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Objectives: To develop and validate various ultrasomics models based on

endoscopic ultrasonography (EUS) for retrospective differentiating pancreatic

neuroendocrine tumors (PNET) from pancreatic cancer.

Methods: A total of 231 patients, comprising 127 with pancreatic cancer and 104

with PNET, were retrospectively enrolled. These patients were randomly divided

into either a training or test cohort at a ratio of 7:3. Ultrasomics features were

extracted from conventional EUS images, focusing on delineating the region of

interest (ROI) for pancreatic lesions. Subsequently, dimensionality reduction of

the ultrasomics features was performed by applying the Mann-Whitney test and

least absolute shrinkage and selection operator (LASSO) algorithm. Eight

machine learning algorithms, namely logistic regression (LR), light gradient

boosting machine (LightGBM), multilayer perceptron (MLP), random forest (RF),

extra trees, k nearest neighbors (KNN), support vector machine (SVM), and

extreme gradient boosting (XGBoost), were employed to train prediction

models using nonzero coefficient features. The optimal ultrasomics model was

determined using a ROC curve and utilized for subsequent analysis. Clinical-

ultrasonic features were assessed using both univariate and multivariate logistic

regression. An ultrasomics nomogram model, integrating both ultrasomics and

clinical-ultrasonic features, was developed.

Results: A total of 107 EUS-based ultrasomics features were extracted, and 6

features with nonzero coefficients were ultimately retained. Among the eight

ultrasomics models based on machine learning algorithms, the RF model

exhibited superior performance with an AUC= 0.999 (95% CI 0.9977 - 1.0000)

in the training cohort and an AUC= 0.649 (95% CI 0.5215 - 0.7760) in the test

cohort. A clinical-ultrasonic model was established and evaluated, yielding an

AUC of 0.999 (95% CI 0.9961 - 1.0000) in the training cohort and 0.847 (95% CI

0.7543 - 0.9391) in the test cohort. Subsequently, the ultrasomics nomogram
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demonstrated a significant improvement in prediction accuracy in the test

cohort, as evidenced by an AUC of 0.884 (95% CI 0.8047 - 0.9635) and

confirmed by the Delong test. The calibration curve and decision curve

analysis (DCA) depicted this ultrasomics nomogram demonstrated superior

accuracy. They also yielded the highest net benefit for clinical decision-making

compared to alternative models.

Conclusions: A novel ultrasomics nomogram was proposed and validated, that

integrated clinical-ultrasonic and ultrasomics features obtained through EUS,

aiming to accurately and efficiently identify pancreatic cancer and PNET.
KEYWORDS

pancreatic neuroendocrine tumors, pancreatic cancer, endoscopic ultrasonography,
ultrasomics, machine learning, nomogram
Introduction

Pancreatic neuroendocrine tumors (PNET) are a rare

occurrence, constituting approximately 3%-5% of all pancreatic

tumors, and exhibit a significant degree of heterogeneity (1).

These tumors originate from pancreatic endocrine tissues and

rank as the second most prevalent pancreatic tumor, surpassed

only by pancreatic cancer (2). PNET are characterized by extremely

variable biological features spanning from low-grade malignant

tumors to immensely aggressive ones (3). Based on the capability

to secrete biologically active hormones and characteristic clinical

symptoms, PNET can be categorized into two distinct categories:

namely functional (F-PNET) and non-functional (NF-PNET) (4).

NF-PNET exhibit a greater incidence and a more unfavorable

prognosis than F-PNET, except the insulinomas (5). The

preoperative identification of PNET poses a considerable

challenge, relying primarily on pathological examination and

immunohistochemistry, with pancreatic cancer being the most

critical differential diagnosis (6). Consequently, the prompt and

accurate diagnosis and treatment of PNET hold utmost

significance (7).

Currently, a range of diagnostic imaging modalities, such as

computed tomography (CT), magnetic resonance imaging (MRI),

and transabdominal ultrasonography (US) are commonly applied

for the diagnosis of PNET. Compared to CT and MRI, endoscopic

ultrasonography (EUS) is regarded as one of the most accurate

imaging modalities for the diagnosis of pancreatic diseases because

of its ability to provide high-definition images of the pancreas and

its sensitivity ranging from 57% to 94% (8). According to the

consensus guidelines of the European Neuroendocrine Tumor

Society (ENETS) in 2023, EUS is considered the preferred

imaging modality following negative findings from alternative

noninvasive imaging techniques. This preference is due to EUS’s
02
ability to offer meticulous observation and estimation of PNET, as

well as its capacity to conduct a comprehensive scan of the whole

pancreas (9).

Currently, ongoing advancements in computer-aided detection

(CAD) and artificial intelligence (AI) have contributed to the gradual

emergence of radiomics as a promising research domain. Radiomics

enables the extraction and analysis of numerous objective and

internal image features through high-throughput techniques. These

features are subsequently utilized to develop diverse tumor diagnosis

and predictionmodels using various machine learning, deep learning,

and other algorithmic approaches (10). Numerous studies have

elucidated the utility of CT-based and MRI-based radiomics in

diagnosing and predicting PNET, showcasing its efficacy (11, 12).

However, MRI is contraindicated for certain populations, including

individuals with claustrophobia or metal implants. Additionally, the

time-consuming and costly nature of MRI restricts its widespread

clinical utility (13) Furthermore, CT presents drawbacks such as

radiation exposure risks and potential harm from contrast

agents (14).

Ultrasomics, a subfield of radiomics, involves the conversion of

digital ly encrypted medical images containing tumor

pathophysiology information into high-dimensional data that can

be analyzed. This technique has demonstrated efficacy in the precise

diagnosis of a range of malignant tumors, including liver cancer,

thyroid cancer, and breast cancer, yielding favorable outcomes (15).

However, the efficiency of ultrasomics based on normal EUS images

in enhancing the clinical diagnostic efficiency of PNET, despite EUS

being acknowledged as an exceptional imaging modality, has not

been validated.

In this research, a range of prevalent machine learning

algorithms was employed to develop and assess an effective

combined nomogram model based on ultrasomics and clinical

signatures, to distinguish PNET from pancreatic cancer.
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Materials and methods

Patient population

This retrospective study at our institution was approved by the

institutional ethics review board, which waived the requirement for

patient approval or signed informed consent to review medical images

or information. A total of 231 patients underwent pancreatic surgery

operation or EUS-guided fine-needle aspiration (EUS-FNA) at our

institution (The First Affiliated Hospital of Guangxi Medical

University) between January 2013 and October 2023, comprising 127

with pancreatic cancer and 104 with PNET, were retrospectively

enrolled. The inclusion and exclusion criteria are outlined as follows.

