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Effective bladder-preserving therapeutic options are needed for patients with

bacillus Calmette-Guérin unresponsive non–muscle-invasive bladder cancer.

Nadofaragene firadenovec-vncg (Adstiladrin®) was approved by the US Food and

Drug Administration as the first gene therapy in urology and the first intravesical

gene therapy indicated for the treatment of adult patients with high-risk bacillus

Calmette-Guérin–unresponsive non–muscle-invasive bladder cancer with

carcinoma in situ with or without papillary tumors. The proposed mechanism

of action underlying nadofaragene firadenovec efficacy is likely due to the

pleiotropic nature of interferon-a and its direct and indirect antitumor

activities. Direct activities include cell death and the mediation of an

antiangiogenic effect, and indirect activities are those initiated through

immunomodulation of the innate and adaptive immune responses. The

sustained expression of interferon-a that results from this treatment modality

contributes to a durable response. This review provides insight into potential

mechanisms of action underlying nadofaragene firadenovec efficacy.
KEYWORDS

adenoviral-mediated interferon delivery, Adstiladrin, BCG-unresponsive, nadofaragene
firadenovec-vncg, non-muscle-invasive bladder cancer, Syn3
1 Introduction

Bladder cancer (BCa) is the tenth most commonly diagnosed cancer globally, with an

estimated 573,278 new cases in 2020 (1). Of all BCa cases, approximately 75% are non–

muscle-invasive bladder cancer (NMIBC) confined to the mucosa (stage Ta, carcinoma in

situ [CIS]) or submucosa (stage T1) (2). High-grade (HG) tumors, accounting for

approximately 31% of NMIBC cases (3), exhibit poorly differentiated cells and are more

likely to progress to muscle-invasive disease (4). Guidelines by the American Urological

Association, Society of Urologic Oncology, European Association of Urology, and National

Comprehensive Cancer Network generally define high-risk NMIBC as CIS or HG Ta or T1

pathology (Ta ≤3 cm is considered intermediate risk) (5, 6). Individuals recently diagnosed
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with high-risk NMIBC have a 60–70% likelihood of recurrence and

a 10–45% risk of disease progression to muscle-invasive or

metastatic BCa within 5 years (6).

Although the growth of BCa is largely determined by the

inherent proliferative capacity of urothelial carcinoma cells, recent

advances in tumor immunology have revealed the importance of

tumor-mediated immune surveillance subversion in promoting

BCa growth (7, 8). Specifically, BCa has been shown to upregulate

and secrete anti-apoptotic factors and immunosuppressive cytokines,

such as transforming growth factor-ß, interleukin-6 (IL-6) and IL-10,

to lose expression of immunogenic tumor antigens and to

downregulate cell-surface major histocompatibility complex class I

(MHC-I) and co-stimulatory molecules required to initiate T cell

−mediated antitumor immune responses (7, 9). The cumulative

effects of these immunosuppressive phenomena, coupled with the

fact that the BCa microenvironment is tolerogenic and immune

privileged due to the accumulation of several types of immune cells

with immunosuppressive phenotypes (e.g., myeloid-derived

suppressor cells, programmed death-ligand 1 (PD-L1)−expressing

tolerogenic dendritic cells (DCs), and tumor-associated

macrophages), result in BCa tissue being poorly immunogenic (7).

By bolstering the innate and adaptive immune responses against BCa

cells through vaccination with BCa-associated antigen or by

administering checkpoint inhibitors of PD-L1/programmed cell

death protein 1, immunotherapy attempts to induce a potent

immune response to promote BCa regression. Although this goal

appears straightforward, effective immunotherapy remains elusive due

toproblems such asTcell tolerance toBCa (self) antigen, inductionof a

Th2−polarized immune response, BCa heterogeneity, and limited

clinical responses to immune checkpoint inhibitors (7).

