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new therapeutic strategies
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Guizhou, China
Lung cancer is a highly prevalent malignant tumor worldwide, with high

incidence and death rates. Recently, there has been increasing recognition of

the role of ferroptosis, a unique cell deathmechanism, in lung cancer. This review

aims to summarize the current research progress on the relationship between

ferroptosis and lung cancer. It also provides a comprehensive analysis of the

regulatory processes of ferroptosis in various stages, including epigenetics,

transcription, post-transcription, translation, and post-translation. Additionally,

the review explores the dual nature of ferroptosis in lung cancer progression,

which presents interesting therapeutic possibilities. On one hand, ferroptosis can

promote the escape of immune surveillance and reduce the efficacy of treatment

in the early stages of tumors. On the other hand, it can counter drug resistance,

enhance radiosensitivity, and promote immunotherapy. The article also discusses

various combination treatment strategies based on the mechanism of

ferroptosis. Overall, this review offers a holistic perspective on the role of

ferroptosis in the onset, progression, and treatment of lung cancer. It aims to

contribute to future research and clinical interventions in this field.
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1 Introduction

Lung cancer is a malignant tumor with high incidence and high mortality.

Epidemiological statistics show that lung cancer is the leading cause of cancer-related

death, with an incidence rate of 11.4% and a mortality rate of 18% among all malignant

tumors in the world in 2020 (1). Studies indicate a grim forecast for lung cancer incidence,

with many countries anticipating an increase by 2035 (2). While early-stage lung cancer is

typically surgically treatable, most cases are diagnosed at intermediate or advanced stages,
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necessitating conservative treatments. Medication resistance

remains a predominant challenge in lung cancer therapy, which

most advanced Non-small cell lung cancer (NSCLC) patients

develop resistance to current treatments, leading to a worsening

of the condition (3). With a 5-year survival rate under 18% (4), the

quest for new therapeutic targets, approaches to counteract drug

resistance, and ways to improve patients’ quality and duration of life

are pivotal in lung cancer research.

Introduced by Stockwell et al., “ferroptosis” represents a unique

regulated cell death propelled by iron-dependent lipid peroxidation

(5). Its morphology diverges from other forms of cell death

characterized by membrane rupture, shrinkage of mitochondrial

volume, reduction or disappearance of mitochondrial cristae, and

an absence of nuclear condensation and chromatin marginalization.

Ferroptosis’ biochemical characteristics are primarily reflected in

three aspects. Firstly, the build-up of reactive oxygen species (ROS)

is deemed a direct trigger for ferroptosis. Within mitochondria, the

accumulation of ROS amplifies oxidative stress by inducing further

ROS release through a positive feedback loop. In this milieu,

polyunsaturated fatty acid phospholipids (PUFA-PL) are oxidized

to form cytotoxic polyunsaturated fatty acid phospholipid

hydroperoxides (PUFA-PL-OOH), which causes endoplasmic

reticulum membrane stiffness and directly damages cell

membranes, leading to cell death. Secondly, lipid peroxidation is

considered the central feature of ferroptosis. During the process of

ferroptosis, an unrestrained increase in lipid peroxidation can be

observed (6). Lipid peroxidation denotes a process where oxidants

extract unstable hydrogen atoms from the methylene bridges of

polyunsaturated fatty acid (PUFA), culminating in the generation of

a plethora of lipid peroxidation free radicals and hydrogen peroxide.

During this process, Acyl-CoA synthetase long-chain family

member 4 (ACSL4) and lysophosphatidylcholine acyltransferase 3

(LPCAT3) engage sequentially, facilitating the conversion of PUFA,

ultimately resulting in the formation of phospholipids with PUFA-

PL. Subsequently, catalyzed by lipoxygenase (LOX), these

phospholipids undergo further oxidation to form PUFA- PL-

OOH. LOX is widely regarded as a key regulator in modulating

ferroptosis (7). In the end, in iron metabolism, the Fenton reaction

involving Fe2+ and hydrogen peroxide produces vast hydroxyl free

radicals, triggering intense oxidative stress and ROS generation, and

consequently ferroptosis.

Ferroptosis may play a crucial role in regulating tumor growth.

Up to now, numerous studies have been conducted on ferroptosis in

relation to tumors. As a regulated cell death form, ferroptosis has

been shown to stifle multiple tumors’ growth through drug and

cytokine responses. Interestingly, drug-resistant cancer cells,

especially those with enhanced metastatic potential, are more

susceptible to ferroptosis (6). In lung cancer, especially lung

adenocarcinoma, EMT occurs frequently and mainly originates

from alveolar type II epithelial cells (8). EMT is associated with

PD-L1 expression, especially in lung cancer, where elevated levels of

PD-L1 suppress the immune system and make cancer more likely to

spread (9). In addition, the integration of ferroptosis into standard

treatment protocols has been investigated across a range of

malignancies, including hepatocellular carcinoma, colorectal

cancer, ovarian cancer, and glioblastoma (10). A surge in research
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is observed on ferroptosis’s influence in lung cancer, with a rise in

related publications, as seen in Figure 1. The objective of this paper

is to delve into the function of ferroptosis in lung cancer, its intricate

regulatory systems, and potential biological markers, with

aspirations of offering novel perspectives for lung cancer

management and outcome prediction.
2 Ferroptosis in lung cancer

2.1 Ferroptosis

The primary cause of ferroptosis is the accumulation of lipid

peroxides (LPO) and ROS within cells, and its mechanism can be

summarized as an imbalance of the cellular antioxidant system, iron

overload, and lipid peroxidation.

The cystine/glutamate antiporter system (system Xc-) situated

on the cellular membrane plays a vital role in the cell’s antioxidative

response. Comprising the light chain solute carrier family 7 member

11 (SLC7A11) and the heavy chain solute carrier family 3 member 2

(SLC3A2), system Xc- functions effectively. SLC7A11, a multi-pass

transmembrane protein, facilitates the anti-transport activity of

cystine/glutamate, exchanging extracellular cystine with

intracellular glutamate at a 1:1 ratio. Once inside the cell, cystine

gets reduced to cysteine and subsequently collaborates with

glutamate and glycine to produce glutathione (GSH). GSH then,

under the influence of glutathione peroxidase 4 (GPX4), converts

LPO to cell membrane-friendly lipids, countering lipid peroxidation

caused by increased ROS (11). SLC7A11 emerges as a central figure

in the ferroptosis process, affected by various factors like glutamate

and NF-E2-related factor 2(NRF2) ultimately determining the

progression of ferroptosis. For example, NRF2 promoted

SLC7A11 transcription by binding to the antioxidant response

elements in the promoter region of SLC7A11 (12). Erastin

treatment can reduce the occupancy of H2Bub1 in the regulatory

region of SLC7A11 gene, inhibit the expression of SLC7A11, and
FIGURE 1

The publications on lung cancer and ferroptosis from 2016 to
October 2023. The number of publications related to “lung cancer”
and “ferroptosis” from 2016 to October 2023 was searched in
PubMed. The broken line represents the number of annual number
of publications, and the bar graph represents the annual cumulative
number of papers published. The dashed line represents the

predicted trend of the index, whose prediction formula is y =

0:8071e0:7379x .
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increase the sensitivity of cells to ferroptosis (13). Moreover, specific

compounds such as RAS selective lethal 3 (RSL3) and ferroptosis

inducer 56 (FIN56) target the fundamental factor GPX4 to

modulate ferroptosis.

