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Background: Rapid On-Site Evaluation (ROSE) during flexible bronchoscopy (FB)

can improve the adequacy of biopsy specimens and diagnostic yield of lung

cancer. However, the lack of cytopathologists has restricted the wide use

of ROSE.

Objective: To develop a ROSE artificial intelligence (AI) system using deep

learning techniques to differentiate malignant from benign lesions based on

ROSE cytological images, and evaluate the clinical performance of the ROSE

AI system.

Method: 6357 ROSE cytological images from 721 patients who underwent

transbronchial biopsy were collected from January to July 2023 at the Tangdu

Hospital, Air Force Medical University. A ROSE AI system, composed of a deep

convolutional neural network (DCNN), was developed to identify whether there

were malignant cells in the ROSE cytological images. Internal testing, external

testing, and human-machine competition were used to evaluate the

performance of the system.

Results: The ROSE AI system identified images containing lung malignant cells

with the accuracy of 92.97% and 90.26% on the internal testing dataset and

external testing dataset respectively, and its performance was comparable to that

of the experienced cytopathologist. The ROSE AI system also showed promising

performance in diagnosing lung cancer based on ROSE cytological images, with

accuracy of 89.61% and 87.59%, and sensitivity of 90.57% and 94.90% on the

internal testing dataset and external testing dataset respectively. More

specifically, the agreement between the ROSE AI system and the experienced

cytopathologist in diagnosing common types of lung cancer, including

squamous cell carcinoma, adenocarcinoma, and small cell lung cancer,

demonstrated almost perfect consistency in both the internal testing dataset

(k  =   0:930) and the external testing dataset (k  =   0:932).

Conclusions: The ROSE AI system demonstrated feasibility and robustness in

identifying specimen adequacy, showing potential enhancement in the

diagnostic yield of FB. Nevertheless, additional enhancements, incorporating a
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more diverse range of training data and leveraging advanced AI models with

increased capabilities, along with rigorous validation through extensive multi-

center randomized control assays, are crucial to guarantee the seamless and

effective integration of this technology into clinical practice.
KEYWORDS

rapid on-site evaluation, transbronchial biopsy, lung cancer, flexible bronchoscopy,
deep convolutional neural network
1 Introduction

Lung cancer is the world’s leading cause of cancer death (1).

Despite improvements in survival for most cancer types over the

last several decades, lung cancer lags behind, mainly because it is

initially asymptomatic and typically discovered at advanced stages

(2, 3). Currently, flexible bronchoscopy (FB) is the most commonly-

used modality for the diagnosis of lung lesions (4), and the

transbronchial biopsy has been typically performed as a safe and

effective procedure to sample tissues to differentiate malignant from

benign lesions and staging of lung cancer (5). However, whether the

operator has got sufficient and satisfactory specimens during the

biopsy procedure is unknown. In recent years, different methods

have been developed to improve the adequacy of specimens

obtained through the biopsy procedure, such as the Rapid On-

Site Evaluation (ROSE) (6–8). ROSE was used especially to assist

clinicians in the diagnosis of lesions that are not directly visible at a

standard bronchoscopic airway examination, such as those located

in the mediastinum or the pulmonary parenchyma (9). With ROSE,

the specimen is prepared and stained after the biopsy procedure,

allowing for immediate cytopathologic evaluation and feedback

regarding specimen adequacy and potential diagnosis (10). Recent

studies demonstrated that ROSE during the bronchoscopy can

result in a low rate of non-diagnostic sampling and yield a high

agreement between the on-site and final pathological evaluation

(11–13). Malignant results of ROSE may be useful to facilitate an

early clinical decision.