Bacillus Calmette-Guérin (BCG) is a nonspecific immunotherapy

that received approval by the US Food and Drug Administration

(FDA) in1990 for the treatmentof patientswithNMIBC(5). In clinical

trials, intravesical BCG demonstrated initial complete response (CR)

rates between 55% and 65% for papillary tumors and 70% and 75% for

CIS (10). However, approximately one third of patients with NMIBC

will not respond to BCG, and 50% will experience recurrence or

progression following an initial response to BCG (11). The FDA

defines BCG-unresponsive NMIBC as (1) persistent or recurrent CIS

alone or with recurrent Ta/T1 (noninvasive papillary disease/tumor

invades the subepithelial connective tissue) disease within 12 months

of completion of adequate BCG therapy (defined as ≥5 of 6 doses of

initial induction course plus either 2 of 3 doses ofmaintenance or≥2 of

6 doses of a second induction course); (2) recurrent HGTa/T1 disease

within6months of completionof adequateBCG therapy; or (3)T1HG

disease at the first evaluation following an induction course of BCG

(12). Regardless, a persistent global BCG shortage restricts access to

BCG to such an extent that American Urological Association, Society

ofUrologicOncology, EuropeanAssociation ofUrology, andNational

Comprehensive Cancer Network guidelines have advised that BCG

should be reserved for high-risk patients only (13).

The therapeutic effect of BCG is associated with the induction of

Th1 immune responses. Attachment of BCG to urothelial cells

triggers the cellular release of cytokines and chemokines, including
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IL-1, IL-6, IL-8, and tumor necrosis factor-a, which leads to the

recruitment of immune cells into the urothelium. The activation of

professional antigen-presenting cells, including macrophages,

neutrophils, and DCs, and changes in the cytokine environment

stimulate the differentiation of naïve cluster of differentiation 4+

(CD4+) T cells into Th1 and/or Th2 cells, which play respective

roles in cellular and humoral immunity. Th1 cytokines, including

interferon-g (IFNg), are associated with BCG response, and Th2

cytokines, including IL-10, are associated with BCG failure.

Blocking IL-10 or inducing IFNg can lead to a Th1-dominated

immunity that is essential for BCG-mediated BCa regression (14).

While BCG-stimulated activation of the Th1 immune response

demons t r a t e s e ffi c a c y in ove r c oming BCa - induc ed

immunosuppression, the development of new treatment modalities

with greater immunomodulatory activity are required to improve

patient outcomes (15). BCG-unresponsive NMIBC is associated with

poor prognosis and historically few treatment options (6, 16). Radical

cystectomy has remained the standard of care for patients with BCG-

unresponsive disease and is a preferred option for high-risk disease in

multiple clinical practice guidelines but is not appropriate for all

patients (6, 17). For patients with high-risk, BCG-unresponsive

NMIBC who are ineligible for or who choose not to undergo radical

cystectomy, the therapeutic landscape has recently expanded to

include intravesical chemotherapy, pembrolizumab, and the novel

intravesical gene therapy, nadofaragene firadenovec-vncg

(Adstiladrin®) (17). These treatments have all shown benefit in

patients with BCG-unresponsive disease (18–20) but have notable

differences in administration schedules and adverse event profiles

owing to different mechanisms of action that elicit varied

physiological responses. Intravesical chemotherapy encompasses

multiple treatment regimens and dosing schedules and is generally

well tolerated; however, it may need to be administered as often as

weekly during induction therapy (17, 21). A widely used intravesical

chemotherapy currently is sequential gemcitabine and docetaxel. The

use of this regimen is only supported by retrospective data at present,

with prospective validation still pending (18). Pembrolizumab is given

via intravenous infusion every 3 to 6 weeks, and the adverse event

profile includes mechanism-related immune-mediated adverse events

(19, 22). Nadofaragene firadenovec is instilled intravesically on an

every-3-month treatment schedule and has a well-tolerated safety

profile, with micturition urgency being the most common grade 3/4

study-drug–related adverse event (20, 23).Other emerging intravesical

therapies include immune adjuvants and alternative gene therapies for

which the data are either emerging or pending larger phase 3

studies (16).
2 Gene therapy for bladder cancer

Cancer gene therapy is defined as the introduction of a

therapeutic gene into a tumor cell utilizing a viral or nonviral

vector. Viral vectors are widely used gene delivery vehicles in cancer

therapies; adenoviruses are the preferred choice because they can

express therapeutic genes episomally and have no risk of integrating
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into the genome (24). The deletion of E1 and E3 genes from the

human serotype 5 adenovirus, a nonenveloped, icosahedral capsid,

double-stranded DNA virus, prevents viral replication and creates

space for transgenes, respectively (25). Human epithelial cells,

including urothelial carcinoma cells, are particularly receptive to

adenoviral infection due to the ubiquitous expression of the

coxsackie/adenovirus receptor (26). Adenoviruses interact with

the coxsackie/adenovirus receptor, leading to intracellular

incorporation of the virus and subsequent expression of the

transgene; once translated, the resultant protein remains

detectable for up to 10 days after adenoviral infection (27, 28).