In nature, iron primarily exists as Fe2+ and Fe3+. Dietary iron

predominantly appears as Fe3+, which transforms into Fe2+ upon

ingestion, making its way to the duodenum. Subsequently, it’s

transported into intestinal epithelial cells via Divalent metal

transporter 1 (DMT1) and is expelled from the basolateral

membrane. It’s been observed that by modulating DMT1

expression, one can influence ferroptosis (14). Excessive

intracellular Fe2+, when oxidized to Fe3+, binds to transferrin,

forming a state known as the “labile pool”. Iron overload

facilitates the Fenton reaction, producing a plethora of hydroxyl

radicals, leading to pronounced oxidative stress and spawning a

surge in ROS, a prelude to ferroptosis (15). Patel and his team found

that GSH can interact with Fe2+ (16). A depletion of GSH not only

leads to GPX4 deactivation but also propels Fe2+ towards the

Fenton reaction, amplifying lipid peroxide production and

accelerating ferroptosis (16). Hence, the regulation of iron

metabolism emerges as a crucial intervention point for

controlling ferroptosis.

A crucial juncture in ferroptosis is the formation of LPO.

Following the involvement of acetyl-CoA in the formation of

unbound PUFA, ACSL4 and LPCAT3 aid in activating and

embedding PUFA into membrane lipids, resulting in PUFA-PL.

With the synergistic effect of Fe2+, PUFA-PL is oxidized by ROS to

produce PUFA-PL-OOH. Research emphasizes the central role of

LOX in the oxidation of PUFA-PL. Inhibitors targeting LOX can

effectively counteract ferroptosis induced by agents like erastin or

RSL3 (17). Ultimately, PUFA-PL-OOH causes damage to the cell

membrane, leading to cell death.
2.2 Ferroptosis is inhibited in lung cancer

Ferroptosis, although capable of inducing tumor cell death, is

prominently suppressed in lung cancer. Studies have identified that

in the regulation of the Xc- system, SLC7A11 is overexpressed on

the cytoplasmic membrane of NSCLC (18). When SLC7A11 is

overexpressed in normal airway epithelial cells, there is an increased

glutamine dependence, reduced ROS production, and subsequent

ferroptosis suppression, which correlates with a predicted decline in

the 5-year survival rate for NSCLC patients (18). In a separate study,

it was discovered that LncRNA T-UCR Uc.339 exhibited increased

expression levels in patients with LUAD. This upregulation of

Uc.339 was found to inhibit ferroptosis and promote LUAD

metastasis (19). The mechanism behind this effect involved the

inhibition of miR-339, which in turn led to the suppression of the

negative regulation of SLC7A11 by miR-339 (19). Zhang Wenjing

et al. found that lung cancer tissues exhibit increased expression of

RNA binding motif single stranded interacting protein 1 (RBMS1),

which may contribute to the evasion of ferroptosis and

consequently accelerate the progression of lung cancer (20).

Similarly, Lai Yuanyang’s team observed elevated expression of

Serine/Threonine/Tyrosine Kinase 1 in NSCLC tissues, and it leads
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to higher levels of GPX4, promoting cell proliferation and inhibiting

ferroptosis (21).

Iron metabolism plays a crucial role in ferroptosis. In both lung

cancer tissues and associated cell lines, the expression of iron-sulfur

cluster assembly enzyme 1 is enhanced, leading to decreased iron

release from the cells and thus inhibition of ferroptosis (22). Serum

ferritin (SF) level is increased in NSCLC patients. Lung cancer cells

can up-regulate iron-sulfur, inhibit Iron Regulatory Proteins and

promote SF expression through NFS1 high expression. Further

investigation of this pathway may lead to a better understanding

of the mechanism of ferroptosis inhibition in lung cancer.

Lung cancer might also further inhibit ferroptosis by

suppressing lipid synthesis. Specifically, lymphoid-specific helicase

(LSH) can activate genes associated with lipid metabolism,

ferroptosis-related genes and fatty acid desaturase 2, thereby

regulating lipid metabolism to inhibit ferroptosis (23).

Additionally, a related study found that LSH overexpression

decreases intracellular ROS and Fe2+ levels, further inhibiting

ferroptosis (24).

Despite these insights, research on ferroptosis inhibition in

lung cancer remains in its nascent stages, with most studies

predominantly focusing on LUAD. Delving deeper into the

inhibitory mechanisms across various lung cancer cell lines will

undoubtedly enrich our comprehension of lung cancer progression

and unveil novel therapeutic strategies.
3 Regulation of ferroptosis at different
levels in lung cancer

Ferroptosis is driven by intracellular iron overload through the

Fenton reaction, which catalyzes ROS production and induces lipid

peroxidation. Ferroptosis in lung cancer cells undergoes multiple

aspects of epigenetic, transcriptional, translational, and post-

translational modifications (Figure 2).
3.1 Epigenetic regulation of ferroptosis in
lung cancer

The epigenetic control of ferroptosis in cancer is intricate,

orchestrated by a combination of DNA methylation, RNA

modification, and histone modification. At the forefront of DNA

methylation, the LSH emerges as a crucial modulator. Studies

illustrate that Egl-9 Family Hypoxia Inducible Factor 1 and c-

Myc amplify LSH expression by directly inhibiting HIF-1a (23).

LSH has the ability to inhibit ferroptosis by down-regulating the

tumor suppressor gene LncRNA-P53RRA in NCSC, which is

achieved through the mechanism of LSH interfering with the

interaction between P53RRA and GTPase-activating protein-

binding protein 1(G3BP1) (25). As a result, TP53 is prevented

from being released from the G3BP1 complex, thereby inhibiting

the promotion of ferroptosis by TP53 (25).

Beyond DNA methylation, m6A methylation stands as a major

RNA modification, pivotal in cancer onset, progression, and
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metastasis. Specifically, the METTL16-mediated m6A modification

drive breast cancer progression by inhibiting ferroptosis through

the amplification of GPX4 expression. It has been found that that

METTL7B is overexpressed in LUAD cells and can up-regulate

GPX4 protein level and enzyme activity through m6A modification,

which promotes TKI resistance in NSCLC (26). In addition, Ma

et al. found that the m6A Reader YTHDC2 can induce ferroptosis

by regulating the expression of SLC7A11 (27).Their also revealed

that YTHDC2’s influence on the system Xc- extends further,

indirectly suppressing the expression of SLC3A2 via the

inhibition of Homeo box A13 (27). The N6-methyladenosine

(m6A) modification steered by methyltransferase-like 3 was

found to stabilize SLC7A11 mRNA, bolstering its translation.
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This action not only augments LUAD cell growth but also

curtails their ferroptosis, offering a promising target for LUAD

diagnosis and therapy (28). Bromodomain-containing protein 4

(BRD4) is capable of detecting acetylated histones, thus facilitating

gene transcription by recruiting transcription factors. It is

noteworthy that BRD4 inhibitors such as JQ1 and JQ4 have

demonstrated the ability to induce ferroptosis in lung cancer cells

by reducing the expression of SLC7A11 (29).