The inclusion criteria for patients were as follows: (1) underwent

preoperative EUS scan of the pancreas meticulously; (2) had pancreatic

cancers or PNET confirmed by postoperative pathology or EUS-FNA

pathology; and (3) had complete and clear EUS images available before

the patient’s preoperative or pathological biopsies. (4) Patients who

received no chemotherapy or radiotherapy before EUS. The exclusion

criteria for patients were as follows:(1) inability to display the whole

lesion; (2) significant motion artifacts or noticeable noise; (3) presence

of other types of tumors. The enrolled patients were randomized into a

training cohort and a test cohort at a ratio of 7:3. The flowchart for

enrolling the study population is shown in Figure 1.
EUS image acquisition

The study employed the standard dynamic EUS scan procedure

using the EU-ME2 (Olympus, Japan) and SU-9000 (FUJIFILM,

Japan) devices. A highly experienced EUS specialist with a record of

more than 5000 EUS procedures meticulously scanned the entire

pancreatic region and obtained high-resolution images of the

pancreatic masses. At the same time, to reduce the image bias

caused by different devices as much as possible, these images were

consistently standardized with a window width of 250 Hounsfield
Frontiers in Oncology 03
units (HU) and a window level of 125 HU. The imaging records

were gathered by retrieving data from our institutional Picture

Archive and Communication System (PACS).
Ultrasonic and clinical data analysis

This study retrospectively analyzed multiple clinical parameters,

such as age, gender, and pathological diagnosis. To enhance the study’s

credibility, all EUS images were meticulously examined and evaluated

by two proficient UES experts, each with 6–7 years of experience in

pancreatic EUS. In the case of disagreement, a consensus would be

reached by consultation. Crucially, these experts were blinded to the

histopathological and clinical data about the analyzed cases.

This study examined various parameters and features of the

pancreatic masses, including its location, echo characteristics,

uniformity of the echo, maximum diameter, shape, margin

characteristics, and the presence of calcifications or cystic

degeneration, via EUS. A detailed explanation of the ultrasonic

features can be found in the Supplementary Material. In instances

where multiple lesions were present in the pancreas, the analysis

primarily concentrated on the largest lesion with confirmed pathology.
Image segmentation

The images were stored in Digital Imaging and Communications

in Medicine (DICOM) format. Two EUS specialists, each with 6 and 7

years of experience, manually delineated the region of interest (ROI)

using a gray-scale EUS image of the most extensive long-axis cross-

section layer for pancreatic masses. This segmentation was performed

utilizing ITK-SNAP software (version 3.8.1), accessed at http://

www.itksnap.org. The specialists were unaware of the patients’

histopathological diagnosis. The lesions were captured carefully along

the margins on conventional EUS images, excluding adjacent normal

tissue, vessels, bile ducts, and pancreatic ducts. A comprehensive

diagram can be found in Figure 2.

Standardization techniques were employed to preprocess the

images and data, thereby guaranteeing the replicability of the results.

Both intra-observer and inter-observer replicability were assessed using

the intra-class correlation coefficient (ICC). A group of 102 patients,

comprising 81 individuals with pancreatic cancer and 21 with PNET,

was randomly chosen, and following a two-week interval, the same

EUS specialists performed ROI segmentation once more. An ICC value

exceeding 0.9 indicated a remarkable level of agreement.
Ultrasomics feature extraction

The classification of handcrafted features can be divided into three

distinct categories: geometric, intensity, and textural. Geometric

features pertain to the three-dimensional morphological attributes of

tumors. The intensity features encompass the statistical distribution of

voxel intensities within the tumor in the first order. Conversely, textural

features describe patterns and higher-order spatial distributions of

intensities. This article utilized a range of techniques, including Gray
FIGURE 1

Flowchart for enrolling the study population.
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Level Co-occurrence Matrix (GLCM), Gray Level Run Length Matrix

(GLRLM), Gray Level Size Zone Matrix (GLSZM), and Neighborhood

Gray-level Difference Matrix (NGTDM), to extract texture features.

The algorithms employed to extract radiomic features were based on

the image biomarker standardization initiative (IBSI) (16).
Ultrasomics feature selection

Toascertain the dependability of the ultrasomics features, we conducted

a Mann−Whitney U test to compare the PNET and pancreatic cancer

cohorts, followed by feature screening. Subsequently, only ultrasomics

features exhibiting p<0.05 were retained for subsequent analysis.

Correlation coefficient screening was conducted utilizing

Spearman’s rank correlation coefficient to assess the interrelationship

between each ultrasomics feature, aiming to ensure the robustness of the

features (Supplementary Figure 1). Any feature with a correlation

coefficient greater than 0.9 between any two features was retained with

one of them. A greedy recursive deletion method was employed for

feature filtration to enhance feature representation, systematically

removing the feature with the highest redundancy within the existing

set.Asa result, a total of 8ultrasomics featureswereultimatelypreserved.

Finally, the 10-fold cross-validation method was used to identify

ultrasomics features with nonzero coefficients using the least absolute

shrinkage and selection operator (LASSO) regression model. All

ultrasomics feature selection procedures were conducted within the

training cohort and subsequently applied to the test cohort. Ultrasomic

features with non-zero coefficients were selected for inclusion in the

regression model and combined to form an ultrasomics signature.

Subsequently, each patient was assigned an ultrasomics score by

applying a linear combination of the selected ultrasomics features
Frontiers in Oncology 04
and their corresponding coefficients. LASSO regression analysis was

conducted utilizing the Python scikit-learn package.
Construction of ultrasomics
signature model

The ultimate retained ultrasomics features were utilized in the

development of ultrasomics models. To identify a classifier model

with optimal tumor data recognition, our study employed eight

prominent machine learning algorithms training models, including

logistic regression (LR), light gradient boosting machine

(LightGBM), multilayer perceptron (MLP), random forest (RF),

extra trees, k nearest neighbors (KNN), support vector machine

(SVM), and extreme gradient boosting (XGBoost). The definitive

ultrasomics models were obtained through 5-fold cross-validation.

The diagnostic efficacy of these different machine learning models

was assessed through the evaluation of metrics such as the area

under the receiver operating characteristic curve (AUC), sensitivity,

accuracy, specificity, positive predictive value (PPV), and negative

predictive value (NPV). Ultimately, the most optimal ultrasomics

model was chosen and defined as the ultrasomics signature model.
Clinical- ultrasonic signature model

Furthermore, we conducted univariate logistic regression analysis

on each clinical predictor variable, encompassing both clinical and

ultrasonic characteristics. To determine statistically significant clinical-

ultrasonic features and establish the clinical-ultrasonic signature model,

we performed a multivariate logistic regression. This allowed us to
FIGURE 2

The workflow for this study.
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calculate the odds ratio (OR) and 95% confidence interval (CI) for

each variable.

