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Activated interferon response
from DNA damage in multiple
myeloma cells contributes to the
chemotherapeutic effects
of anthracyclines
Jin Li1†, Zhuxia Jia1†, Rongxuan Wang1†, Bitao Xiao1, Yanan Cai1,
Tianshu Zhu1, Weiya Wang1, Xinyue Zhang1, Shu Fan1,
Xiaolong Fan2*, Wenmin Han1* and Xuzhang Lu1*

1Department of Hematology, Changzhou No. 2 People’s Hospital, The Affiliated Hospital of Nanjing
Medical University, Changzhou, China, 2Beijing Key Laboratory of Gene Resource and Molecular
Development, Laboratory of Neuroscience and Brain Development, Beijing Normal University,
Beijing, China
Introduction: Multiple myeloma (MM) is a malignant plasma cell disease caused

by abnormal proliferation of clonal plasma cells in bone marrow. Upfront

identification of tumor subgroups with specific biological markers has the

potential to improve biologically-driven therapy. Previously, we established a

molecular classification by stratifying multiple myeloma into two subtypes with a

different prognosis based on a gene module co-expressed with MCL-1

(MCL1-M).

Methods: Gene Ontology (GO) analysis with differentially expressed genes was

performed to identify signal pathway. Drug sensitivity was analyzed using the

OncoPredict algorithm. Drug sensitivity of different myeloma cell lines was

detected by CCK8 and flow cytometry. RNA-seq was performed on drug-

sensitive cell lines before and after adriamycin treatment. RT-qPCR was used

to further verify the sequencing results. The expression of g-H2AX and dsDNA in

sensitive and resistant cell lines was detected by immunofluorescence method.

Results: In our study, we demonstrated that MCL1-M low MM were more

sensitive to anthracyclines. We treated different myeloma cell lines with

doxorubicin in vitro and discovered the association of drug sensitivity with IFN

signaling. Herein, we demonstrate that the doxorubicin-sensitive myeloma cell

line showed significant DNA damage and up-regulated expression of genes

related to the IFN response, which was not observed in drug-insensitive cell lines.

Discussion: Our results suggest that the active IFN signaling pathway may serve

as a marker for predicting chemotherapy sensitivity in patients with myeloma.

With our MCL1-M molecular classification system, we can screen patients with a
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potentially good response to the interferon signaling pathway and provide

individualized treatment for MM. We propose IFN-a as adjuvant therapy for

patients with myeloma sensitive to anthracyclines to further improve the

therapeutic effect and prolong the survival of patients.
KEYWORDS

multiple myeloma, DNA damage response, doxorubicin, drug resistance, type 1
interferon (IFN-I)
1 Introduction

Multiple myeloma (MM) is a malignant plasma cell disease

caused by abnormal proliferation of clonal plasma cells in the bone

marrow (1, 2). Individualization of myeloma management requires

precise molecular classification, through which the risk of disease

progression can be assessed independently of therapy, thus

identifying whether patients are sensitive or resistant to treatment

(3–5). However, how to accurately define dynamically evolving

molecular subsets and implement stratified treatment of patients

with different risk stratification remains a challenge.

The MCL1 gene co-expression module (MCL1-M) provides a

possible solution to this problem. MCL1-M classifies MM patients

into two different prognostic subgroups (MCL1-M low-risk MM

and MCL1-M high-risk MM), and reflects different B cell

differentiation and development pathways (6). MCL1-M low MM

exhibits a gene expression profile that enriches the type I interferon

(IFN) signaling pathway (6). Low expression of MCL1-M in

patients with MM in anthracycline-based therapy had the same

survival with or without bortezomib, suggesting that MCL1-M low

MM are more sensitive to anthracyclines and reduce the survival

advantage of bortezomib (6). However, the biological mechanism

and clinical significance of IFN signaling enrichment in MCL1-M

low MM are not fully characterized.

IFN-a has been used as a maintenance treatment for MM (7–9).