In summary, further study of the expression of m6A

methylation-related molecules in lung cancer cells and the

mechanism of ferroptosis regulation by m6A methylation-related

molecules such as SLC7A11 and GPX4 may provide a new feasible

pathway for the regulation of ferroptosis in lung cancer.
FIGURE 2

The mechanism of ferroptosis in lung cancer and possible related regulatory pathways. The mechanism of ferroptosis primarily involves iron
metabolism, System Xc-, and GPX4. Intracellular iron overload leads to the production of lipid peroxides through the Fenton reaction. System Xc-
and GPX4 play a protective role in preventing cell membrane damage caused by lipid peroxides. In the figure, the red triangle marks indicate up-
regulated expression of molecules in lung cancer cells, while the blue inverted triangle marks indicate down-regulated expression of molecules in
lung cancer cells. The legend in the lower right corner of the figure explains the representation of intermolecular interaction relationships using
different lines. Abbreviations: Cys2, cystine; Glu, glutamate; Cys, cysteine; GSH, glutathione; GS-SH, glutathione persulfide; GPX4, glutathione
peroxidase 4; SLC3A2, solute carrier family 3 member 2; SLC7A11, solute carrier family 7 member 11; YTHDC2, YTH domain containing 2; PUFAs-
OH, hydroxylated polyunsaturated fatty acids; PUFAs-OOH, lipid hydroperoxides; miR-339, microRNA 339; RBMS1, RNA binding motif single
stranded interacting protein 1; KDM9B, lysine demethylase 9B; BAP1, BRCA1 associated protein 1; OTUB1, OTU deubiquitinase B1; METTL3,
methyltransferase like 3; AhR, aryl hydrocarbon receptor; P53, tumor protein p53; ATF3, activating transcription factor 3; mTORC2, mechanistic
target of rapamycin complex 2; IFN-g, interferon gamma; GSTP1, glutathione S-transferase pi 1; GSTA1, glutathione S-transferase alpha 1; PRDX1,
peroxiredoxin 1; PRDX6, peroxiredoxin 6; TXNRD1, thioredoxin reductase 1; USP11, ubiquitin specific peptidase 11; SIRT6, sirtuin 6; Wnt, wingless/
integrated; KEAP1, kelch like ECH associated protein 1; miR-365a-3p, microRNA 365a-3p; Nrf2, nuclear factor erythroid 2 related factor 2; ROS,
reactive oxygen species; MIR-324, microRNA 324; STY1, stress activated protein kinase STY1/Spc1/Phh1 (fission yeast); NEDD4L, neural precursor cell
expressed developmentally downregulated 4 like E3 ubiquitin protein ligase; Fe-S, iron-sulfur; IREB2, iron responsive element binding protein 2;
ACO1, aconitase 1; TFR, transferrin receptor; DMT1, divalent metal transporter 1; LINC00336, long intergenic non-protein coding RNA 336; LSH,
lymphoid specific helicase; HIF-1a, hypoxia inducible factor 1 alpha; EGLN1, Egl-9 Family Hypoxia Inducible Factor 1; G3BP1, GTPase activating
protein binding protein 1; P53RRA, p53 responsive RNA; CBS, cystathionine beta synthase; Gls2, glutaminase 2; FOXM1, forkhead box M1; USP14,
ubiquitin specific peptidase 14; HO-1, heme oxygenase 1; FPN, ferroportin.
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3.2 Transcriptional regulation of ferroptosis
in lung cancer

Transcription factors are integral in modulating ferroptosis.

One or more such factors can jointly regulate genes associated

with ferroptosis, thereby affecting the level of ferroptosis in lung

cancer. The current research focus, transcription factor TP53,

plays a dual role in regulating ferroptosis. On one front, TP53

suppresses SLC7A11 expression, reducing cystine uptake,

promoting glutaminase 2 and heightening cellular sensitivity to

ferroptosis. On the other hand, TP53 delayed ferroptosis by

upregulating its transcriptional target Cyclin-dependent kinase

inhibitor 1A, which inhibited cell cycle progression and slowly

consumed glutathione (30). Furthermore, TP53 mutations have

been associated with increased resistance to ferroptosis in lung

cancer, and this resistance is attributed to the inhibition of

forkhead box M1 relieved, which in turn activates myocyte-

specific enhancer factor 2C providing stress protection against

ferroptosis inducers (31).

Another significant player is Nrf2 that renowned for its

antioxidative properties, and its heightened expression

shields cancer cells from ferroptosis (32). Inhibition of Nrf2 or

promotion of its degradation may be beneficial to ferroptosis

induction in lung cancer. For example, it has been found that E3

ubiquitin ligase is overexpressed in some lung squamous cell

carcinoma and adenocarcinoma samples, and plays a positive

regulatory role in ferroptosis by targeted degradation of NRF2

(33). What’s more, study has shown that NRF2 negatively

regulates the expression of focal adhesion protein FOCAD and

attenuates its effect on enhancing the sensitivity of NSCLC cells

to cysteine deprivation induced ferroptosis, while NRF2 inhibitor

Brusatol enhances the therapeutic effect of FOCAD on NSCLC cells

(34). Ferroptosis suppressor protein 1 (FSP1) is a transcriptional

target of Nrf2. Kelch-like ECH associated protein 1(KEAP1) binds

to NRF2 and maintains it at a low level. KEAP1 mutant lung cancer

lost its inhibitory effect on NRF2, and when NRF2 is activated, it

promotes the expression of FSP1, which inhibits ferroptosis by

promoting the reduction of CoQ to CoQH2 (35). It provides a

potential therapeutic target for KEAP1 mutant lung cancer.

Furthermore, studies have shown that Nrf2 can also regulate the

light and heavy chains of ferritin, an iron storage protein (36), and

control heme degradation and intracellular iron metabolism

through heme oxygenase 1 (HO-1). This suggests that Nrf2 may

regulate ferroptosis by influencing iron metabolism, but there is no

evidence to support this in lung cancer.

Yes-associated protein serves as a transcriptional co-activator

and is suggested to function as an oncogene in LUAD. Through XC-

system inhibition, researchers decreased endogenous glutamate

build-up, further restrained Yes-associated protein, and assessed

LUAD cell sensitivity to ferroptosis, suggesting ferroptosis-based

treatments are suitable for late-stage or treatment-resistant LUAD

patients (37). Activating transcription factor 3 (ATF3) curtails

SLC7A11 expression in a p7-independent manner, accentuating

erastin-induced ferroptosis (38). Moreover, the signal transducer

and transcription activator 1 activated the transcription of
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SLC7A11, resulting in an increased expression level of SLC7A11,

and epigallocatechin gallate inhibited leppin-induced lung cancer

cell growth by down-regulating transducer and transcription

activator 1 (39). Latest research suggests the aryl hydrocarbon

receptor binding to the SLC7A11 promoter boosts NSCLC

progression via SLC7A11 expression activation, augmented cell

oxidative sensitivity, and ferroptosis inhibition (40). To conclude,

the transcriptional regulation of ferroptosis in lung cancer has

unraveled various potential therapeutic targets, furthering the

prospects for advanced treatments.
3.3 Post-transcriptional regulation of
ferroptosis in lung cancer

Long non-coding RNA (lncRNA) and microRNA (miRNA) are

critical regulators in the ferroptosis mechanism of lung cancer.