However, the shortage of cytopathologists limits the wide use of

ROSE in many institutes worldwide, especially in institutes of

underdeveloped countries. On the other hand, with the

development of digital imaging and the rapid progress in

machine learning technique, automatic pathological image

assessments with artificial intelligence (AI) has become available

(14, 15), thus making it possible to replace manual ROSE with the

AI system, which would promote the utility of ROSE and improve

the diagnostic yield of FB. To the best of our knowledge, only a few

studies have explored the application of AI in ROSE (16, 17), and

none have investigated the application of AI-based ROSE in the

diagnosis of lung lesions. Therefore, in this study, we developed a

ROSE AI system to access the cytological images obtained from the

transbronchial biopsy, evaluated the clinical performance of the
02
ROSE AI system, and discussed the possibility of replacing manual

ROSE with the ROSE AI system.
2 Materials and methods

2.1 Data collection

From January to July 2023, 6357 ROSE cytological images from

721 patients who underwent transbronchial biopsy were collected at

the Tangdu Hospital, Air Force Medical University. Among the 721

patients who underwent bronchoscopic biopsy, the lesions of 390

patients were identified through direct visualization under

bronchoscopy, while the lesions of 323 patients were detected

using radial-endobronchial ultrasound with guide sheath (r-

EBUS-GS). In 8 cases, ultrasound did not detect the lesions, and

the blind biopsy approach was employed. 5176 ROSE cytological

images from 576 patients, which were collected between January

and May 2023, were used to develop the ROSE AI system and test

the system internally, while 1181 images from 145 patients collected

from June to July 2023 were used to test the ROSE AI system

externally. The former was called the AI-develop group, while the

latter was called the AI-test group. The flow chart of the study

design is shown in Figure 1.

The study was approved by the regional ethics committee of

Tangdu Hospital, Air Force Medical University (TDLL-202311-03).
2.2 ROSE slides acquisition

Patient preparation: All patients received local anesthesia using

2% lidocaine spray before undergoing FB. A preoperative assessment

was conducted to rule out contraindications. The FB used were

Olympus BF-260, BF-P260, and BF-P290. Different bronchoscopes

were used according to their availability. Transbronchial biopsy: First,

a flexible bronchoscope provided visualization and access to the

bronchus. Subsequently, a gentle but precise tissue sampling was

performed by opening and closing the biopsy forcesp, capturing a

small segment of the lesion. Five to six biopsy specimens were taken

from each lesion site. ROSE smear: ROSE slide preparation was

conducted by a proficient and professionally trained cytotechnologist
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based on methods reported in the literature (18) for each specimen.

Each biopsy specimen was spread in a concentric circle with a diameter

of 1 centimeter on a sterile cytology slide. The slides were then air-dried

and stained using a Diff-Quik stain kit (immersion in A solution for 30

seconds, rinsing with phosphate-buffered saline (PBS), immersion in B

solution for 20 seconds, rinsing with PBS), and finally observed under

an Olympus BX43 microscope. The remaining tissue after preparation

of the ROSE slides was placed in tissue fixative fluid and sent for

pathological examination.
2.3 ROSE cytological image acquisition

All available ROSE slides of the included patients were

photographed with a camera (Olympus DP74) mounted on the

microscope (Olympus BX43) at 200X magnification. All the images

were labeled by an experienced cytopathologist as cancer or non-
Frontiers in Oncology 03
cancer to indicate whether there exist malignant cells in the images

under the guidance of the final pathological diagnoses. To ensure

the accuracy of the annotation results, the label for one image was

accepted only when the annotation by ROSE cytopathologist was

consistent with the final pathological diagnosis. Otherwise, the

image was removed from the dataset.

After data annotation, all the images in the AI-develop group were

mixed, and randomly assigned to training dataset, validation dataset, or

internal testing datasets with a probability of 0.8, 0.1, and 0.1

respectively. All the images in the AI-test group were considered as

the external testing dataset. The details for the datasets are shown

in Table 1.
(1) The training dataset, which includes 2738 images from 346

patients labeled with cancer, and 1368 images from 229

patients labeled with non-cancer, was used to train the

ROSE AI system.
TABLE 1 Patient demographics and clinical information.

dataset

image patient

cancer non-cancer
diagnosis gender age

(year)cancer non-cancer male female

train 2738 1368 346 229 395 180 60.07 ±12.04

validation 341 203 215 132 245 102 60.22 ±12.04

internal testing 339 187 212 125 226 111 60.30 ±12.18

external testing 866 315 98 47 105 40 61.64 ±10.39
FIGURE 1

The flow chart of the study design. AI, Artificial Intelligence; ROSE, Rapid On-Site Evaluation; Acc, Accuracy.
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(2) The validation dataset, which includes 341 images from 215

patients labeled with cancer, and 203 images from 132

patients labeled with non-cancer, was used to validate the

model to select the optimal AI model and hyperparameters.