Indeed, only small subsets of MM patients seem to benefit from this

drug (10–12). Although the effects of IFN-a on myeloma are

inconsistent, recent studies demonstrate that IFNs are critical in

maintaining an effective antitumor response, and loss of IFN

signaling results in resistance to treatment (13–15). When

characterizing the effects of anthracycline-based chemotherapy, it

was observed that type I IFN, as well as interferon stimulated genes

(ISGs) were massively transactivated (16). Further research has

shown that type I IFN is induced by a complex pathway that

involves the release of nucleic acids from dying cells into the tumor

environment (14, 16, 17).

To explore the relationship between IFN signaling and

anthracycline therapy, we treated different myeloma cell lines with

doxorubicin in vitro and observed the association between drug

sensitivity and IFN signaling. Here, we found that the doxorubicin-
02
sensitive myeloma cell line showed significant DNA damage and up-

regulated expression of genes associated with the IFN response,

which was not observed in drug-insensitive cell lines. Our results

suggest that up-regulation of the IFN signaling pathway may be a

marker to predict the sensitivity to chemotherapy in myeloma

patients. We are able to select patients with a good response to the

interferon signaling pathway through the molecular classification of

MCL1-M, and provide individualized treatment for patients with

low MCL1-M MM. We propose IFN-a as adjuvant therapy to

patients with myeloma sensitive to anthracyclines to further

improve the therapeutic effect and prolong the survival.
2 Results

2.1 MCL1-M low MM were enriched in type
I interferon response genes and were more
sensitive to anthracyclines

Previously, we established a molecular classification by dividing

MM into two subtypes with distinct prognosis on the basis of a gene

module co-expressed with MCL-1 (6). The survival analysis of all

patients with anthracycline-based therapy suggested that the

MCL1-M low group had a markedly better overall survival (OS)

compared to the MCL1-M high group. We performed a Gene

Ontology (GO) analysis with differentially expressed genes in the

low and high MCL1-M groups and found that the upregulated

genes in the low MMMCL1-M group were significantly enriched in

immune-related biological processes, especially in the type I

interferon response (Figure 1A), In contrast, the upregulated

genes in the high MM MCL1-M were most significantly enriched

in the cell cycle, DNA replication, and DNA repair (Figure 1B).

Given that doxorubicin is a common treatment for MM (18–20), we

wanted to assess the IC50 of this chemotherapy drug in two MCL1-

M subtypes. We trained the predictive model on the data set from

the GDSC cell line by ridge regression (21, 22). We estimated the

IC50 of doxorubicin for each sample in GSE19784 and GSE24080

based on the predictive model. We observed a significant difference

in doxorubicin sensitivity between low- and high-risk MCL1-M

MM (Figures 1C, D). Obviously, low MCL1-M MM had
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significantly lower IC50 values for doxorubicin than those in high

MCL1-M MM, indicating that patients in the low-risk MCL1-M

group were more sensitive to doxorubicin. These results indicate

that the MCL1-M is a unique genomic classifier that enables

identifying the low-risk group with a unique biological process of

activation of the interferon response, and thus predicting sensitivity

to doxorubicin.
2.2 Doxorubicin-sensitive MM cell lines
responded to interferon-a

To further explore the relationship between interferon response

and doxorubicin sensitivity, we first assessed the effects of

doxorubicin treatment on 5 MM cell lines for 24 or 48 hours.