The urothelium of the bladder is a complex, multilayer surface

that acts as a barrier to pathogens and urinary waste products.

Efficient viral transduction of the urothelium requires a robust

means to permeate the protective glycosoaminoglycan layer of the

bladder mucosa. Investigation into the structure of Big CHAP (N,

N’-Bis(3-D-gluconamidoproply)cholamide), a nonionic detergent

used as a transduction-promoting agent in early intravesical

adenoviral vector studies, led to the discovery of Syn3, a

polyamide surfactant and synthetic excipient that promotes

adenoviral transduction across the glycosoaminoglycan layer of

the inner wall of the bladder (10, 29, 30). The simultaneous

administration of adenovirus in a formulation containing Syn3

markedly increased adenoviral-mediated gene transfer and

expression, not only in the normal urothelial cells but also in

human superficial transitional cell carcinoma growing within the

bladder of athymic nude mice (30). Syn3 is an important additive

for adenoviral-mediated gene transfer for the treatment of NMIBC

by intravesical administration (31).
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Nadofaragene firadenovec-vncg received FDA approval as the

first gene therapy in urology and the first intravesical gene therapy

indicated for the treatment of adult patients with high-risk BCG-

unresponsive NMIBC with CIS with or without papillary tumors

(23). Nadofaragene firadenovec is a nonreplicating adenoviral

vector−based gene therapy that delivers human IFNa2b
complementary DNA to urothelial cells and Syn3 to enhance viral

transduction of the urothelium. IFNa2b complementary DNA is

transcribed into IFNa2b protein in bladder epithelial cells, where it

exhibits direct and indirect immunomodulatory effects inhibiting

tumor growth (28) (Figure 1).

IFNa has been used as a monotherapy and in combination with

other agents, including BCG (38–40). Phase 2 studies of intravesical

IFNa2b monotherapy at doses of 50–100 MIU have shown CRs,

albeit of short duration, in up to 40% of patients with NMIBC, with

most patients relapsing within 1 year (41). Limitations observed

with intravesical IFNa2b therapy are likely due to a short drug

exposure time rather than a lack of inherent antitumor activity (42).

Local gene delivery with nadofaragene firadenovec can maximize

transgene expression in the urothelium with prolonged local

exposure of tissues to IFNa while minimizing systemic

adenovirus distribution. In an orthotopic model of human BCa in

nude mice to test the delivery and efficacy of nadofaragene

firadenovec, high urinary IFN levels and marked tumor

regression were observed following treatment (30). Adenoviral

interferon-alpha 2b (AdIFNa) treatment also had cytotoxic effects

on cells that were previously shown to be resistant to recombinant

human IFNa (rhIFNa), which was attributed to a strong bystander

effect in neighboring cells that potentially targeted tumor cells that
A B

FIGURE 1

The mechanism of action of nadofaragene firadenovec. (A) Internalization of adenoviral vector into uroepithelial cells and transcription/translation of
IFNa2b. (1) Syn3 promotes adenoviral vector access to uroepithelial cells (29); (2) After CAR-mediated endocytosis into the uroepithelial cell and
escape from endosomes, the adenoviral capsid translocates to the nuclear envelope where it disassembles, and the human IFNa2b transgene is
imported into the nucleus (26); (3) After import into the nucleus, IFNa2b cDNA is transcribed into mRNA; (4) IFNa2b mRNA is translated, leading to
sustained production of IFNa2b (27, 28, 30). (B) Summary of putative direct and indirect effects of IFNa2b. IFNa2b exerts pleiotropic antitumor
effects directly and indirectly in the tumor microenvironment (32). Direct cytotoxic effects include (5) induced ER stress in bladder cancer cells,
leading to caspase 4 activation and cell death (33), (6) increased expression of TRAIL, leading to caspase 8 activation and cell death (34), and (7)
antiangiogenic effects through downregulation of growth factors including bFGF (35, 36), leading to tumor hypoxia and central necrosis. Direct
immunomodulatory effects are elicited through (8) upregulation of the presentation of surface tumor-associated antigens via augmentation of
MHC-I class molecules, increasing the immunogenicity of tumor cells (37). Indirect immunomodulatory effects occur through (9) stimulation of DC-
priming of cytotoxic CD8+ T cells, which (10) kill MHC-I+ tumors, and (11) increased antitumor activity of NK cells, which preferentially kill BCa cells
lacking MHC-I (downregulation or loss of MHC-I is common in BCa cells) (32). BCa, bladder cancer; bFGF, basic fibroblast growth factor; CAR,
coxsackievirus and adenovirus receptor; CD, cluster of differentiation; cDNA, complementary deoxyribonucleic acid; DC, dendritic cell; ER,
endoplasmic reticulum; FADD, Fas-associated protein with death domain; IFNa2b, interferon a2b; MHC-I, major histocompatibility complex class I;
mRNA, messenger ribonucleic acid; NK, natural killer; TRAIL, tumor necrosis factor−related apoptosis-inducing ligand.
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were not effectively transduced during their initial exposure.