The identical ultrasomics signature model was performed to

construct the clinical-ultrasonic signature model through the same

machine learning algorithm. To ensure equitable comparison, a fixed

5-fold cross-validation and test cohort were utilized. The performance

of this clinical-ultrasonic signature model was evaluated using various

metrics such as the area under the curve (AUC), accuracy, sensitivity,

specificity, PPV, and NPV. Additionally, the net benefit of the clinical-

ultrasonic signature model in identifying pancreatic cancer and PNET

was quantified through the use of decision curve analysis (DCA), which

involved the application of diverse threshold probabilities in both the

training and test cohorts.
Ultrasomics nomogram establishment
and assessment

Finally, an ultrasomics nomogram was developed in the test cohort

to intuitively and efficiently evaluate the incremental predictive value of

the ultrasomics signature for the clinical-ultrasonic signature. Based on

logistic regression analysis, the ultrasomics nomogram was constructed

by integrating the ultrasomics signature with the clinical-ultrasonic

signature. The consistency between the prediction of the nomogram

and the actual observation was compared by calculating the calibration

curve, which compared the prediction of the nomogram with the

actual observation.

The diagnostic effectiveness of the ultrasomics nomogram was

evaluated in both the training and test cohorts by constructing

receiver operating characteristic (ROC) curves. Subsequently, the

Delong test was conducted to compare the performance of the

ultrasomics nomogram, clinical-ultrasonic signature model, and

ultrasomics signature model in terms of the AUC.

Thecalibrationefficiencyof theultrasomicsnomogramwasassessed

by constructing calibration curves. At the same time, the Hosmer-

Lemeshow (H-L) analytical fit was employed to evaluate the calibration

capability of the ultrasomics nomogram. Additionally, mapping DCA

was utilized to evaluate the clinical utility of these predictive models.
Statistical analysis

We compared the clinical and ultrasonic features of the

participants utilizing an independent sample t-test, Mann-

Whitney U test, or X2 test, where appropriate. The threshold was

set at a two-tailed p-value < 0.05, indicating statistical significance.

Table 1 shows the baseline clinical and ultrasonic features of the

participants in the training and test cohorts respectively.
Results

Patient population and
ultrasonic characteristics

A total of 231 patients (102 women, 129 men) with pancreatic

tumors, comprising127patientswithpancreatic cancer and104patients
Frontiers in Oncology 05
with PNET, were included in this study, including 161 patients in the

training cohort and 70 patients in the testing cohort. The findings

illustrated that there was no significant difference in the gender ratio

between the patients in the training and test cohorts. All the details of the

clinical and ultrasonic characteristics are delineated in Table 1. The

outcomes of this study revealed significant differences in age, maximum

diameter, shape, margin characteristics, echo characteristics, and the

presence of cystic degeneration between pancreatic cancer patients and

PNETpatients in the trainingcohort.However,nosignificantdifferences

were observed in terms of echo characteristics or uniformity of the echo

in the test cohort. The results of univariate and multivariable logistic

regression analyses indicated that age, maximum diameter, and shape

independently predicted the presence of PNET.

The findings indicated that elderly individuals (OR 0.989; 95%

CI 0.985 to 0.992), those with an enlarged maximum diameter (OR

0.990; 95% CI 0.987 to 0.993), and those with an irregular shape

(OR 1.242; 95% CI 1.133 to 1.361) were more likely to be diagnosed

with pancreatic cancer (Table 2; Figure 3).
Ultrasomics feature extraction
and screening

A comprehensive set of 7 categories and 107 manually derived

ultrasomics features were obtained, comprising 18 first-order features,

and 14 shape features, while the remaining features were texture

features. Exhaustive information regarding these handcrafted features

can be found in the Supplementary Materials.

An in-house feature analysis program, PyRadiomics, was utilized to

extract all handcrafted features. Supplementary Figure 2 presents the

complete set of ultrasomics features along with their corresponding p-

value results. Following the downscaling of ultrasomics features and

LASSO logistic regression, a total of 6 ultrasomics features with nonzero

coefficients were retained. The coefficients and mean standard errors

(MSEs) of LASSO regression, resulting from the 10-fold validation, are

depicted in Figure 4.

The coefficients of these retained 6 ultrasomics features are

depicted in Figure 5, while the Ultrasomics score is shown as follows:
Ultrasomics score =0 .45022 - 0 .03094*or ig ina l_

firstorder_Skewness

-0.02680*original_glcm_ClusterShade

-0.05500*original_glrlm_ShortRunEmphasis

-0.05942*original_glszm_ZoneVariance

-0.00677*original_ngtdm_Busyness

-0.01459*original_ngtdm_Strength
Ultrasomics signature and its performance

The ROC curers and AUCs of the eight ultrasomics machine-

learning models obtained with the eight mainstream machine-

learning algorithms in the training and test cohorts are presented

in Figure 6. Additionally, more details are shown in Table 3.
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Concerning the training cohort, the ExtraTrees model

demonstrated superior performance, achieving an AUC of 1.000

and an accuracy of 1.000. Conversely, in the test cohort, the RF

model emerged as the most effective ultrasomics model, exhibiting

an AUC of 0.649, an accuracy of 0.600, a sensitivity of 0.567, a

specificity of 0.775, a PPV of 0.550, and an NPV of 0.620.

The ExtraTrees and XGBoost models presented a tendency

toward overfitting in the training and test cohort. Contrarily, the RF

model seemed to own better consistency between the training and

test cohorts, with a great net benefit as presented in the DCA curve

(Supplementary Figure 3). To establish the stability and

sustainability of the ultrasomics machine-learning model, the RF

model was determined to be the most suitable for subsequent
Frontiers in Oncology 06
analysis and defined as the ultrasomics signature model.

Consequently, RF was selected as the foundational algorithm for

developing the clinical-ultrasonic signature.
Ultrasomics nomogram construction
and assessment

Both the clinical-ultrasonic signature and ultrasomics signature

appear to exhibit overfitting tendencies in the training cohort, as

indicated in Table 3. Nevertheless, these two models demonstrated a

good fit in the test cohort. To address this issue, an ultrasomics

nomogram model was employed to combine the ultrasomics
TABLE 1 Clinical and ultrasonic characteristics in the training and test cohorts.