Subsequent cell viability assays revealed that different cell lines had

different survival rates at the same concentration and treatment

time (Figure 2A). According to the cell survival curve, the inhibitory

effects of doxorubicin on myeloma cell lines were time-dependent

and dose-dependent, in which H929 was drug-sensitive cell line and

OPM-2 was drug-insensitive cell line. A previous study showed that

anthracyclines stimulate malignant cells to rapidly produce type I

IFNs rapidly (16). By binding to type I IFN receptors on neoplastic
Frontiers in Oncology 03
cells, type I IFNs trigger autocrine and paracrine circuits that result

in the release of chemokines (16). Tumors lacking type I IFN

receptors did not respond to doxorubicin (16). We then

examined the proliferation of myeloma cells at different

concentrations of IFN-a treated for different times. We found

that IFN-a significantly increased the percentage of apoptosis in

the five MM cell lines, in which H929 was a drug-sensitive cell line

and OPM-2 was drug-insensitive cell line (Figure 2B). Together,

these results showed that doxorubicin-sensitive MM cell lines

responded to IFN-a. We combined the chemotherapy drug with

IFN-a to treat sensitive and resistant cell lines (Figure 2C). Cell

viability analysis revealed that the proliferation of drug-sensitive

H929 cells was significantly inhibited by the combination with IFN-

a, while the growth of drug-insensitive cells was not affected

(Figures 2D, E). Subsequently, we treated myeloma cells with

doxorubicin(0.8mM), IFN-a(2000U/ml), doxorubicin(0.4mM) +

IFN-a(1000U/ml) for 24 hours and 48 hours, respectively. Our

flow cytometric apoptosis assay showed that the combination of

drugs with IFN-a significantly increased the rate of apoptosis in

drug sensitive cells but did not affect apoptosis in drug-insensitive

cells (Figures 2F, G), suggesting that doxorubicin-sensitive MM cell

lines responded to IFN-a and combined therapy could further

promote apoptosis of myeloma cells in vitro.
A

B D

C

FIGURE 1

Biological process and drug sensitivity analysis among two risk groups. (A) GO analysis terms of MCL1-M low MM differentially expressed up-
regulated genes. (B) GO analysis terms of MCL1-M low MM differentially expressed down-regulated genes. Data from GSE19784. (C) The box plots
showing the estimated IC50 for doxorubicin between MCL1-M low and high MM. Data from the GSE19784 dataset. (D) The same analysis but data
from GSE24080.
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2.3 Doxorubicin activated the interferon
response in drug-sensitive cell lines

To elucidate the mechanism underlying the anti-myeloma

effects of anthracyclines, we performed RNA sequencing (RNA-
Frontiers in Oncology 04
seq) using H929 cells from the doxorubicin sensitive cell line that

were treated with doxorubicin (0.4 mM) for 48 hours. RNA-seq

analysis showed that after doxorubicin treatment a series of genes

associated with the interferon response were upregulated in H929

cells (Figure 3A). The relevant gene names and expressions have
A

B D E

F

G

C

FIGURE 2

Detection of drug sensitivity of multiple myeloma cell lines. (A) Effects of doxorubicin on viability of different MM cell lines. Summarized cell viability
assays are shown in MM cell lines treated with the indicated concentration for 24 or 48 hours. Results are normalized to cells treated with DMSO. (B)
Effects of IFN-a on the viability of different MM cell lines. Five myeloma cell lines were treated with increasing concentrations of IFN-a for 24 or 48
hours. Results are normalized to cells treated with PBS. Each point in the graph represents mean ± SEM. (C) H929 and OPM-2 cell lines were treated
with indicated concentration doxorubicin and IFN-a for 24 hours. (D) The horizontal axis represents the doxorubicin IC50 of five myeloma cell lines.
The vertical axis represents these myeloma cell lines of IFN-a log10 IC50. (E) Combination index (CI) distribution between doxorubicin and IFN-a in
H929 and OPM-2. (F) Apoptosis assays in H929 cells treated with doxorubicin and/or IFN-a for 24 or 48 hours. The concentration of IFN-a was
2000U/ml. The concentration of doxorubicin was 0.8mM. When the two drugs are combined, the concentration of IFN-a is 1000 U/ml and the
concentration of doxorubicin is 0.4mM. Summarized data from three biological replications are shown on the right. (G) Apoptosis assays in OPM-2
cells treated with doxorubicin and/or IFN-a for 24 or 48 hours. The concentration was consistent with H929 cells. Summarized data from three
biological replications are shown on the right. Experiments were repeated three times and representative results are shown. Error bars represent
SEMs. *P <0.05, **P <0.005, ***P <0.0005, NS, no significance. NC, non-specific control.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1357996
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2024.1357996
been included in the Supplementary Table 1.The significant impact

of doxorubicin on IFN-regulated genes was further confirmed by

GSEA (Figure 3B). These results suggest that type I IFN signaling

may be associated with the anti-myeloma effect of doxorubicin.