Competing endogenous RNA is a post-transcriptional regulation

mode. As mentioned above, LncRNA Uc.339 reduces the level of

miR-339 by competing with pri-miR-339, alleviating the inhibitory

effect on SLC7A11, and promoting the metastasis of lung cancer

cells (19). Additionally, contrary to the competing endogenous

RNA mechanism, the Metallothionein pseudogene 1 and NrF2-3

‘-UTR share a consensus binding site on miR-365a-3p, and

Metallothionein pseudogene 1 could enhance the inhibitory effect

of miR-365a-3p on NRF2 by directly binding to stabilize the RNA

inhibition of Mir-365a-3p, thereby promoting ferroptosis in

NSCLC (32). It has been reported that ELAVL1 modified

LINC00336 through pseudouridine (Y) catalyzed by the RNA

modification enzyme PUS10 to enhance its expression and inhibit

ferroptosis in lung cancer (24). In addition, the sponging effect of

miRNA molecules is essential for the post-transcriptional

regulation of genes, and circSCN8A reduces its level by sponging

miR-1290 and promotes ferroptosis, thereby inhibiting NSCLC

proliferation and metastasis (41). Regarding RNA splicing, some

articles screened splicing factors related to ferroptosis, such as

RBM10 and SRSF2, which can regulate the splicing of ferroptosis-

related genes such as TP53 (42). However, there is a lack of evidence

for the role of RNA splicing in the regulation of ferroptosis in lung

cancer, and this part of the study needs to be further explored. To

encapsulate, these revelations shed light on the intricate post-

transcriptional regulatory frameworks governing ferroptosis in

lung cancer. Delving deeper into these mechanisms will

undoubtedly unearth novel treatment targets and pave the way

for groundbreaking therapeutic strategies.
3.4 Translation regulation of ferroptosis in
lung cancer

RNA binding proteins can regulate the translation of genes

associated with ferroptosis, thereby altering the sensitivity of lung

cancer cells to ferroptosis. Research indicates that RBMS1, as a

translation regulator for ferroptosis, promotes the translation of

SLC7A11 through its T3 region in the 3′-UTR, leading to an escape
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from ferroptosis and furthering lung cancer progression (20). In

contrast, inhibiting RNA binding motif protein 15 enhances

ferroptosis in lung cancer cells through the TGF-b/Smad2

pathway (43). This not only reduces their proliferation but also

provides a potential therapeutic approach for lung cancer

treatment. Another layer of regulation involves iron regulatory

proteins that bind to mRNA sequences containing iron-

responsive elements, affecting their translation or degradation.

For instance, iron regulatory proteins ACO1 and IREB2 bind to

transferrin receptor (TFRC) mRNA and enhance its translation,

with their activity being influenced by intracellular iron-sulfur (Fe-

S) levels (44). When these Fe-S levels are low, increasing the levels

of TFRC protein enhances the cell’s ability to uptake iron,

subsequently reducing free intracellular iron and preventing iron-

dependent cell death (44). Importantly, tribetidine has been found

to up-regulate HIF-1a and iron regulatory protein 1, inhibit GPX

expression, and induce ferroptosis, thereby inhibiting the growth of

lung cancer cells (45). These findings reveal a potential therapeutic

strategy for NSCLC.
3.5 Post-translational regulation of
ferroptosis in lung cancer

The ubiquitin-proteasome system is pivotal in the post-

translational regulation of ferroptosis, with GPX4 being a central

molecule in this process. Numerous investigations have highlighted

the significant impact of modulating the ubiquitination of GPX4 on

the process of ferroptosis in lung cancer. For instance, recent

research suggests that Timosaponin AIII forms a complex with

Heat Shock Protein 90, resulting in the ubiquitination and

degradation of GPX4, thereby inducing ferroptosis in NSCLC

(46). Additionally, lactate produced during chemotherapy can

inhibit ferroptosis by increasing GPX4 levels. NEDD4 like E3

ubiquitin protein ligase (NEDD4L) binds to GPX4, promoting its

ubiquitination and degradation. Lactate can enhance mitochondrial

ROS production and activate serum-glucocorticoid-regulated

kinase 1, which phosphorylates NEDD4L, thereby reducing its

impact on GPX4. These findings reveal the potential role of

ferroptosis in chemotherapy resistance (47).

Elevated expression of ubiquitin-specific processing protease 11

has been observed in NSCLC patients (SCC subtype), with its

deubiquitinating function stabilizing NRF2, rendering it a crucial

molecule for cell proliferation and ferroptosis (48). Additionally, the

ubiquitin-specific protease 35 can modulate ferroptosis in lung

cancer by targeting iron transport protein (49).The ubiquitination

regulation extends to SLC7A11 as well. OTU deubiquitinase B1

(OTUB1), an atypical deubiquitinase prevalent in numerous human

cancers, principally stabilizes SLC7A11 by impeding its

ubiquitination and subsequent proteasomal degradation (20, 50).

CD44, serving as an adhesive molecule in cancer stem cells, has a

variant, CD44v, that ensures the stability of SLC7A11 protein by

adjusting interactions between OTUB1 and SLC7A11 (51). Beyond

ubiquitination, SLC7A11 also experiences phosphorylation

alterations orchestrated by mechanistic target of rapamycin

complex 2 (52).
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3.6 Relationship between autophagy and
ferroptosis in lung cancer

Autophagy, being a significant pathway, regulates ferroptosis,

with some research positing ferroptosis as a cell death mechanism

contingent on autophagy (53). Numerous studies underline that

modulating autophagy can markedly affect ferroptosis in lung

cancer. For instance, d-Borneol has the ability to heighten

sensitivity to cisplatin by fostering autophagy, instigating

ferroptosis, and inhibiting epithelial-mesenchymal transition,

thereby amplifying its antitumor efficacy (54). Conversely, a study

by Vrushank Bhatt et al. unveiled that escalated autophagy deters

ferroptosis, subsequently bolstering lung cancer’s fortitude against

Trametinib (55). Thus, this illustrates that autophagy exerts both

facilitative and inhibitory regulatory impacts on ferroptosis within

lung cancer. However, further research is needed to determine the

specific conditions.
4 Dual role of ferroptosis in
lung cancer

Ferroptosis potentially plays a dual role in both the formation

and treatment of tumors. While it generally suppresses tumor

growth, there are instances where it can facilitate its progression,

contingent upon the tumor’s type and stage (56). Initially,

ferroptosis may accelerate tumor progression by inciting

inflammatory reactions, yet as the disease advances, it helps

restrain tumor expansion through inducing cell apoptosis. This

dual nature extends to lung cancer, with a nuanced understanding

of ferroptosis’s specific impact offering new avenues for

treatment strategies.
4.1 Ferroptosis to evade immune
surveillance and reduce efficacy

Ye, C. et al. elucidated that Fanconi anemia complementation

group D2 (FANCD2), acting as a negative regulator of ferroptosis, is

found to be overexpressed in LUAD, which implies a diminished

response rate to cancer immunotherapy along with a grim

prognosis (57). Ferroptosis can promote tumor growth,

proliferation, and help it evade immune surveillance through a

variety of mechanisms. Particularly in lung cancer studies,

ferroptosis appears to have a correlation with immune infiltration

in LUSC, where the process of leukocyte transendothelial migration

leads to modulation of M2 macrophages, ensuring their proficient

infiltration within the immune microenvironment, thereby exerting

an immunosuppressive role and propelling LUSC progression (58).

A notable inverse relationship is observed between the majority of

immune checkpoint proteins and glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) expression. Despite the elevated

expression of GAPDH in lung cancer, its manifestation is

significantly reduced in ferroptosis scenarios, implying that with

the uptick in immune checkpoint protein expression during
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ferroptosis, tumor cells might navigate immune surveillance more

adeptly (59). However, the precise regulatory mechanism of

GAPDH in ferroptosis remains veiled, hence, meticulous

exploration into its specific function and mechanism could unveil

new vistas for lung cancer treatment.

The advent of immunotherapy, portraying a novel treatment

paradigm for lung cancer, has ushered in substantial advancements

in therapeutic outcomes, extending survival for patients. Delving

into the mechanisms and targets exploited by lung cancer to utilize

ferroptosis for evading immune monitoring could be instrumental

in tackling immunotherapy resistance and catalyzing the

innovation of new treatment methodologies.
4.2 Potential value of ferroptosis in lung
cancer treatment

Ferroptosis has the potential to directly eliminate cancer cells. A

large number of studies have shown that inducing ferroptosis

combined with conventional treatment can enhance the

therapeutic effect and provide a new way for the treatment of

lung cancer. There are numerous treatment options that combine

ferroptosis with chemotherapy, radiotherapy, and immunotherapy.