(3) The internal testing dataset, which includes 339 images

from 212 patients labeled with cancer, and 187 images from

125 patients labeled with non-cancer, was used to test the

ROSE-AI system internally.

(4) The external testing dataset, which includes 866 images

from 98 patients labeled with cancer, and 315 images from

47 patients labeled with non-cancer, was used to test the

model externally.
Both the internal and external testing dataset were also

used to compare the performance of the ROSE AI system

with cytopathologists.
2.4 Development of the ROSE AI system

Design ROSE AI model. The basic function of the ROSE AI

system is to verify whether a ROSE cytological image contains

malignant cells or not. We trained an AI classification model to

identify whether there existed malignant cells in a given ROSE

cytological image. Several classification models using deep

convolutional neural network (DCNN) have been trained on the

training dataset, and the ResNet101 (19) (implemented with

Pytorch 1.13.1), which achieved the best performance on the

validation dataset was selected finally.

Train ROSE AI model. The ROSE AI model was trained on

two NVIDIA 3090Ti GPUs with the training dataset. All images in

the training dataset were resized into 1024x1024 pixels before

feeding into the classification model. The data augmentation

strategies, which include random flipping, random rotation, and

random center cropping, were used to increase the amount of

training data to boost the training performance of the system. We

used the cross entropy loss function to provide feedback on the

model. Label smoothing, a regularization technique, was used to

prevent overfitting and improve the generalization performance.

The AI ROSE model was trained for a total cycle of 200 epochs

(Adam optimizer with a learning rate of 0.0001 and batch size of 8).

After each epoch, the trained model was tested on the validation

dataset. The model which achieved the highest accuracy on the

validation dataset was selected as the final AI model.
2.5 Evaluation on the clinical performance
of the ROSE AI system

The performance of identifying lung malignant cells of the

ROSE AI system was firstly accessed on the internal testing dataset

and the external testing dataset. The classification result of the

ROSE AI system for each image was validated with the annotation.

And then the accuracy, sensitivity, specificity, PPV, and NPV were

analyzed. An experienced cytopathologist was asked to identify the
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existence of malignant cells in the same dataset, without details

regarding the clinical characteristics, endoscopic features, and

pathological results presented. The performance of the

cytopathologist was compared with our ROSE AI system.

Then the ability of the ROSE AI system to diagnose lung cancer

based on cytological images was also evaluated. The ROSE AI

system would diagnose a patient with cancer when at least one

cytological image was identified containing malignant cells by the

ROSE AI system. The experienced cytopathologist provided a

comprehensive diagnosis based on all ROSE cytological images of

the same patient. Both the judgment of the ROSE AI system and the

cytopathologist for each patient were validated with the annotation,

and the accuracy, sensitivity, specificity, PPV, and NPV

were analyzed.
2.6 Statistical analysis

The accuracy, sensitivity, specificity, PPV, and NPV were

computed to measure the performance of the ROSE AI system

and cytopathologist at the per-image level and per-patient level

using Python (version 3.9.13). The consistency of the ROSE AI

system and the cytopathologist was evaluated with the Kappa test

using SPSS (version 26.0).
3 Results

3.1 Patient characteristics

From January 2023 to July 2023, 721 patients (shown in

Table 1) diagnosed with lung lesions based on chest computed

tomography (CT) underwent FB with ROSE. A total of 751 lesions

were biopsied from 721 patients. Among these, 582 (77.50%) lesions

were located peripherally, while 169 (22.50%) lesions were located

centrally. 6357 ROSE images were taken for all the patients, with

8.82 ± 3.20 images for each patient. The mean age of the patients

was 60.40 ± 11.74, and 69.49% of patients (501) were male. Among

all the patients, 61.72% of patients (445) were diagnosed with

cancer, and 38.28% of patients (276) were diagnosed with non-

cancerous conditions. The patient characteristics in each dataset

were analyzed (shown in Table 1).