Using qRT-PCR, we confirmed that the expression of genes related

to the interferon response was indeed up-regulated in H929 after
Frontiers in Oncology 05
doxorubicin treatment (Figure 3C). In contrast, these genes were

not significantly upregulated in the drug-insensitive cell line OPM-2

after doxorubicin treatment (Figure 3C). These findings indicate

that the type I IFN response in MM cells triggered by doxorubicin

exerts an important antitumor effect and loss of this response can

result in resistance to chemotherapy.
A B

D

E

F

C

FIGURE 3

Doxorubicin specifically induces up-regulation of interferon response and is associated with dsDNA in the cytoplasm in response to DNA damage.
(A) Heat maps for IFN-a response genes whose expression was altered in H929 by doxorubicin (0.4 mM, 48 hours). Means of three biological
replications are shown. The gene names and expression have been included in the Supplementary Table 1. The color-scale represents the gene
expression normalized by the Z-score. (B) GSEA of the genes involved in IFN-a response using the RNA-seq data from H929 treated with DMSO or
doxorubicin. (C) qRT-PCR analysis of IFN-a response genes. Results are normalized to cells treated with DMSO. Means of three technical
replications are displayed; error bars represent SEMs. *P <0.05, **P <0.005, ***P <0.0005. (D) GO functional enrichment analysis of down-regulated
genes after doxorubicin treatment. (E) H929 and OPM-2 cells were treated with doxorubicin and then stained with DAPI and antibodies specific for
g-H2AX. (F) H929 and OPM-2 cells were treated with doxorubicin and then stained with DAPI and antibodies specific for dsDNA. Analyzes were
duplicated, and representative immunofluorescence micrographs are shown. gH2AX appears as red. dsDNA appears as green. DNA appears as blue.
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2.4 Disruption of DNA repair mediated
chemoresistance of MM cells