Variable Training cohort Test cohort

Pancreatic
cancer

PNET P-value
Pancreatic
Cancer

PNET P-value

Age 60.09 ± 8.78 47.18 ± 13.64 <0.001 57.58 ± 10.55 46.23 ± 12.22 <0.001

Maximum diameter 37.19 ± 12.84 20.02 ± 12.07 <0.001 37.42 ± 13.00 24.25 ± 15.43 <0.001

Gender 0.102 0.702

0 43(49.43) 47(63.51) 21(52.50) 18(60.00)

1 44(50.57%) 27(36.49) 19(47.50) 12(40.00)

Shape <0.001 <0.001

0 64(73.56) 21(28.38) 35(87.50) 14(46.67)

1 23(26.44) 53(71.62) 5(12.50) 16(53.33)

Margin <0.001 0.003

0 37(42.53) 7(9.46) 20(50.00) 4(13.33)

1 50(57.47) 67(90.54) 20(50.00) 26(86.67)

Echo 0.023 0.423

0 3(3.45) 11(14.86) 2(5.00) 4(13.33)

1 84(96.55) 63(85.14) 38(95.00) 26(86.67)

uniformity <0.001 0.174

0 65(74.71) 27(36.49) 30(75.00) 17(56.67)

1 22(25.29) 47(63.51) 10(25.00) 13(43.33)

Calcification 0.206

0 82(94.25) 73(98.65) 0.294 36(90.00) 30(100.00)

1 5(5.75) 1(1.35) 4(10.00) 0(0)

Cystic areas <0.001 0.256

0 62(71.26) 72(97.30) 29(72.50) 26(86.67)

1 25(28.74) 2(2.70) 11(27.50) 4(13.33)

Location 0.144 0.917

0 44(50.57) 28(37.84) 23(57.50) 16(53.33)

1 43(49.43) 46(62.16) 17(42.50) 14(46.67)
fro
Gender: “0” means female, “1” means male; Shape: “0”means irregular shape, “1”means regular shape; Margin: “0” means unclear margin of lesion, “1” means clear margin of lesion; Echo: “0”
means means not hypoechoic of lesion, “1”means hypoechoic of lesion; uniformity: “0”means nonuniformity of echo; “1”means uniformity of echo; Calcification: “0”means no calcification, “1”
means calcification; Cystic areas: “0” means no cystic areas, “1” means cystic areas; Location: “0” means head and uncinate process of the pancreas, “1” means body and tail of the pancreas.
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signature and clinical-ultrasonic signature, resulting in the most

optimal performance achieved by constructing a more precise and

consistent prediction model. The ROC curves of these three models,

namely the clinical-ultrasonic signature model, ultrasomics

signature model, and ultrasomics nomogram, are exhibited in

Figure 7 for both the training and test cohorts. To assess the

effectiveness of these models, the Delong test was conducted.

Fortunate ly , the AUC of the ultrasomics nomogram

demonstrated significant superiority over the ultrasomics

signature model and clinical-ultrasonic signature model in the

testing cohort (Table 4), indicating that this ultrasomics

nomogram (Figure 8) exhibi ted the highest level of

diagnostic efficacy.

The calibration curves of the ultrasomics nomogram performed

respectable consistency between the predicted and observed PNET

in both the training and test cohorts. The results of the H-L test

illustrated that the ultrasomics nomogram had greater prediction

accuracy than the other models (Table 4). The calibration curves for

the training and test cohorts are displayed in Figure 9.

Additionally, DCA curves were conducted to assess the

performance of each model, and the results are depicted in
Frontiers in Oncology 07
Figure 10. The ultrasomics nomogram demonstrated a significant

net benefit for patients receiving intervention based on its

prediction probability compared to the hypothetical scenarios

where no prediction model was accessible, such as the treat-all or

treat-none schemes. Furthermore, the ultrasomics nomogram

exhibited elevated values compared to those of the other

signatures in both the training and test cohorts. Consequently,

this ultrasomics nomogram has been shown to potentially enhance

the clinical efficacy of predicting PNET, before surgery and EUS-

FNA procedures.
Discussion

The ability of EUS to perform comprehensive ultrasound scans

of the entire pancreas from the stomach and duodenum, while

maintaining proximity and minimal interference, has been widely

acknowledged. This capability enables the generation of high-

resolution images and facilitates the visualization of intricate

anatomical features. Furthermore, the potential for tissue

acquisition through EUS-FNA enhances the diagnostic accuracy
FIGURE 3

The forest map of univariate logistic regression of clinical and ultrasonic features. *** means P < 0.001.
TABLE 2 Univariate and multivariable logistic regression analyses for selecting clinical and ultrasonic features.

Variable
Univariate analysis Multivariate analysis

OR(95% CI) P-value OR(95% CI) P-value

Age 0.981(0.978, 0.985) 0.000 0.989(0.985,0.992) 0.000

Maximum diameter 0.983(0.980, 0.986) 0.000 0.990(0.987,0.993) 0.000

Shape 1.658(1.422,1.732) 0.000 1.242(1.133,1.361) 0.000

Margin 1.505(1.307,1.680) 0.000 1.124(1.017,1.242) 0.055

Echo 0.720(0.596, 0.871) 0.005 0.960(0.829,1.112) 0.646

uniformity 1.399(1.260,1.553) 0.000 1.057(0.967,1.156) 0.306

Calcification 0.693(0.533,0.903) 0.023 0.803(0.658,0.978) 0.068

Cystic areas 0.687(0.600, 0.786) 0.000 0.916(0.819,1.024) 0.197

Location 1.109(0.996,1.236) 0.115

Gender 0.886(0.795,0.987) 0.066
OR, odds ratio; CI, confidence interval.
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of EUS, positioning it as one of the most reliable approaches for

diagnosing PNET. Moreover, endoscopic ultrasound-fine needle

aspiration/biopsy (EUS-FNA/B) is a precise method for

determining the pathological grading of PNET, with a pooled

estimate rate for overall concordance of 80.3% (95% CI 75.6–

85.1) (17). Based on a comprehensive analysis of ten prior studies

involving a total of 261 participants, EUS had been shown to

demonstrate a commendable average predictive accuracy of 90%

(with a range of 77–100%) in the diagnosis of PNET (18). The

Chinese Neuroendocrine Tumor (CSNET) collaboration has

reached a consensus on the treatment strategy for scattered

solitary small NF-PNET, recommending surgical resection and

lymph node dissection for most <2cm NF-PNET (19). According

to Manta et al, patients diagnosed with pathologically confirmed

PNET underwent simultaneous preoperative CT and EUS

examinations. The overall detection rate of CT for detecting

lesions was 64%. However, for lesions with a diameter less than

10 mm and a range of 11–20 mm, the CT missed diagnosis rate was

remarkably high at 68% and 15% respectively. Conversely, EUS had

demonstrated a successful detection rate of approximately 47.5% for

small pancreatic PNET lesions measuring between 4 and 10 mm in

diameter (20). Preoperative EUS imaging for F-PNET can
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accurately assess the correlation and proximity of the lesion to

the main pancreatic duct, thereby playing a pivotal role in

determining the appropriate surgical approach, whether it is local

or radical resection (21). In some PNET patients, MEN1 may be

complicated, and in these patients, multiple small pancreatic lesions

are common. Given the limited efficacy of conventional CT and

MRI for identifying these small lesions, the utilization of EUS and

contrast-enhanced EUS is highly recommended (22). Consequently,

EUS plays a crucial role in the detection, diagnosis, and operation

strategy selection of PNET.