Recognizing the significance of assessing the ROSE AI system’s

robustness across diverse settings and patient populations, we

conducted a detailed analysis focusing on patients in the AI-test

group. Among the 145 patients examined, 137 underwent biopsy

for a single lesion, while 7 patients underwent biopsies for two

lesions, and 1 patient underwent biopsies for three lesions. Of the

total 154 lesions examined, 114 (74.03%) were located peripherally,

while 40 (25.97%) were located centrally. Furthermore, among the

145 patients, 79 (54.48%) had lesions identified through direct

visualization under bronchoscopy, while 63 (43.45%) had lesions

detected using radial-endobronchial ultrasound with a guide sheath

(r-EBUS-GS). In 3 (2.07%) cases, ultrasounds failed to detect the

lesions, necessitating the use of a blind biopsy approach.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1360831
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yan et al. 10.3389/fonc.2024.1360831
The final pathological diagnoses of patients were presented in

Table 2. In the AI-develop group, 229 patients were diagnosed as

non-cancerous, 108 patients with squamous cell carcinoma, 109

patients with adenocarcinoma, and 59 patients with small cell lung

cancer. Additionally, specimens from 55 patients in the AI-develop

group were histopathologically diagnosed as malignant, but a

specific subtype was not identified due to the lack of follow-up

immunohistochemistry or unavailable follow-up information.

These cases were categorized as “no specific subtype.”

Furthermore, 16 patients in the AI-develop group were

categorized as “others”, including adenoid cystic carcinoma (1

patient), B-cell lymphoma (1 patient), adenocarcinoma combined

with small cell lung cancer (1 patient), breast cancer metastasis (1

patient), mesothelioma (3 patients), sarcoma (1 patient),

adenosquamous carcinoma (2 patients), large cell carcinoma (1

patient), squamous cell carcinoma combined with neuroendocrine

carcinoma (1 patient), cervical cancer lung metastasis (1 patient),

renal malignant tumor metastasis (1 patient), thyroid cancer

metastasis (1 patient), and classical Hodgkin lymphoma (1

patient). The final pathological diagnoses for AI-test group

patients were also presented in Table 2, indicating 47 non-

cancerous, 31 squamous cell carcinoma, 33 adenocarcinoma, 19

small cell lung cancer, and 15 no specific subtype.
3.2 Performance of the ROSE AI system in
image classification

The trained AI ROSE classification model was evaluated on the

internal testing dataset and the external testing dataset. For each

ROSE image, the ROSE AI classification model determined whether

it contained malignant cells or not. The performance of ROSE AI

classification was measured with the accuracy, sensitivity,

specificity, PPV, and NPV. The specificity-sensitivity curves on

both internal and external testing datasets are shown in Figure 2.

A classification confidence threshold of 0.5 was selected to

compute the final accuracy, sensitivity, specificity, PPV, and NPV

on both internal and external testing datasets, the results are shown

in Table 3. The accuracy, sensitivity, specificity, PPV, and NPV of
Frontiers in Oncology 05
the ROSE AI classification in classifying cancer images were 92.97%,

94.40%, 90.37%, 94.67%, and 89.89% respectively on the internal

testing dataset, and 90.26%, 90.76%, 88.89%, 95.74%, and 77.78%

respectively on the external testing dataset. Meanwhile, the

performance of an experienced cytopathologist in classifying

cancer images was 97.15% (accuracy), 100.00% (sensitivity),

91.98% (specificity), 95.76% (PPV), and 100.00% (NPV) on the

internal testing dataset, and 94.83% (accuracy), 94.69% (sensitivity),

95.24% (specificity), 98.20% (PPV), and 86.71% (NPV) on the

external testing dataset. The consistency between the ROSE AI

system and the experienced cytopathologist was good (k = 0:798 on

the internal testing dataset, k = 0:673 on the external testing

dataset). Collectively, these results indicated that the ROSE AI

classification model can identify whether there were malignant

cells in ROSE cytological images with high accuracy and

substantial robustness.
3.3 Performance of the ROSE AI system in
identifying lung cancer