Based on preclinical findings, the DNA damage repair process

could trigger interferon-related immune responses (17, 23, 24). It is

well known that anthracyclines could inevitably damage nuclear

DNA (25–28). In our study, down-regulated differential expression

genes in H929 after doxorubicin treatment were significantly

enriched in DNA damage and DNA repair-related pathways

(Figure 3D). This result indicated that DNA was seriously

damaged and repair function was impaired in drug-sensitive cell

lines. To investigate whether the degree of DNA damage was

different in MM cells with different doxorubicin sensitivity,

immunofluorescent staining of g-H2AX was performed. Phospho-

H2AX or g-H2AX- is a marker of double-stranded DNA breaks (29,

30). Obviously, we observed higher fluorescence signals for g-H2AX

in H929 cells compared to the drug-insensitive cell line OPM-2

(Figure 3E), indicating that DNA damage was more severe in drug-

sensitive cell lines, whereas drug-insensitive cell lines had strong

DNA repair ability in the face of damage events. To confirm

whether DNA damage caused by anthracyclines produces dsDNA

(double-stranded DNA) that activates the interferon response in

drug-sensitive cell lines. We stained myeloma cells with a dsDNA-

specific antibody after anthracycline treatment and found that the

accumulation of dsDNA in the cytoplasm was more evident in

H929 cells than in OPM-2 cells (Figure 3F). These results confirmed

that drug-insensitive cell lines have a better ability to repair

damaged DNA in time, thus avoiding the interferon response.
3 Discussion

The major molecular mechanism of anthracyclines is their

intercalation in DNA to inhibit topoisomerase II and cause DNA

double strand breaks (DSBs) (31, 32). When cells encounter these

DNA lesions, timely repair is needed to preserve function and

survival (33, 34). Developing lymphocytes generate programmed

DSBs at specific locations due to V(D)J recombination (35). This

raises the question of whether there is a population of myeloma cells

with a strong DNA repair ability that makes them insensitive to

DNA damage drugs. Although the mechanism of action of

anthracyclines has been characterized, drug resistance remains a

challenge in effective anti-multiple myeloma therapy. We propose

that inherently resistant cell lines, such as OPM-2, and patients in

the MCL1-M high group may harbor intrinsic defects in the

interferon signaling pathway. The OPM-2 cells exhibit prompt

DNA repair mechanisms, facilitating continued cell proliferation

despite the inflicted damage. The transient nature of DNA damage

poses challenges in detecting interferon signals, as addition of IFN-

a cannot impede the ongoing DNA repair process, resulting in the

inability to reverse doxorubicin resistance. In our study, down-

regulated differential expression genes in H929 after doxorubicin

treatment were significantly enriched in DNA repair-related

pathways. This result indicated that DNA was seriously damaged
Frontiers in Oncology 06
and repair function was impaired. Type I interferon signals are

required for DNA damage response activation (35). Therefore,

when we add exogenous IFN-a to severely damaged cell lines

that further aggravate the DNA damage and lead to cell death.

We found that the absence of an IFN response may be associated

with drug resistance and provides potential combination treatment

approaches in patients sensitive to doxorubicin.

The major conclusion of our study is that MCL1-M can identify

a subpopulation of myeloma patients sensitive to anthracyclines,

and in vitro results demonstrate that anthracycline-sensitive

myeloma cells can be treated together with IFN-a therapy to

further promote tumor cell apoptosis. Although previous studies

have shown that anthracyclines can activate the IFN response, it

requires an immunogenic death that relies on the immune system to

trigger (16). In our study, anthracyclines induced the IFN response

in vitro by releasing dsDNA into the cytoplasm after DNA damage.

In addition, a previous study showed that sensitivity to DNA

damage was coupled with sensitivity to IFNs such that selection

for resistance to one leads to resistance to the other (36). To explore

the differences in IFN response between resistant and sensitive cell

lines, we focused on DNA damage repair. Analysis of

transcriptomic changes in H929 cells after doxorubicin treatment

identified a down-regulated DNA repair pathway. Recently, DNA

repair has been reported to influence genomic changes and drug

resistance in MM (33, 34, 37). Unrepaired DNA damage due to the

aberrant DNA repair response in MM exacerbates genomic

instability, enabling DNA release and drug resistance. Recent

studies have found that amplification of 1q21 amplification

improves the DNA repair ability of myeloma cells (38, 39). This

finding is consistent with our findings in MCL1-M, that is, patients

in MCL1-M were represented by 1q21 amplification. Furthermore,

the expression of the DNA repair pathway in the MCL1-M high

group was up-regulated compared to the MCL1-M low group.

Unfortunately, we were unable to collect enough patient samples

to validate our results.

In conclusion, the molecular classification of MCL1-M may

allow us to identify the subgroups sensitive to anthracycline

treatment, and the selection of IFN-a as adjuvant therapy in

these patients further improves the therapeutic effect, reduces the

dose of anthracyclines, and implements stratified treatment for

patients with different subtypes of MCL1-M.
4 Materials and methods

4.1 Cell lines and reagents

Multiple myeloma cell lines MM.1S and OPM-2 were

purchased from the Cell Bank (Chinese Academy of Sciences,

Beijing, China). RPMI-8226, H929, and U-266 cells were kindly

provided by Dr. Yang Yuan (Guizhou Provincial People’s Hospital).