Furthermore, a range of ferroptosis-related biomarkers are now

considered valuable assets in predicting the outlook for lung cancer.

4.2.1 Decreasing chemoresistance
Drug resistance perennially poses a formidable hurdle in the

realm of cancer treatment, particularly when employing targeted

drugs like gefitinib or platinum-based chemotherapies for lung

cancer. A growing body of evidence underscores the immense

potential of ferroptosis in diminishing drug resistance in lung

cancer treatment.

Platinum agents form the cornerstone of lung cancer

chemotherapy. Harnessing ferroptosis to tackle cisplatin-resistant

tumor cells may unveil a powerful therapeutic strategy. Li, Y. et al.

illustrated that erastin and sorafenib can efficaciously induce

ferroptosis in cisplatin-resistant NSCLC cells (N5CP cells), and

when utilized either singularly or concomitantly with a lower dose

of cisplatin, they significantly hinder the proliferation of N5CP cells

(60). Presently, the spotlight in studies aimed at alleviating drug

resistance via ferroptosis is trained on GPX4. Deng, S.H. et al.

identified that the overexpression of miR-324-3p gene could target

GPX4 directly, substantially amplifying cisplatin-induced ferroptosis

in cisplatin-resistant A549 (A549/DDP) cells and counteracting their

cisplatin resistance (61). Han, N. et al. recognized that ferroptosis

triggered by the downregulation of GPX4 via Dihydroartemisinin can

notably boost the efficacy of Photodynamic therapy (62). In

conclusion, reducing platinum resistance in lung cancer by

inducing ferroptosis may be a powerful measure to improve the

efficacy of chemotherapy in lung cancer.

EGFR-TKI resistance is associated with ferroptosis escape in

LUAD, which targeting GPX4 can promote ferroptosis in EGFR-

TKI resistant LUAD (63). In tackling resistance to EGFR-TKI in lung

cancer, Manoalide has been shown to effectively enhance the
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NRF2-SLC7A11 axis and inducing ferroptosis by down-regulation

of ferritin heavy chain 1 through mitochondrial Ca2+ overload (64).

This highlights the potential of MA as an EGFR-TKI sensitizer,

particularly in lung cancer cells with KRAS mutations and resistance

to Osimertinib (64). The synergistic use of gefitinib and betulinol can

escalate the sensitivity of EGFR wild-type/KRAS mutant NSCLC cells

to gefitinib (65). Therefore, the use of ferroptosis inducers in EGFR-

TKI resistant lung cancer may be another breakthrough.

The stride in nanotechnology has elevated nanomedicine to a

pivotal role in lung cancer treatment. Research indicates that

marrying nanocatalytic sensitizers with Amyloid Precursor

Protein/Death Receptor 6 Inhibitor 12 can surmount the

resistance of NSCLC to osimertinib via the ferroptosis pathway

and may thwart its metastasis (66). Recently, academia unearthed

that 2-methoxy-6-acetyl-7-methyljuglone can trigger ferroptosis by

targeting NAD(P)H quinone oxidoreductase 1 (NQO1) in drug-

resistant NSCLC cells, opening the door to a new NQO1-mediated

treatment modality to battle resistance (67).

4.2.2 Increased radiosensitivity
Ionizing radiation (IR) is known to trigger ferroptosis, a

mechanism that can be leveraged to sensitize radioresistant

tumors to radiation therapy (68). Particularly in lung cancer, the

protein RBMS1 has been implicated in radioresistance by

modulating the expression of SLC7A11. Recent investigations

have unveiled that N-desmethyl imipramine hydrochloride (NTP)

can alter RBMS1 expression in IR-resistant A549 lung cancer cells,

thereby enhancing their susceptibility to radiation therapy, which

opens a new therapeutic avenue for lung cancer treatment (20). On

a related note, heme is recognized for its ability to neutralize free

radicals, thereby guarding cells against oxidative harm. Yet,

intriguingly, studies reveal that in irradiated lung cancer cells,

heme augments the initial generation of ROS, which catalyzes

lipid peroxidation, eventually driving ferroptosis and elevating the

radiosensitivity of lung cancer cells (69).

The ongoing research continually unveils the interlink between

lung cancer’s radiotherapy sensitivity and ferroptosis. Koppula, P.

et al. demonstrated that the use of compounds, such as 4-

chlorobenzoic acid, can enhance the radiation tolerance of

KEAP1, which is irregularly induced, to effectively treat lung

cancers with KEAP1 mutations (35). As of now, no drugs

targeting the CoQ-FSP1 pathway have entered clinical trials, and

this may be the next feasible research direction for lung cancer

treatment. Additionally, with nanotechnology progressing,

the exploration concerning the nexus between nanomedicine,

radiotherapy, and ferroptosis has commenced, paving new

avenues for lung cancer treatment. A marked characteristic of the

tumor microenvironment is hypoxia. Studies underscore that

hypoxia-induced angiopoietin-like 4 (ANGPTL4) hinders

ferroptosis via at least two pathways (intracellular ANGPTL4

and hypoxic exosomal ANGPTL4), bestowing resistance to

radiotherapy in NSCLC (70). Clearly, channeling focus on

ferroptosis to enhance radiation therapy outcomes is a promising

route, meriting further scrutiny.
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4.2.3 Enhancing the effect of immunotherapy
Immunotherapy, widely acclaimed as the third revolution in

the field of cancer treatment, holds significant promise, particularly

in the effective management of advanced non-small cell lung

cancer. The mechanism by which ferroptosis promotes tumor

immunotherapy is that ferroptosis inducers or immune cells down-

regulate ferroptosis resistance genes and increase the incidence of

ferroptosis, thereby increasing the generation of immunogenic cell

death, improving the immunogenicity of tumor, and activating

immune cell attack. As observed by Wang, Song et al., a depletion

of intracellular cystine can heighten the T-cell-driven anti-tumor

immunological response (71). It has been elucidated that there may

be some association between the expression of SLC7A11 and

SLC3A2, CD8+T cell count, IFN-g expression and the prognosis of

lung cancer patients (72). Upon activation through immunotherapy,

CD8+ T cells can enhance lipid peroxidation specific to tumor cells,

which could promote ferroptosis, thereby augmenting the anti-tumor

efficacy of the immunotherapeutic approach (73). Furthermore, CD8

+ T cells can obstruct the expression of genes SLC3A2 and SLC7A11

through the release of interferon-g, thereby facilitating the initiation
of ferroptosis (74). Ferroptosis can also enhance the effect of tumor

immunotherapy by regulating the expression of immune checkpoint

molecules on the surface of tumor cells, such as PD-L1 and CTLA-

4 (75).

The mechanisms by which ferroptosis enhances tumor cell

immune escape and promotes tumor immunotherapy are similar

in that they both play a role by regulating ferroptosis related genes

and acting on immune checkpoints. The difference may be mainly

due to the opposite regulatory direction of the two, such as the

former upregulates ferroptosis resistance genes and reduces the

incidence of ferroptosis, thereby reducing the production of

immunogenic cell death, reducing the immunogenicity of tumor,

and escaping the killing of immune cells. Recently, it has been

reported that Mitochondrial translocator protein promotes tumor

cell immune escape by up-regulating PD-L1 expression through

Nrf2-mediated transcription (76).

In conclusion, both immunotherapy and ferroptosis manifest

substantial potential in the treatment of lung cancer. Persistent, in-

depth probing into novel ferroptosis-based immunotherapies and

devising new strategies via combination drug therapies may yield

significant advantages for the medical community moving forward.

