 42.8 100.0 NA (76)

KRAS G12C inhibitor
treated (N = 10)

None 50.0 100.0 NA

MK-1084 NCT05067283,
Phase 1

≥2 Unknown Arm 1: previously
treated, receiving MK-
1084 monotherapy

None 19.0 NA NA (77)

Arm 2: treatment-
naïve, receiving MK-
1084
+ pembrolizumab

None 47.0 NA NA

Glecirasib (JAB-21822) NCT05009329,
Phase 1

≥2 Off
state inhibitor

22 None 70.0 100.0 NA (78)

KRAS G12D inhibitor

HRS-4642 NCT05533463,
Phase 1

≥2 Unknown 10 None 10.0 90.0 NA (79)

MRTX1133 NCT05737706,
Phase 1/2

≥2 Off
state inhibitor

NA None NA NA NA NA

RMC-9805 NCT06040541,
Phase 1

≥2 On state tri-
complex
inhibitor

NA None NA NA NA (80)

Pan/multi-RAS inhibitors (KRAS G12X)

RMC-6236 NCT05379985,
Phase 1

≥2 RAS-multi, on
state, tri-
complex
inhibitor

11
4 with
efficacy assessment

None 75.0 100.0 NA (81)
frontier
#, number; DCR, disease control rate (number of patients with partial response or stable disease); HR, hazard ratio; NA, not available; NR, not reached; ORR, objective response rate (number of
patients with complete or partial response); PFS, progression-free survival; Ref., reference; OS, overall survival.
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9 Mechanisms of resistance to
KRAS inhibition

The vast majority of advanced NSCLC will progress due to

treatment resistance. Tumor cell intrinsic mechanisms are the

primary drivers of resistance to radiation, cytotoxic agents, and

targeted therapies (6).

Resistance mechanisms to KRAS G12C inhibition cover

primary resistance and acquired resistance (92, 93).

Primary resistance or early disease progression (PFS < 3 months)

to KRAS G12C inhibitors occurs in about 36% of patients who

received sotorasib therapy, as shown in recently published data from

the 2-year analysis of the CodeBreaK100 study in NSCLC (41). In

NSCLC, co-mutations with genetic alterations in KEAP1, SMARCA4

(SWI/SNF related, matrix associated, actin dependent regulator of

chromatin, subfamily A, member 4), and CDKN2A (cyclin dependent

kinase inhibitor 2A) are associated with inferior clinical outcomes to

sotorasib therapy (94). Some studies have demonstrated that co-

mutations in STK11, KEAP1, and TP53 could modulate the

responsiveness of patients with KRAS alterations to either KRAS

G12C inhibitors or to immunotherapy (14–16, 18, 95). Proulx-

Rocray and colleagues (2021) showed that the presence of STK11

and/or KEAP1 mutations was associated with a negative impact on

survival when compared with wild-type NSCLC patients treated with

immune check point inhibitors (96). These authors also reported that

in patients harboring KRAS mutation, improved prognosis was

observed in STK11+KEAP1 wild-type tumors but not in STK11

+/-KEAP1 mutant tumors. Interestingly, the presence of KRAS

G12D is associated with diminished infiltration of CD8+ T cells in

NSCLC (97). Patients harboring KRAS G12D mutations had worse

clinical outcomes to PD-(L)1 inhibition compared to wild-type (97).

The biological mechanism of resistance mediated by these mutations

has yet to be explored. Co-occurring mutations that predict response

to treatment might serve as markers for patient stratification and

therapy intensification in randomized clinical trials (10).

In terms of allele amplification, high-level amplifications of the

KRAS G12C allele were observed in some patients undergoing

sotorasib treatment (98, 99).

Acquired resistance inevitably occurs and is responsible for

disease progression after an initial benefit from targeted therapies.

Principly, acquired resistance to KRAS G12C inhibitors are

functionally divided into off-target and on-target mechanisms.

On-target resistance mechanisms include alterations that

concern the molecular target, against which the inhibitor is

directed, such as KRAS. These mechanisms comprise (92, 98, 100):
Fron
• Novel KRAS mutations in the switch II pocket (e.g.

sotorasib: Y96c/d/s, R68S, adagrasib: H95D/Q/R);

• Acquired KRAS activating mutation (e.g. G12D on trans

and G12W on cis, preventing inhibitor to bind);

• New production of KRAS G12C, and

• KRAS G12C gene amplification.
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On-target resistance mechanisms were described in a recent in vitro

study showing that secondary KRASmutations (Y96D, A59T, A59S,

R68M, R68M, M721, V8E, G13D, Q61L, Q99L, and H358)

conferred resistance to the KRAS (G12C) inhibitors. Moreover,

Y96D and Y96S secondary mutations caused resistance to both

sotorasib and adagrasib, while the KRAS mutations G13D, R68M,

A59S, and A59T were highly resistant only to sotorasib and Q99L

was resistant to adagrasib but sensitive to sotorasib (101). These

acquired mutations were also observed in a clinical study that

included KRAS G12C-mutant cancer patients treated with

adagrasib in monotherapy, of whom 71% were NSCLC patients

(98). Furthermore, cell lines with co-mutations of KRAS G12C and

G12V were described as acquired mechanisms of resistance to

KRAS G12C inhibition in vitro (102). Similarly, a preclinical and

clinical study from Tanaka and colleagues described two KRAS

activating mutations (G12D, G12V) and a Y96D mutation affecting

the cryptic Switch II pocket as mechanisms of resistance during

adagrasib treatment (103). Interestingly, G12D-mutant cell lines are

reported to have high levels of phosphorylated AKT, leading to the

activation of the PI3K-AKT-mTOR pathway (102).