Cell lines were cultured in RPMI1640 medium (GIBCO; Thermo

Fisher Scientific) supplemented with 10% FBS (GIBCO; Thermo

Fisher Scientific), 100 U/mL of penicillin, and 100 mg/mL of
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streptomycin (Sigma-Aldrich). Doxorubicin was purchased from

Selleckchem and resuspended in DMSO. Interferon-a (IFN-a,
SRP4595, Sigma) was reconstituted in water. The Trizol RNA

extraction reagent was purchased from Thermo Fisher Scientific.

Anti-g-H2AX (ab81299) was purchased from Abcam (Cambridge,

UK). Anti-dsDNA (SC-58749) was purchased from Santa

Cruz Biotechnology.
4.2 Drug treatment and cell viability assays

To evaluate the antiproliferative effects of doxorubicin and IFN-

a, MM cell lines (5×103 to 1×104 cells/well in 96-well plate) were

treated with a single drug or a combination of the two drugs or with

DMSO for 24 or 48 hours. Cell viability was evaluated using a Cell

Counting Kit-8 (Dojindo, Kumamoto, Japan) according to the

manufacturer’s instructions. The CI value was evaluated by

CompuSyn software.
4.3 Apoptosis assay

Apoptosis was evaluated by Annexin-V/PI staining and flow

cytometric analysis using an ApoScreen Annexin V Apoptosis Kit

(Southern Biotech, Birmingham, AL, USA) according to the

manufacturer’s instructions. Data were analyzed using FlowJo

software version 10.
4.4 Reverse transcription and quantitative
real-time PCR

Total RNA from multiple myeloma cells was extracted with

TRIzol (Thermo Fisher Scientific) following the manufacturer’s

instructions. Subsequently, reverse transcription of 1 µg RNA into

cDNA was carried out using a Hiscript II Q RT SuperMix reagent

kit (Vazyme, China). The RT-qPCR assay was then performed with

this mixture using SYBR Green PCR Master Mix (Roche

Diagnostics, Basel, Switzerland) in a 96-well PCR plate (Nest

Biotechnology, Wuxi, China).
4.5 Immunofluorescence assays

The cells were seeded in 6-well plates at a density of 2×105 cells/

well and cultured at 37°C for 24 hours. Doxorubicin at different

concentrations was added to the 6-well plates for 24 hours. After

treatment, cells were collected and incubated in poly-L-lysine-

coated slides for 1 h at 37°C. The cells were then fixed in 4%

paraformaldehyde for 20 min at room temperature, permeabilized

with 0.5% Triton X-100 for 15 min and blocked with 1% BSA

dissolved in PBS for 1 h. Cells were then incubated with anti-g-
H2AX or a primary antibody against dsDNA overnight at 4°C,

followed by goat anti-mouse IgG conjugated secondary antibodies

for 1 h at room temperature in the dark. The nuclei were stained
Frontiers in Oncology 07
with 0.1 mg/mL DAPI for 5 min. The cells were viewed using a

fluorescent microscope.
4.6 RNA-seq analysis

H929 cells were cultured for 48 hours in the presence or absence

of doxorubicin. RNA was extracted and used for library

construction and then submitted to the Illumina Novaseq 6000

platform for sequencing. Differentially expressed genes (DEG)

before and after drug treatment were identified using the DESeq2

package (version 1.36.0) (40). GO and Kyoto Encyclopedia of Genes

and Genomes (KEGG) analyses were employed to distinguish the

different biologic functions and pathways between DEGs. Gene set

enrichment analysis was performed using the Molecular Signature

Database (MSigDB) (41). The R package ‘OncoPredict’ of 402 drugs

was used to predict in vivo drug responses in patients with high and

low MCL1-M MM (21).
4.7 Statistical analyses

The statistical analysis was performed by using GraphPad Prism

9.0 (San Diego, CA, USA). The significance of differences was

determined by two-tailed paired Student’s t-test. Data shown in

the study were obtained from at least three independent

experiments and probability values of p<0.05 were considered to

be statistically significant.
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