4.2.4 Predicting prognosis
The search for ferroptosis has led to the search for biomarkers

to confirm the occurrence and better induction or regulation of

ferroptosis. It could refine the stratification of prognosis groups and

formulate strategies to counter resistance in radiotherapy,

chemotherapy, or immunotherapy. The latest research shows that

Jin Ye’s team made a breakthrough and identified the first specific

marker of ferroptosis, peroxiredoxin 3 (77). GPX4, SLC7A11, and

FSP1 are considered key targets for modulating ferroptosis and

could serve as candidate biomarkers for it. Certain studies posit that

dysregulation of GPX4, SLC7A11, and Apoptosis-Inducing Factor

Mitochondria-Associated 2 occurs in diverse cancers, suggesting

their role as prognostic biomarkers for various malignancies. These
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tumor tissues. Analytical data coupled with experimental

verification underscores a connection between ferroptosis

regulatory elements and tumor immune infiltration in LUAD

patients, hinting at their potential as promising biomarkers and

treatment targets (78). A summary by Peyman Tabnak et al.

outlines ferroptosis-related biomarkers in lung cancer, where

markers like ACSL3, FANCD2, and SLC7A11 are associated with

adverse prognosis and abbreviated overall survival (79).

Recent findings have unveiled new ferroptosis biomarkers in lung

cancer. Deng, B. et al. disclosed that Ribonucleotide Reductase

Subunit M2 (RRM2) plays a part in ferroptosis, and is upregulated

in LUAD cell lines, suggesting its prospective utility as both a

biomarker and therapeutic target for immune infiltration in LUAD

(80). Thioredoxin-Interacting Protein shows a positive correlation

with immune cell infiltration in SCLC, possibly serving as a

biomarker for prognosticating treatment outcomes of

chemotherapy and immunotherapy in SCLC patients. Li Lei and

his team devised a Ferroptosis-Related Gene Pair Index, which may

act as an independent prognostic biomarker for personalized tumor

treatment (81). FANCD2, acting as a negative modulator of

ferroptosis, can be an independent biomarker indicating

unfavorable outcomes in LUAD patients (57). Recent research

identifies GAPDH as a ferroptosis marker in LUAD cell lines. The

amalgamation of immunotherapy with GAPDH-targeted ferroptosis

induction in LUAD could unveil a novel therapeutic avenue (59).

Furthermore, Hyper-methylated In Cancer 1 (HIC1) in cancers can

not only predict the prognosis (including lung cancer) but also

predict the effects of immunotherapy and drug sensitivity, marking

HIC1 as a potential biomarker with immune activity (82).

Searching for reliable ferroptosis biomarkers in lung cancer

holds immense value for predicting lung cancer prognosis. This

endeavor not only aids in anticipating the effectiveness of

present treatment modalities but also unveils strategies for

combined treatments to tackle drug resistance, thus fostering the

advancement of new lung cancer treatments. Nevertheless, the

implementation of ferroptosis biomarkers in lung cancer

encounters numerous hurdles. A majority of these biomarkers are

in the screening phase, with a scant few validated for actual clinical

application. The biological mechanisms and functions of certain

biomarkers, such as GAPDH, demand further scrutiny, and the

precise mechanism of act ion of HIC1 also cal ls for

thorough investigation.
5 Ferroptosis-related lung
cancer therapies

5.1 Medications aimed at lung
cancer ferroptosis

Presently, a myriad of drug candidates targeting ferroptosis for

lung cancer treatment have been reported. These pharmaceutical

agents can be categorized as follows: system Xc- inhibitors that act

directly, GPX4 inhibitors, drugs that amplify the Fenton reaction,
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and those that promote lipid peroxidation. Additionally, certain

drugs function indirectly or through a combination of

mechanisms. Table 1 summarizes well-characterized drugs in

current studies, offering a consolidated view of their mechanisms

and efficacy.
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As delineated in Table 1, a plethora of therapeutic drugs

targeting ferroptosis in lung cancer have been reported. However,

the lion’s share of these drug candidates remains in the in vitro

research stage. Monotherapy employing ferroptosis-targeted drugs

for lung cancer treatment has not yet been fully realized; hence,
TABLE 1 Drugs targeting ferroptosis in lung cancer.

Type Drug
Development
Phase

Targets Mechanism/Effect Reference

System
Xc- Inhibitors

Vorinostat In vivo ↓SLC7A11
Promotion of ferroptosis through

SLC7A11 downregulation.
(83)

Dihydroartemisinin In vitro and vivo ↓SLC7A11 Inhibition of the PRIM2/SLC7A11 axis. (84)

Artesunate In vivo ↓SLC7A11
SLC7A11 was down-regulated and TFRC was

up-regulated.
(85)

Sulforaphane In vitro and vivo ↓SLC7A11
Inhibition of SLC7A11 mRNA and protein

expression levels.
(86)

Erastin In vitro and vivo ↓SLC7A11
Activation of p53 inhibits SLC7A11 and induces

ROS accumulation.
(87)

GPX4 Inhibitors

Cisplatin In vivo ↓GSH, ↓GPX4 Promotes GSH depletion and GPX4 inactivation. (88)

Rsl3 In vitro and vivo ↓GPX4 Inhibition of GPX4 activity. (89)

Sanguinarine In vitro and vivo ↓GPX4
Ubiquitination mediated by E4 ligase STUB4 and

degradation of endogenous GPX3 reduced GPX4 stability.
(90)

Ammonium
Ferric Citrate

In vitro ↓GPX4
Inhibition of GPX4-GSS/GSR-GGT axis can reduce
autophagy and increase Fe2+ -induced oxidative

stress injury.
(91)

Dihydroisotanshinone
I

In vitro and vivo ↓GPX4 Block GPX4 protein expression. (92)

Palladium Pyrithione In vitro and vivo ↓GPX4 Increased GPX4 protein degradation. (93)

Red
ginseng
polysaccharide

In vivo ↓GPX4
Induces LDH release. Promotes ferroptosis and inhibits

GPX4 expression.
(94)

Auranofin In vitro ↓GPX4
Inhibition of Trx/TrxR system reduced the expression of
GPX53 mRNA and GPX273 protein, and up-regulated

NrF2-mediated oxidative stress response.
(95)

Induces Fenton
reaction and
promotes
lipid peroxidation

Orlistat In vitro and vivo
↓GPX4,
↑Lipid
peroxidation

Decreased GPX4 expression, inhibited FAF2 expression,
and induced lipid peroxidation.

(96)

Zinc In vivo ↑ROS Induces lipid peroxidation. (97)

Others

Erianin In vitro and vivo ↑CaM Activation of Ca2+/CaM signaling pathway. (98)

Levobupivacaine In vitro and vivo ↑P53
Up-regulation of p53 expression in NSCLC cells

induces ferroptosis.
(99)

Sinapine In vivo
↓SLC7A11,
↑TF/TFR

Upregulation of TF/TFR coupled with downregulation of
p53-dependent SLC7A11.

(100)

Novel quinoline
derivative, DFIQ

In vitro and vivo Mitochondria

Increases cellular sensitivity to ferroptosis by impairing
autophagic flux, resulting in the accumulation of

dysfunctional mitochondria and subsequent induction
of ferroptosis.

(101)

Andrographolide In vitro and vivo

Mitochondria,
↓GPX4
and
↓SLC7A11

Enhanced mitochondrial dysfunction and inhibited GPX4
and SLC7A11 expression.