Off-target resistance mechanisms include alterations that

comprise upstream and downstream signaling pathways of KRAS

as well as histological transformation. These mechanisms comprise

(92, 98, 100):
• Activating wild-type isoforms of RAS-proteins, such as

NRAS and HRAS;

• Gain of function in oncogenes (e.g. downstream as in the

MAPK pathway: NRAS, BRAF, MEK1, RET etc.);

• Loss of function in tumor suppressor genes (e.g. cell-cycle

transition: CDKN2A);

• Gene amplifications, such as in cMET;

• Fusion of gene, such as ALK, RET, RAF1, BRAF, FGFR3,

appear to be more common in colo-rectal cancer;

• Histological transformation (e.g. LUAD to squamous

cell carcinoma).
A recent in vitro and in vivo study demonstrated that MET

amplification in KRAS G12C was associated with resistance to

sotorasib in vitro and the introduction of a MET inhibitor

restored sensitivity by eliminating RAS–MEK–ERK and AKT

signaling (104). Furthermore, MET copy level gain was an off-

target mechanism of resistance to sotorasib in a patient with KRAS

G12C-mutant LUAD (105). Activating mutations in NRAS, BRAF,

MAP2K1, and RET; oncogenic fusions involving ALK, RET, BRAF,

RAF1, and FGFR3; and loss-of-function mutations in tumor

suppressor genes, such as PTEN and NF1, were described as

acquired off-target resistance mechanisms of KRAS G12C

inhibitors (19, 92, 101, 106).

Table 3 and Figure 1 give an overview of three potential agents

targeting KRAS G12D mutations: HRS-4642, MRTX1133,

and RMC-9805. Moreover, G12V mutations are shown to

preferentially activate RAL signaling (102).
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10 Future strategies to overcome
resistance to KRAS inhibition

For NSCLC harboring a KRAS G12D mutation, there are

several specific inhibitors undergoing testing in clinical and

preclinical studies (Table 3, Figure 1). MRTX1133 is a non-

covalent KRAS G12D inhibitor that showed significant

preclinical antitumor activity in KRAS G12D-bearing tumor

cells, especially pancreatic ductal adenocarcinoma (107). This

compound might be a potential treatment in combination with

KRAS G12C inhibitors for patients harboring co-mutations

(KRAS G12C, G12D). Further studies are needed to clarify the

role of adaptive resistance mechanisms in acquiring resistance to

KRAS inhibitors.

RM-018, a tricomplex KRAS G12C active-state inhibitor,

retains the ability to inhibit KRAS (G12C, Y96D) (103), thus

being a promising therapy to address acquired resistance.

Adaptive resistance mechanisms due to reactivation of MAPK

pathway and upregulation of PI3K-AKT pathway were identified

as likely resistance mechanisms and, according to in vitro and in

vivomodels, combination with PI3K inhibitors could overcome this

resistance (108).

Several studies have uncovered the mechanisms underlying

resistance to KRAS G12C inhibition and there have been

pioneering efforts to overcome drug resistance using combinatorial

treatments (108–111).

One approach is to target upstream effector proteins of the

KRAS protein itself. For instance, the phosphatase son of sevenless

homolog 1 (SOS1) is a RAS guanine nucleotide exchange factor

(RasGEF), which is activated by SHP2 promoting RAS activation

through GTP binding (Figure 1) (112). The combination of a novel

SOS1 inhibitor (BI-3406) and trametinib exhibited potent activity

against Y96D and Y96S (113). In addition, other SOS inhibitors,

such as BI-1701963 and MRTX0902, are currently being tested in

clinical trials (10).

SHP2 is another upstream adapter protein that is

phosphorylated upon activation of RTK. Two SHP2 inhibitors are

currently under clinical investigation: TNO155 and RMC-4630 (10,

13). KRAS G12C inhibitors in combination with SHP2 inhibition

led to sustained RAS pathway suppression and improved efficacy in

vitro and in vivo (111).

Recently, a phase 3 clinical trial showed that sotorasib in

combination with panitumumab (EGFR inhibitor) resulted in

longer PFS than standard treatment in metastatic colon cancer

patients (114). Further studies are needed to test whether this

combination could improve the outcome in lung cancer.

Promising evidence has demonstrated that adagrasib plus

pembrolizumab improves overall response rate in patients with

newly diagnosed NSCLC harboring a KRAS G12C mutation,

particularly in those with higher levels of PD-L1 (115).

As such, specific therapeutic combinations may help in cases of

either intrinsic resistance or acquired resistance.
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The KRAS mutation plays a major role in the development of

tumor progression and resistance to treatment. Despite this, G12C

point mutation (making up only 39% of all KRAS alterations) remains

the only molecular target for which the two therapeutic agents,

sotorasib and adagrasib, have been approved so far. The advent of

novel inhibitors against KRASmutations will further improve survival

of lung cancer patients. Nevertheless, the co-occurrence of add-on

mutations (co-mutations) and by-pass track pathways will remain

challenging obstacles to overcome since they reduce treatment success.

Future research efforts must be directed toward comprehensive

molecular testing of lung cancer, allowing for the development of

multimodal treatment strategies including immune checkpoint

inhibitors, tyrosine kinase inhibitors, KRAS upstream inhibitors,

and multi-kinase inhibitors against co-mutations.
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