As previously elucidated, our study provides evidence that

patients with PNET may exhibit a younger age profile, and the

lesions are more likely to have a shorter diameter and regular shape,

than those with pancreatic cancer. Furthermore, the variables of

age, maximum diameter, and shape were found to be independent

predictors of PNET. In line with our findings, Iordache S observed a

statistically significant difference in the age of patients with

pancreatic adenocarcinoma compared to those with PNET (62.40

± 11.24 vs 62.40 ± 11.24, P = 0.0119) (23). PNET was commonly

distinguished by low-intensity echoes, well-defined borders, regular

roundness in shape, vascularization, and uniform internal echo

patterns (24). Furthermore, it has been reported that the median
BA

FIGURE 4

Ultrasomics feature selection with the LASSO regression model. (A) The LASSO model’s tuning parameter (l) selection used 10-fold cross-validation
via minimum criterion. The vertical lines illustrate the optimal value of the LASSO tuning parameter (l). (B) LASSO coefficient profile plot with
different log (l) was displayed. The vertical dashed lines represent 6 ultrasomics features with nonzero coefficients selected with the optimal l value.
FIGURE 5

The bar graph of 6 ultrasomics features that achieved nonzero coefficients.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1359364
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mo et al. 10.3389/fonc.2024.1359364
B

A

FIGURE 6

The ROC curves of different ultrasomics models based on eight machine-learning algorithms for predicting PNET. (A) The ROC curves of different
ultrasomics models in the training cohort. (B) The ROC curves of different ultrasomics models in the test cohort.
TABLE 3 Diagnostic performance of different models for predicting PNET in training and test cohorts.

Model Cohort AUC(95% CI) Accuracy Sensitivity Specificity PPV NPV

LR Training 0.626(0.5400 - 0.7116) 0.571 0.432 0.690 0.542 0.588

Test 0.562(0.4234 - 0.6999) 0.557 0.400 0.675 0.480 0.600

SVM Training 0.711(0.6308 - 0.7903) 0.634 0.243 0.966 0.857 0.600

Test 0.575(0.4362 - 0.7147) 0.586 0.133 0.925 0.571 0.587

KNN Training 0.776(0.7080 - 0.8431) 0.714 0.676 0.747 0.694 0.612

Test 0.564(0.4302 - 0.6982) 0.586 0.367 0.750 0.524 0.956

RF* Training 0.999(0.9977 - 1.0000) 0.975 0.946 1.000 1.000 0.956

(Continued)
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volume of PNET was notably smaller than that of pancreatic

adenocarcinomas (25). In summary, the characteristics of the

clinical and EUS ultrasonic features observed in this study were

extremely consistent with those of previous reports in the literature,

further validating the reliability of the research results.

The acquisition of technical expertise via EUS was a

demanding endeavor, characterized by a steep and intricate

learning curve (26). According to the American Society for

Gastrointestinal Endoscopy (ASGE), a comprehensive EUS

practice should encompass a minimum of two years of routine

gastrointestinal endoscopy experience, coupled with at least one

year of specialized training in biliopancreatic EUS (27). Contrary

to the normal US and digestive endoscopy, EUS necessitated a

higher level of proficiency in endoscopic techniques, exceptional

spatial perception, extensive diagnostic experience, and a

comprehensive understanding of anatomical knowledge by

physicians. These factors contributed to the variability in

recogn i z ing and in t e rpre t ing macroscop i c imag ing

characteristics of EUS images, thereby limiting the specificity

and sensitivity of EUS diagnosis (28). Cystic changes were

observed in 8–17% of PNET patients and manifest as unilocular,

septated, microcystic, or mixed solid and cystic formations.

Nevertheless, these cystic alterations lacked specificity, rendering

differentiation through radiology or EUS alone a challenging task

(29). The subjective interpretation of EUS image features,

including tumor size, shape, border, and vessel invasion, relied

heavily on the operator’s experience, resulting in inadequate

homogeneity. Therefore, there is a pressing need for a novel

approach utilizing EUS imaging that offers enhanced objectivity

and accuracy in predicting PNET.

Radiomics enables the extraction of multidimensional data

from medical images that surpass human visual assessment. By
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converting medical images into extractable data, this approach

facilitates the design of classification models utilizing machine

learning algorithms. Consequently, this approach enhanced the

identification of various tumor types with increased reliability and

objectivity (6, 30). Recently, the academic community has shown

increasing interest in the exploration of EUS-based ultrasomics. In a

multicenter study, Li XY demonstrated that the integration of

machine learning algorithms with EUS ultrasomics features

enabled the development of an effective classification model for

assessing the malignancy grade of gastrointestinal stromal tumors

(GISTs) (6). Gu et al. successfully devised a deep-learning

ultrasomics model utilizing EUS images to diagnose pancreatic

ductal adenocarcinoma. This model effectively mitigated the

diagnostic disparity among ultrasound endoscopy physicians of

varying expertise levels, thereby enhancing the precision of their

diagnoses (31). The EUS-based ultrasomics model was developed to

accurately distinguish between gastric GISTs, smooth muscle

tumors, and nerve sheath tumors (32). Regrettably, the literature

lacked published studies that have utilized EUS imaging ultrasomics

to diagnose and predict PNET.

Our study revealed that a comprehensive set of 107 EUS

imaging ultrasomics features were initial ly extracted.