(102)
“↑”stands for up-regulation or promotion.” ↓” stands for downregulation or inhibition.
SLC7A11, solute carrier family 7 member 11; GPX4, glutathione peroxidase 4; ROS, reactive oxygen species; TFRC, transferrin receptor; PRIM2, primase subunit 2; STUB4, STIP1 homology and
U-box containing protein 4; GPX3, glutathione peroxidase 3; GSS, glutathione synthetase; GSR, glutathione reductase; GGT, glutathione transferase; LDH, lactate dehydrogenase Trx,
thioredoxin; TrxR, thioredoxin reductase; GPX53, Glutathione peroxidase 53; GPX273, Glycoprotein X273; FAF2, fatty acid synthase 2; CaM, calmodulin; TF, Transferrin; TFR, Transferrin.
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combination therapies are often advocated for improved outcomes.

Interestingly, synthetic drugs make up a smaller proportion of the

therapeutic agents in these studies, while naturally-derived

compounds dominate. Looking ahead, the burgeoning field

of nanomedicine represents a promising frontier for future

research efforts.
5.2 Combination therapy strategies aiming
at ferroptosis in lung cancer

As previously detailed, enhancing ferroptosis in lung cancer

cells substantially elevates their receptivity to diverse treatment

protocols. Consequently, an emerging strategy for combating drug-

resistant lung cancer involves integrating ferroptosis-targeting

drugs with established drug resistance treatments. Table 2 offers a
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comprehensive summary of existing reports on such combinatory

treatment approaches.

Cisplatin is a crucial component of lung cancer chemotherapy.

Recent studies have highlighted the effectiveness of combining

cisplatin with various ferroptosis inducers. For example, Li, Y.

et al. found that low-dose erastin or sorafenib, when used

alongside cisplatin, successfully induced ferroptosis in cisplatin-

resistant NSCLC N5CP cells (60). Similarly, Liang, Z. et al.

observed that the simultaneous use of cisplatin with the erastin

analog PRLX93936 suppressed GPX4 expression and triggered

ferroptosis (106). Vu, N.T. et al. suggested that the combination

of ceramide kinase inhibitors and cisplatin could be a promising

therapeutic approach for KRA-mutated NSCLC (115).

Combining ferroptosis-inducing agents with targeted therapies

offers another promising avenue. Ishida, T. et al. found that the

combined use of the GPX4 inhibitor RSL3 and tyrosine kinase
TABLE 2 Co-treatment strategies aiming at ferroptosis in lung cancer.

Drug combination Clinical
Application

Target
Effect

Reference

Cisplatin +

Propofol No GPX4 Propofol suppresses ferroptosis mediated by GPX4 via the miR-744-5p/
miR-615-3p regulatory axis.

(103)

Isoorientin No SIRT6/
Nrf2/GPX4

Isoorientin enhances ferroptosis while overcoming drug resistance in
lung cancer via the SIRT6/Nrf2/GPX4 signaling axis.

(104)

Ginkgetin No Nrf2/HO-1,
SCL7A11,
GPX4

Ginkgo biloba not only intensified ROS production but also deactivated
the Nrf2/HO-1 signaling axis, thereby compromising the REDOX
homeostasis in cisplatin-treated cells. Additionally, it amplified cisplatin-
triggered MMP loss and apoptosis in NSCLC cells.

(105)

PRLX93936 No GPX4 Cisplatin combined with PRLX93936 can increase ROS, lipid
peroxidation and Fe2+ level, inhibit GPX4 and down-regulate NRF2/
Keap1 pathway, and reduce cisplatin resistance.

(106)

Gefitinib +

Dihydroisotansh No ROS Dihydroisotansh treatment resulted in significant upregulation of
autophagy, accumulation of ROS, and induction of apoptosis and
ferroptosis in a dose-dependent manner.

(107)

Betulin No SCL7A11,
GPX4 and
FTH1, ROS

Overcoming gefitinib resistance and improving the efficacy of EGFR
wild-type/KRAS mutant in NSCLC cells.

(108)

Erastin +

Celastrol No ROS,
Mitochondria

Co-treatment with low concentrations of erastin and celastrol
significantly induced cell death by activating the ROS-mitophagy
signaling pathway.

(108)

Acetaminophen No Nrf2/heme
oxygenase-1

Regulate Nrf2 nuclear translocation, promote the death of NSCLC cells. (109)

b-Elemene + erlotinib
No ROS, GPX4 Up-regulation of lncRNA H19 induces ferroptosis and enhances the

sensitivity of EGFR-TKI resistant lung cancer to erlotinib.
(110)

Auranofin + Olaparib
No ROS Killing of mutant p53 NSCLC cells via lipid peroxidation-

dependent ferroptosis.
(111)

Radiotherapy +

Hemin No ROS Increasing the activity of GPX4 degradation enhances the productivity
of initial ROS, leading to lipid peroxidation and ferroptosis.

(112)

Erastin No GPX4 Erastin reduces the radiation resistance of NSCLC cells by
inhibiting GPX4.

(113)

Rsl3, imidazole
ketone erastin

No _ Ferroptosis inducers act as radiation sensitizers to enhance the effect of
radiation on cytoplasmic lipid peroxidation, leading to cell death.

(114)*
* “+” represents the combination.
GPX4, glutathione peroxidase 4; SIRT6, Sirtuin 6; HO-1, Heme oxygenase 1; SLC7A11, solute carrier family 7 member 11; MMP, Matrix metalloproteinase; ROS, reactive oxygen species; KEAP1,
kelch like ECH associated protein 1; EGFR, Epidermal growth factor receptor; KRAS, KRAS proto-oncogene; EGFR-TKI, Epidermal growth factor receptor tyrosine kinase inhibitor; FTH1,
ferritin heavy chain 1.
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inhibitors might be an effective approach for treating GIST and

EGFR-mutated lung cancer (116). Yan, W.Y. et al. suggest that the

conjoint utilization of gefitinib and betulinol can transcend the

resistance observed in EGFR wild-type/kras-mutated NSCLC cells

to gefitinib, heralding a new pathway for the treatment of such lung

cancer manifestations (65). Moreover, Xu, C. et al. found that the

combination of b-caryophyllene and erlotinib offers a promising

treatment strategy for NSCLC patients (110).

Combining the induction of ferroptosis with radiation or

immunotherapy holds promise for innovating lung cancer

treatment. Integrating immune checkpoint blockade therapies

with statin medications has demonstrated a significant

enhancement in therapeutic response for NSCLC. It has been

observed that when ferroptosis is either inhibited or at a

diminished level, tumor cells are inclined to engender an

immunologically cold microenvironment (117). Statin

medications, known for inducing ferroptosis by restraining the

transcriptional expression of PD-L1, mediate an inflammatory

tumor microenvironment , thus bolster ing ant i-PD-1

immunotherapy in NSCLC and unveiling a potential treatment

avenue for immune-cold tumors in NSCLC (118).
5.3 Nanomedical approaches to treating
ferroptosis in lung cancer

The substantial progress in nanomedicine and tumor diagnostic

technologies has fostered notable advancements in lung cancer

diagnosis and treatment. Employing nanodrugs in lung cancer

treatment can amplify the sensitivity of traditional chemotherapy

and radiotherapy, while diminishing cancer cell resistance.