Elevated bladder tissue IFNa levels were observed for ≥7 days

following nadofaragene firadenovec therapy compared with

rhIFNa levels and declined rapidly after treatment (30). This

important discovery emphasized the benefit of gene therapy in

overcoming the issue of durability with intravesically

administered rhIFNa.
In a multicenter phase 2 trial, 40 patients with HG BCG-

refractory or relapsed NMIBC were randomly assigned to receive

either low- or high-dose intravesical nadofaragene firadenovec;

patients who responded at 3, 6, and 9 months were re-treated at

4, 7, and 10 months (43). The primary endpoint was freedom from

HG disease recurrence at 12 months (defined by a negative result on

for-cause or end-of-study biopsy), which was found to be similar

between the two dose groups, with 7 patients (33%) and 7 patients

(37%) achieving 12-month recurrence-free survival of HG disease

in the low- and high-dose groups, respectively. In subgroup

analyses, 50% of patients with papillary disease and 30% of

patients with CIS had 12-month recurrence-free survival. The

most common adverse (AEs) events were lower urinary tract

symptoms; no grade 4 or 5 AEs occurred and no patient

discontinued therapy due to an AE. The higher dose was selected

for use in the subsequent multicenter phase 3 trial (20). A total of

53.4% of patients with CIS with or without HG Ta/T1 had a CR at

the 3-month assessment visit; this response was maintained

through 12 months in 45.5% of these patients. In the HG Ta/T1

cohort, 72.9% of patients had a CR at 3 months, with 43.8%

remaining recurrence-free through 12 months. The most

frequently reported drug-related AEs were discharge around the

catheter during instillation, fatigue, bladder spasms, and micturition

urgency. Most AEs were transient and classified as either grade 1 or

2. There was a low discontinuation rate (1.9%), and no patient died

from treatment-related AEs during the 12-month follow-up period

(20). A major strength of the study was its mandatory end-of-study

biopsy at 12 months, which provided objective pathologic disease

assessment as opposed to visual assessments alone. Additionally, in

the CIS cohort, patients who had a CR had a significantly longer

median time to cystectomy of 11.4 months, compared with only 6.4

months among those who did not.

Because the human population is largely seropositive for anti-

adenovirus antibodies, a planned secondary analysis of the phase 3

data investigated whether anti-adenovirus antibody levels predicted

the durability of response to nadofaragene firadenovec (44).

Baseline titer levels did not predict treatment response, suggesting

that pre-exposure to circulating adenovirus did not adversely affect

the efficacy of nadofaragene firadenovec. A 3-month adenovirus

titer level of >800 was associated with a higher likelihood of durable

response, and peak posttreatment titer levels of >800 were noted in

89% of responders versus 59% of non-responders. Although reasons

for an increase in anti-adenovirus antibody titer levels observed in

durable responders remain to be fully elucidated (44, 45), serum

anti-adenovirus antibodies may serve as a predictive marker for

nadofaragene firadenovec response durability.

For patients with BCG-unresponsive NMIBC who prefer a

bladder-preserving treatment approach, nadofaragene firadenovec
Frontiers in Oncology 04
offers a compelling novel treatment option. After its FDA approval

in December 2022, nadofaragene firadeneovec was initially available

to a limited number of clinical study sites and community clinics

due to supply constraints. The manufacturing processes were

subsequently optimized and as of January 2024, the product has

become fully available across the United States for healthcare

providers to prescribe for appropriate patients (46). As of

February 2024, completion of construction is near final for two

new, state-of-the-art facilities that will be dedicated to

manufacturing of nadofaragene firadenovec for future long-

term supply.
3 Mechanism of action of
nadofaragene firadenovec

The antitumor efficacy of AdIFNa results from the direct and

indirect pleiotropic antitumor effects of IFNa. All cell types,

including DCs, produce IFNa in response to the presence of

cancer cells or other immune stimuli. Interferons modulate direct

and indirect antitumor activities, typically through their canonical

signaling via the Janus kinase (JAK)/signal transducer and activator

of transcription (STAT) pathway. IFNa, part of the IFN-I family,

signals through the IFNa receptor (IFNAR). IFN-I binds a

heterodimeric receptor formed by IFNAR1 and IFNAR2 chains,

causing their respective, constitutively associated JAKs, TYK2 and

JAK1, to activate and phosphorylate STAT1 and STAT2.