Subsequently, through rigorous statistical analyses including

variance analysis, correlation analysis, and LASSO regression

analysis, a subset of 6 ultrasomics features were identified as

highly significant and definitively associated with PNET. Multiple

mainstream machine learning algorithms were used simultaneously

to construct the most appropriate two-class prediction model for

distinguishing PNET from pancreatic cancer, to overcome the

limitations of single algorithms. In this instance, the RF algorithm

seemed to demonstrate superior accuracy and consistency and was

subsequently applied for further model development. In the
TABLE 3 Continued

Model Cohort AUC(95% CI) Accuracy Sensitivity Specificity PPV NPV

Test 0.649(0.5215 - 0.7760) 0.600 0.567 0.775 0.550 0.620

ExtraTrees Training 1.000(1.0000 - 1.0000) 1.000 1.000 1.000 1.000 1.000

Test 0.613(0.4775 - 0.7491) 0.614 0.500 0.700 0.556 0.651

XGBoost Training 1.000(1.0000 - 1.0000) 0.988 0.973 1.000 1.000 0.978

Test 0.593(0.4530 - 0.7337) 0.586 0.500 0.650 0.517 0.634

LightGBM Training 0.803(0.7342 - 0.8708) 0.720 0.581 0.839 1.000 1.000

Test 0.602(0.4618 - 0.7423) 0.629 0.433 0.775 0.591 0.646

MLP Training 0.588(0.4999 - 0.6756) 0.540 0.122 0.897 0.500 0.545

Test 0.489(0.3508 - 0.6275) 0.557 0.033 0.950 0.333 0.567

Clinical signature* Training 0.999(0.9961 - 1.0000) 0.988 0.986 0.989 0.986 0.989

Test 0.844(0.7513 - 0.9370) 0.786 0.733 0.825 0.759 0.805

Radiomics nomogram* Training 1.000(1.0000 - 1.0000) 1.000 1.000 1.000 1.000 1.000

Test 0.884(0.8047 - 0.9635) 0.800 0.733 0.850 0.786 0.810
*Represents models were constructed based on RF.
LR, logistic regression; SVM, support vector machine; RF, random forest; KNN, k nearest neighbors; LightGBM, light gradient boosting machine; MLP, multilayer perceptron; XGBoost, extreme
gradient boosting.
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training cohort, both the ultrasomics signature model and clinical-

ultrasonic signature model based on the RF algorithm achieved

respectable AUCs. However, the effectiveness of the ultrasomics

signature model was inferior to that of the clinical-ultrasonic

signature model. Interestingly, we constructed an ultrasomics

nomogram by combining the ultrasomics signature and clinical-

ultrasonic signature as described previously, with a significant

improvement in prediction efficiency in the testing cohort.
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Moreover, the DeLong test and H-L test have confirmed the

validity and accuracy of this ultrasomics nomogram.

The RF algorithm, an ensemble learning technique that

integrates a variety of decision trees, stands out for its exceptional

accuracy compared to other existing algorithms and has the

potential to enhance selection during classification prediction

(33). Our results illustrated that although the clinical-ultrasonic

signature model owned relatively high effectiveness, the ultrasomics
B

A

FIGURE 7

The ROC curves of the ultrasomics nomogram model (abbreviated “Nomogram”), clinical-ultrasonic signature (abbreviated “Clinic Signature”), and
ultrasomics signature (abbreviated “Ultra Signature”) in the (A) training cohort and (B) test cohort, respectively.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1359364
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mo et al. 10.3389/fonc.2024.1359364
nomogram achieved better predictive performance. To the best of

our knowledge, this study represents the initial demonstration that
Frontiers in Oncology 12
the EUS-based ultrasomics nomogram significantly and efficiently

improved the prediction of PNET. Given the higher detection rate

of PNET and the superior preoperative lesion detail assessment

capabilities of EUS compared to CT and MRI, these findings are

expected to contribute to the advancement of EUS utilization in the

management of PNET.

Despite the notable efficacy of the ultrasomics nomogram

utilizing EUS imaging, this study is subject to certain limitations.

Notably, this retrospective analysis was conducted within a single

institution based on different EUS devices, potentially introducing

selection and systematic bias. Additionally, all boundary definitions

were derived frommanual segmentation in image segmentation, and

bias was inevitable (34). Furthermore, it is essential to acknowledge

that this study utilized only conventional EUS images, disregarding

the potential added value of contrast-enhanced EUS and

elastography EUS techniques (22, 35, 36). Hence, it is imperative

to undertake future studies on EUS-based ultrasomics for PNET that

encompass multiple centers, large sample sizes, prospective designs,

and multimodal approaches based on the same equipment. Another

limitation of this study was that all the ultrasomics features were

assessed in two instead of three dimensions. We expect that

extending this work to three dimensions based on EUS videos

may yield improved model accuracy and representability in the

future. Moreover, regarding the critical value of pathological grade

and tumor size in the diagnosis, treatment, and prognosis of PNET

(37), the predictive value of EUS-based ultrasomics for PNET

pathological grading and small tumors (<15mm) also needs to be

further evaluated. A concurrent EUS-FNA subgroup analysis to

further clarify the accuracy of EUS-based ultrasomics would also

be of high value. Additionally, in clinical practice, the artifacts and

noise of EUS images are not always avoided, so integrating deep

learning techniques based on automatic image segmentation could

mitigate bias and enhance the generalizability and applicability of

the models.
TABLE 4 The results of Delong test and Hosmer-Lemeshow test.

Model P-value

Training
cohort

Test cohort

Delong test

Nomogram vs clinical signature 0.276 0.049

Nomogram vs ultrasomics signature 0.184 0.002

Hosmer-Lemeshow test

ultrasomics signature 0.004 0.065

clinical signature 0.513 0.000

Nomogram 0.523 0.102
FIGURE 8

The ultrasomics nomogram model predicts PNET based on clinical-
ultrasonic signature (abbreviated “Clinic_Sig”) and ultrasomics
signatures (abbreviated “Ultra_Sig”) simultaneously. The nomogram
is used by summing all points identified on the scale for each
variable. The total points projected on the bottom scales indicate
the probabilities of PNET.
BA

FIGURE 9

The calibration curves for the ultrasomics nomogram model (abbreviated “Nomogram”), clinical-ultrasonic signature (abbreviated “Clinic Signature”),
and ultrasomics signature (abbreviated “Ultra Signature”) in the (A) training cohort and (B) test cohort, respectively.
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Conclusion

In summary, an efficient EUS-based ultrasomics nomogram,

incorporating clinical-ultrasonic and ultrasomics signatures, was

proposed and validated for predicting pancreatic cancer and PNET.