Nanomedicine can trigger iron through various mechanisms

and the potential of death, such as amplification Fenton reaction,

depletion of glutathione, regulating lipid peroxide and combination

therapy, and can ensure the smallest drug side effects and customize

precise targeting of cancer treatment. Wei, F. et al. conducted a

study that focused on the development of CaCO3 nanoparticles

loaded with a Pt (IV) prodrug. To improve their water solubility

and tumor targeting, the surfaces of the nanoparticles were

modified using DSPE-PEG2000-Biotin (119). The study

investigated various mechanisms involved in the nanoparticle’s

action, including mitochondrial Ca2+ overload, glutathione

depletion, nuclear DNA platination, ROS and lipid peroxide

increment, and highlighted the synergistic effects of apoptosis,

ferroptosis, and immunogenic cell death (119). Moreover, Zhu, G.

et al. crafted a unique Janus nanoparticle (FTG/L&SMD) that, upon

entering tumor cells, employs its glucose oxidase to convert glucose

into hydrogen peroxide, which then triggers a reaction with iron to

produce hydroxyl radicals, inducing lipid peroxidation and,

ultimately, ferroptosis in tumor cells (120). Notably, these

nanoparticles exhibited negligible toxicity to normal cells,

underscoring their potential for NSCLC treatment. Chen, X. et al.

synthesized a chiral ruthenium nanoenzyme (D/L-Arginine@Ru)

and used it to enhance macrophage M1 polarization, reversing

tumor immune suppression. Additionally, the chiral ruthenium

nanoenzyme demonstrated binding with O2 and NO, fighting
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against tumor activity, and ultimately inducing tumor cell

apoptosis and ferroptosis, achieving a “cocktail therapy” for lung

cancer (121).

Several methodologies have emerged, proposing the

amalgamation of nanomedicines with conventional treatments.

For instance, a study by Wang, L. et al. demonstrated that, in

conjunction with Amyloid Precursor Protein/Death Receptor 6

Inhibitor 12, the nanocatalytic enhancer (VF/S/A@CaP)

significantly curtailed the migration of osimertinib-resistant

NSCLC, hinting at a potential nanocatalysis-based methodology

for treating severe osimertinib-resistant NSCLC (66). In addition,

Wang, J. et al. formulated a metal-organic supramolecular

compound (nano PMI@CeO2) capable of restoring TP53 and

sensitizing ferroptosis, markedly inhibiting tumor progression in

a syngeneic transplant model of lung cancer, while maintaining

excellent biocompatibility, thereby presenting a potential candidate

drug for cancer treatment (122). Furthermore, the pH-responsive

superparamagnetic iron oxide nanoparticle clusters crafted by Li, Y.

et al. showcase combined diagnostic and therapeutic capabilities.

They fortify on-site iron cell death and apoptosis utilizing radiative

treatments and chemodynamic therapy methods (123). Through

rational design of nanoparticles and their synergistic combination

with various conventional treatments, achieving efficient integrated

diagnosis and therapy will become a promising direction for lung

cancer treatment.

In conclusion, nanomedicine’s ability to enhance ferroptosis,

synergize with standard therapies to bolster treatment

responsiveness, mitigate medication resistance, alongside its

hallmark of precise treatment approaches and reduced toxicity,

harbors immense potential for the diagnosis and treatment of

lung cancer.
6 Conclusions and discussions

In recent years, the significance of ferroptosis in tumor biology

has increased significantly. Ferroptosis is considered to be an

emerging field of lung cancer research, providing new

perspectives for the occurrence, development and treatment of

lung cancer. This article reviews the multifaceted relationship

between lung cancer and ferroptosis, and discusses the regulation

and potential therapeutic interventions at different molecular levels.

Ferroptosis may be suppressed in lung cancer due to the self-

protection of cancer cells. The current research framework of

ferroptosis regulation in lung cancer is relatively complete, but

there are still some deficiencies in the details. Epigenetic

modifications mainly focus on SLC7A11, while the regulation of

other factors such as GPX4 still needs further exploration. P53 has a

dual effect on ferroptosis, but there is no clear evidence to support its

specific role. Tumor cells can promote immune escape and improve

the efficacy of immunotherapy by regulating ferroptosis, and the

detailed molecular mechanisms need to be further explored. In

addition, we found that the development of ferroptosis-targeted

drugs for lung cancer has been a hot topic of research, and many

chemical and natural drugs have been discovered. However, as shown

in Table 1, most of the drugs are only validated in cell and animal
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models, and many drugs only have theoretical positive therapeutic

effects and have not been further developed. The in-depth study of

ferroptosis has potential for the diagnosis and treatment of lung

cancer, reducing chemotherapy resistance, increasing radiation

sensitivity, etc. Many combination therapy strategies have been

proposed, but as shown in Table 2, most of them are only studied

in vitro, and theoretically provide direction for lung cancer treatment.

Doing basic research in the field of ferroptosis in lung cancer is the

cornerstone, and translating it to clinical application is the key, and

there is still a long way to go. The application of nanomedicine may

be a breakthrough for inducing ferroptosis and promoting lung

cancer treatment. Most of the nanomaterials are based on the

Fenton reaction, and have advantages such as high efficiency,

precision and low toxicity in treatment. Attention to the research

of nanomedicine in the precise induction of ferroptosis will open up

new possibilities for the treatment of lung cancer.

From the perspective of bioinformatics, screening for specific

and sensitive ferroptosis-related biomarkers can help to develop

targeted therapy strategies and better predict patient outcomes. Jin

Ye et al. found the first specific marker of ferroptosis, peroxiredoxin

3 (77), and recent studies have found that PL-PUFA2s can serve as

diagnostic and therapeutic targets for regulating ferroptosis, and

may become biomarkers of ferroptosis (124). Although GPX4,

SLC7A11, FSP1, ACSL3 and FANCD2 can serve as potential

biomarkers in lung cancer, they have some guidance for

predicting prognosis, but further screening and identification of

lung cancer-specific ferroptosis biomarkers still need to be

continued, which is of great significance.

In summary, the role of ferroptosis in lung cancer is a current

research hotspot. More in-depth exploration of its regulatory

mechanisms in lung cancer, finding more targets and specific

biomarkers, and developing targeted drugs are the directions we

should consider next. Accelerating the clinical development of

ferroptosis-targeted drugs and related combination therapy

strategies, accelerating the translation of basic research to clinical

practice, and truly benefiting lung cancer patients from the research

of ferroptosis are our ultimate goals.
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Glossary

ACSL4 Acyl-CoA synthetase long-chain family member 4

ANGPTL4 angiopoietin-like 4

ATF3 activating transcription factor 3

DMT1 Divalent metal transporter 1

EGFR Epidermal growth factor receptor

EGFR-TKI Epidermal growth factor receptor tyrosine kinase inhibitor

FANCD2 Fanconi anemia complementation group D2

FIN56 ferroptosis inducer 56

FSP1 Ferroptosis suppressor protein 1

G3BP1 GTPase-activating protein-binding protein 1

GAPDH Glyceraldehyde-3-Phosphate Dehydrogenase

GPX4 glutathione peroxidase 4

GSH glutathione

H2O2 hydrogen peroxide

HIC1 Hyper-methylated In Cancer 1

HO-1 heme oxygenase 1

KEAP1 Kelch-like ECH associated protein 1

LOX lipoxygenase

LPCAT3 lysophosphatidylcholine acyltransferase 3

LPO lipid peroxides

LSH lymphoid-specific helicase

LUAD lung adenocarcinoma

NEDD4L NEDD4 like E3 ubiquitin protein ligase

NRF2 NF-E2-related factor 2

NSCLC Non-small cell lung cancer

OTUB1 OTU deubiquitinase B1

PUAF: polyunsaturated fatty acid

PUFA-PL polyunsaturated fatty acid phospholipids

PUFA-PL-OOH polyunsaturated fatty acid phospholipid hydroperoxides

RBMS1 RNA binding motif single stranded interacting protein 1

ROS reactive oxygen species

RSL3 RAS selective lethal 3

SLC3A2 solute carrier family 3 member 2

SLC7A11 solute carrier family 7 member 11

system Xc- the cystine/glutamate antiporter system

TFRC transferrin receptor

TFRC transferrin receptor

TP53 tumor protein 53
F
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