Phosphorylated (p)-STAT1 and p-STAT2 bind to IFN regulatory

factor 9 and form a transcriptional complex named IFN‐stimulated

gene factor 3, which is recruited to the IFN-stimulated response

elements and regulates the transcription of downstream IFN‐

stimulated genes. Key IFN‐stimulated genes include IFNa-
inducible protein 27, PD-L1, and tumor necrosis factor–related

apoptosis-inducing ligand (TRAIL) (32, 47, 48).

IFNa exhibits direct cytotoxic effects through endoplasmic

reticulum stress, caspase 4 activation (33), and induction of

TRAIL expression (34, 49). In BCa cells, rhIFNa-induced TRAIL

expression resulted in cell death via an IFN regulatory factor-

1−dependent mechanism (34), which may be a key cell death

pathway underlying direct IFNa activity, because elevated TRAIL

levels have been found in patients with detectable urinary IFNa
following transduction (50). IFNa also mediates an antiangiogenic

effect (35, 36, 51); preclinical studies have shown that systemic

administration of rhIFNa to bladder tumor−bearing mice was

associated with decreased angiogenic factors, including basic

fibroblast growth factor (35). In addition, IFNa can directly

upregulate the presentation of surface tumor−associated antigens

via augmentation of MHC-I molecules, increasing the

immunogenicity of tumor cells and making them more vulnerable

to identification and subsequent destruction by cytotoxic CD8+ T

cells (37). Increased tumorigenicity is especially important in BCa

cells, which are renowned for immune evasion (7).

The indirect effects of IFNa , which include tumor

microenvironment immunomodulation through the enhanced
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proliferation, maturation, and antigen presentation of immune cells

such as DCs, macrophages, and natural killer (NK) cells, strengthen

innate and adaptive antitumor immunity. IFNa is involved in

antigen recognition and processing, leading to CD8+ T cell, NK

cell, and DC activation. IFNa further promotes the adaptive

antitumor response by stimulating the DC-priming of CD8+ T

cells. In addition, stimulation of the adaptive immune response by

type I IFNs is expected to complement immune checkpoint

blockade. Together, the direct and indirect IFN-a2b effects can

lead to BCa cell lysis and the release of BCa-associated antigen,

further enhancing BCa immunogenicity and subsequent tumor

regression (32, 48).

IFNa also augments the antitumor activity of NK cells, which

preferentially kill MHC-I−deficient cells. Activated NK cells

recognize and directly attack cancer cells by releasing cytotoxic

granules containing perforin and granzymes. These substances

create pores in the cancer cell membrane and induce apoptosis.

Because downregulation or total loss of MHC-I expression is

common in BCa cells (52), NK cells likely play a significant role

in the antitumor immune activity of IFNa in BCa (32).

Taken together, these studies postulate that MHC-I−deficient

BCa cells transduced with nadofaragene firadenovec produce

IFNa2b, which may modulate NK cell responses by upregulating

stress-induced ligands for activating NK cell receptors and promoting

NK cell priming by DCs. Concurrently, MHC-I−expressing BCa cells

transduced by nadofaragene firadenovec produce IFNa2b which may

augment anti-BCa CD8+ T cell responses by upregulating MHC-I,

promoting antigen presentation, and activating signaling pathways

that augment T cell proliferation and cytotoxicity (32).
4 Conclusions

Nadofaragene firadenovec is the first FDA-approved gene

therapy for high-risk BCG-unresponsive NMIBC with CIS with

or without papillary tumors. The mechanism of action of

nadofaragene firadenovec is hypothesized to result via direct and

indirect IFNa2b activity. IFNa induces cell type-specific direct

biological responses, including apoptosis and angiogenesis

inhibition, affecting tumor cell initiation and progression. Indirect

activity occurs through immunoregulation, by stimulating immune

cells, including NK and T cells, and increasing antigen presentation

by macrophages and DCs, which augments a more robust

immune response.
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