These outcomes provide potential novel insight into improving

clinical prediction and treatment strategies for PNET.
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S. Interleukin 1b gene single-nucleotide polymorphisms and susceptibility to
pancreatic neuroendocrine tumors. DNA Cell Biol. (2012) 31(4):531–6. doi: 10.1089/
dna.2011.1317

8. Melita G, Pallio S, Tortora A, Crinò SF, Macrì A, Dionigi G. Diagnostic and
interventional role of endoscopic ultrasonography for the management of pancreatic
neuroendocrine neoplasms. J Clin Med. (2021) 10(12):2638. doi: 10.3390/jcm10122638

9. Hofland J, Falconi M, Christ E, Castaño JP, Faggiano A, Lamarca A, et al.
European Neuroendocrine Tumor Society 2023 guidance paper for functioning
pancreatic neuroendocrine tumour syndromes. J Neuroendocrinol. (2023) 35:e13318.
doi: 10.1111/jne.13318

10. Parasher G, Wong M, Rawat M. Evolving role of artificial intelligence in
gastrointestinal endoscopy. World J Gastroenterol. (2020) 26:7287–98. doi: 10.3748/
wjg.v26.i46.7287

11. Zhu HB, Zhu HT, Jiang L, Nie P, Hu J, Tang W, et al. Radiomics analysis from
magnetic resonance imaging in predicting the grade of nonfunctioning pancreatic
neuroendocrine tumors: a multicenter study. Eur Radiol. (2024) 34(1):90–102.
doi: 10.1007/s00330-023-09957-7

12. Gu D, Hu Y, Ding H, Wei J, Chen K, Liu H, et al. CT radiomics may predict the
grade of pancreatic neuroendocrine tumors: a multicenter study. Eur Radiol. (2019)
29:6880–90. doi: 10.1007/s00330-019-06176-x

13. Zhang L, Qi Q, Li Q, Ren S, Liu S, Mao B, et al. Ultrasomics prediction for
cytokeratin 19 expression in hepatocellular carcinoma: A multicenter study. Front
Oncol. (2022) 12:994456. doi: 10.3389/fonc.2022.994456

14. Tu C, Shen H, Liu R, Wang X, Li X, Yuan X, et al. Myocardial extracellular
volume derived from contrast-enhanced chest computed tomography for longitudinal
evaluation of cardiotoxicity in patients with breast cancer treated with anthracyclines.
Insights into Imaging. (2022) 13:85. doi: 10.1186/s13244-022-01224-5

15. Yin R, Jiang M, LvWZ, Jiang F, Li J, Hu B, et al. Study processes and applications
of ultrasomics in precision medicine. Front Oncol. (2020) 10:1736. doi: 10.3389/
fonc.2020.01736

16. Fornacon-Wood I, Mistry H, Ackermann CJ, Blackhall F, McPartlin A, Faivre-
Finn C, et al. Reliability and prognostic value of radiomic features are highly dependent
on choice of feature extraction platform. Eur Radiol. (2020) 30:6241–50. doi: 10.1007/
s00330-020-06957-9

17. Tacelli M, Bina N, Crinò SF, Facciorusso A, Celsa C, Vanni AS, et al. Reliability
of grading preoperative pancreatic neuroendocrine tumors on EUS specimens: a
systematic review with meta-analysis of aggregate and individual data. Gastrointest
Endosc. (2022) 96(6):898–908.e823. doi: 10.1016/j.gie.2022.07.014

18. Sundin A, Vullierme MP, Kaltsas G, Plöckinger U. ENETS Consensus
Guidelines for the Standards of Care in Neuroendocrine Tumors: radiological
examinations. Neuroendocrinology. (2009) 90:167–83. doi: 10.1159/000184855

19. Yang G, Ji M, Chen J, Chen R, Chen Y, Fu D, et al. Surgery management for
sporadic small (ma cm), non-functioning pancreatic neuroendocrine tumors: a
consensus statement by the Chinese Study Group for Neuroendocrine Tumors
(CSNET). Int J Oncol. (2017) 50:567–74. doi: 10.3892/ijo.2016.3826

20. Zilli A, Arcidiacono PG, Conte D, Massironi S. Clinical impact of endoscopic
ultrasonography on the management of neuroendocrine tumors: lights and shadows.
Digestive liver Dis. (2018) 50:6–14. doi: 10.1016/j.dld.2017.10.007

21. Giuliani T, Marchegiani G, Girgis MD, Crinò SF, Muthusamy VR, Bernardoni L,
et al. Endoscopic placement of pancreatic stent for "Deep" pancreatic enucleations
operative technique and preliminary experience at two high-volume centers. Surg
endoscopy. (2020) 34:2796–802. doi: 10.1007/s00464-020-07501-y

22. Costache MI, Cazacu IM, Dietrich CF, Petrone MC, Arcidiacono PG, Giovannini
M, et al. Clinical impact of strain histogram EUS elastography and contrast-enhanced
EUS for the differential diagnosis of focal pancreatic masses: A prospective multicentric
study. Endoscopic ultrasound. (2020) 9:116–21. doi: 10.4103/eus.eus_69_19

23. Iordache S, Angelescu R, Filip MM, Costache MI, Popescu CF, Gheonea DI, et al.
Power Doppler endoscopic ultrasound for the assessment of pancreatic neuroendocrine
tumors. Endoscopic ultrasound. (2012) 1:150–5. doi: 10.7178/eus

24. Di Leo M, Poliani L, Rahal D, Auriemma F, Anderloni A, Ridolfi C, et al.
Pancreatic neuroendocrine tumours: the role of endoscopic ultrasound biopsy in
diagnosis and grading based on the WHO 2017 classification. Digestive Dis (Basel
Switzerland). (2019) 37:325–33. doi: 10.1159/000499172

25. Baxi AC, Jiang Q, Hao J, Yang Z, Woods K, Keilin S, et al. The effect of solid
pancreatic mass lesions on pancreatic duct diameter at endoscopic ultrasound.
Endoscopic ultrasound. (2017) 6:103–8. doi: 10.4103/2303-9027.204812

26. Wani S, Keswani R, Hall M, Han S, Ali MA, Brauer B, et al. A prospective
multicenter study evaluating learning curves and competence in endoscopic ultrasound
and endoscopic retrograde cholangiopancreatography among advanced endoscopy
trainees: the rapid assessment of trainee endoscopy skills study. Clin Gastroenterol
Hepatol. (2017) 15(11):1758–67.e1711. doi: 10.1016/j.cgh.2017.06.012

27. Cho CM. Training in endoscopy: endoscopic ultrasound. Clin endoscopy. (2017)
50:340–4. doi: 10.5946/ce.2017.067

28. Zhang J, Zhu L, Yao L, Ding X, Chen D, Wu H, et al. Deep learning-based
pancreas segmentation and station recognition system in EUS: development and
validation of a useful training tool (with video). Gastrointest Endosc. (2020) 92
(4):874–85.e873. doi: 10.1016/j.gie.2020.04.071

29. Lee LS. Diagnosis of pancreatic neuroendocrine tumors and the role of
endoscopic ultrasound. Gastroenterol Hepatol (N Y). (2010) 6(8):520–2.

30. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures,
they are data. Radiology. (2016) 278:563–77. doi: 10.1148/radiol.2015151169

31. Gu J, Pan J, Hu J, Dai L, Zhang K, Wang B, et al. Prospective assessment of
pancreatic ductal adenocarcinoma diagnosis from endoscopic ultrasonography images
with the assistance of deep learning. Cancer. (2023) 129:2214–23. doi: 10.1002/
cncr.34772

32. Zhang XD, Zhang L, Gong TT, Wang ZR, Guo KL, Li J, et al. A combined
radiomic model distinguishing GISTs from leiomyomas and schwannomas in the
stomach based on endoscopic ultrasonography images. J Appl Clin Med Phys. (2023)
24:e14023. doi: 10.1002/acm2.14023

33. Zheng Y, Zhou D, Liu H, Wen M. CT-based radiomics analysis of different
machine learning models for differentiating benign and Malignant parotid tumors. Eur
Radiol. (2022) 32:6953–64. doi: 10.1007/s00330-022-08830-3

34. Lohmann P, Bousabarah K, Hoevels M, Treuer H. Radiomics in radiation
oncology-basics, methods, and limitations. Strahlentherapie und Onkologie: Organ
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2024.1359364/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2024.1359364/full#supplementary-material
https://doi.org/10.1158/1078-0432.CCR-19-2884
https://doi.org/10.1158/1078-0432.CCR-19-2884
https://doi.org/10.7150/jca.26649
https://doi.org/10.7150/jca.26649
https://doi.org/10.1002/cncr.31057
https://doi.org/10.2147/OTT
https://doi.org/10.1038/nrendo.2018.3
https://doi.org/10.1038/nrendo.2018.3
https://doi.org/10.1007/s11548-019-01993-3
https://doi.org/10.1089/dna.2011.1317
https://doi.org/10.1089/dna.2011.1317
https://doi.org/10.3390/jcm10122638
https://doi.org/10.1111/jne.13318
https://doi.org/10.3748/wjg.v26.i46.7287
https://doi.org/10.3748/wjg.v26.i46.7287
https://doi.org/10.1007/s00330-023-09957-7
https://doi.org/10.1007/s00330-019-06176-x
https://doi.org/10.3389/fonc.2022.994456
https://doi.org/10.1186/s13244-022-01224-5
https://doi.org/10.3389/fonc.2020.01736
https://doi.org/10.3389/fonc.2020.01736
https://doi.org/10.1007/s00330-020-06957-9
https://doi.org/10.1007/s00330-020-06957-9
https://doi.org/10.1016/j.gie.2022.07.014
https://doi.org/10.1159/000184855
https://doi.org/10.3892/ijo.2016.3826
https://doi.org/10.1016/j.dld.2017.10.007
https://doi.org/10.1007/s00464-020-07501-y
https://doi.org/10.4103/eus.eus_69_19
https://doi.org/10.7178/eus
https://doi.org/10.1159/000499172
https://doi.org/10.4103/2303-9027.204812
https://doi.org/10.1016/j.cgh.2017.06.012
https://doi.org/10.5946/ce.2017.067
https://doi.org/10.1016/j.gie.2020.04.071
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1002/cncr.34772
https://doi.org/10.1002/cncr.34772
https://doi.org/10.1002/acm2.14023
https://doi.org/10.1007/s00330-022-08830-3
https://doi.org/10.3389/fonc.2024.1359364
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mo et al. 10.3389/fonc.2024.1359364
der Deutschen Rontgengesellschaft …. (2020) 196:848–55. doi: 10.1007/s00066-020-
01663-3

35. Franchellucci G, Andreozzi M, Carrara S, De Luca L, Auriemma F, Paduano D,
et al. Contrast enhanced EUS for predicting solid pancreatic neuroendocrine tumor
grade and aggressiveness. Diagnostics (Basel). (2023) 13(2):239. doi: 10.3390/
diagnostics13020239
Frontiers in Oncology 15
36. Tang A, Tian L, Gao K, Liu R, Hu S, Liu J, et al. Contrast-enhanced harmonic
endoscopic ultrasound (CH-EUS) MASTER: A novel deep learning-based system in
pancreatic mass diagnosis. Cancer Med. (2023) 12:7962–73. doi: 10.1002/cam4.5578

37. Crinò SF, Conti Bellocchi MC, Bernardoni L, Manfrin E, Parisi A, Amodio A, et al.
Diagnostic yield of EUS-FNA of small (≤15mm) solid pancreatic lesions using a 25-gauge
needle.Hepatobiliary Pancreat Dis Int. (2018) 17(1):70–4. doi: 10.1016/j.hbpd.2018.01.010
frontiersin.org

https://doi.org/10.1007/s00066-020-01663-3
https://doi.org/10.1007/s00066-020-01663-3
https://doi.org/10.3390/diagnostics13020239
https://doi.org/10.3390/diagnostics13020239
https://doi.org/10.1002/cam4.5578
https://doi.org/10.1016/j.hbpd.2018.01.010
https://doi.org/10.3389/fonc.2024.1359364
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mo et al. 10.3389/fonc.2024.1359364
Glossary

EUS endoscopic ultrasound

PNET pancreatic neuroendocrine tumors

LASSO least absolute shrinkage, and selection operator

LR logistic regression

SVM support vector machine

RF random forest

KNN k nearest neighbors

LightGBM light gradient boosting machine

MLP multilayer perceptron

XGBoost extreme gradient boosting

ROC receiver operator characteristic

AUC the area under the curve

OR odds ratio

CI confidence interval

DCA decision curve analysis

F-PNET functional pancreatic neuroendocrine tumors

NF-PNET non-functional pancreatic neuroendocrine tumors

CT computed tomography

MRI magnet resonance imaging

US ultrasonography

ENETS European Neuroendocrine Tumor Society

CAD computer-aided detection

AI artificial intelligence

EUS-FNA EUS-guided fine-needle aspiration

PACS Picture Archive and Communication System

DICOM Digital Imaging and Communications in Medicine

ICC intra-class correlation coefficient

ROI region of interest

GLCM Gray Level Co-occurrence Matrix

GLRLM Gray Level Run Length Matrix

GLSZM Gray Level Size Zone Matrix

NGTDM Neighborhood Gray-level Difference Matrix

IBSI image biomarker standardization initiative

PPV positive predictive value

NPV negative predictive value

CSNET Chinese Neuroendocrine Tumor

ASGE American Society for Gastrointestinal Endoscopy

GISTs gastrointestinal stromal tumors
F
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