We next evaluated the performance of the ROSE AI system in

identifying lung cancer in ROSE cytological images at the per-

patient level. A patient was diagnosed with lung cancer by the ROSE

AI system when at least one ROSE cytological image of the patient

was classified as a cancer image (with a confidence threshold of

0.55). Representative predictions of the ROSE AI system are shown

in Table 4. The results showed that the ROSE AI system identified

lung cancer with an accuracy of 89.61%, sensitivity of 90.57%,

specificity of 88.00%, PPV of 92.75%, and NPV of 84.62% on the

internal testing dataset, and accuracy of 87.59%, sensitivity of

94.90%, specificity of 72.34%, PPV of 87.74%, and NPV of

87.18% on the external testing dataset.

We also asked an experienced cytopathologist to diagnose the

patients based on the same ROSE cytological images dataset. The

experienced cytopathologist provided a comprehensive diagnosis

based on all ROSE cytological images of one patient. The accuracy,

sensitivity, specificity, PPV, and NPV of the experienced

cytopathologist in diagnosing lung cancer were 97.03%, 100.00%,
TABLE 2 Final pathological diagnoses of patients.

pathological diagnosis
AI-develop group AI-test group

train validation internal testing external testing

cancer

squamous cell carcinoma 108 69 56 31

adenocarcinoma 109 63 74 33

small cell lung cancer 59 42 41 19

othersa) 16 9 9 0

no specific subtypeb) 54 32 32 15

non-cancer 229 132 125 47
a) “others” includes: adenoid cystic carcinoma (1 patient), B-cell lymphoma (1 patient), adenocarcinoma combined with small cell lung cancer (1 patient), breast cancer metastasis (1 patient),
mesothelioma (3 patients), sarcoma (1 patient), adenosquamous carcinoma (2 patients), large cell carcinoma (1 patient), squamous cell carcinoma combined with neuroendocrine carcinoma (1
patient), cervical cancer lung metastasis (1 patient), renal malignant tumor metastasis (1 patient), thyroid cancer metastasis (1 patient), classical Hodgkin lymphoma (1 patient).
b) The specimens obtained from the patients were diagnosed as malignant through histopathology, but a specific subtype was not identified. Follow-up immunohistochemistry was either not
conducted, or the follow-up information was unavailable.
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92.00%, 95.50%, and 100.00% respectively on the internal testing

dataset, and 95.17%, 96.94%, 91.49%, 95.96%, and 93.48%

respectively on the external testing dataset. The consistency

between the ROSE AI system and experienced cytopathologist

was also analyzed with the Kappa test. The Kappa values on

internal and external testing datasets were 0.738 and 0.618,

indicating good consistency between the two diagnoses.
3.4 Disparities between the ROSE AI
system and cytopathologist in
image classification

Despite the overall good consistency observed between the

ROSE AI system and the experienced cytopathologist, there were

still significant instances where interpretations diverged between

the two. To further scrutinize the factors contributing to disparities

between the ROSE AI system and cytopathologist’s interpretations,

we conducted an analysis specifically focusing on cases where

inconsistencies between the ROSE AI system and cytopathologists

emerged. The detailed findings are presented in Table 5. Examining

Table 5 revealed that in the internal testing dataset, the

predominant instances of discrepancies between the ROSE AI

system and pathologists were associated with diagnoses such as

“non-cancer” (15.51%), “no specific subtype” (8.89%), “small cell

lung cancer” (8.77%), and others (7.69%). Similarly, in the external

testing dataset, the most notable instances of discrepancies
Frontiers in Oncology 06
encompassed “no specific subtype” (22.73%), “non-cancer”

(15.87%), and “small cell lung cancer” (13.59%).
3.5 Performance of the ROSE AI system in
identifying various types of tumors
as malignant

To further evaluate the efficacy of the ROSE-AI system, we

conducted a detailed analysis of its performance in identifying

various types of tumors as malignant, with a particular focus on

non-primary lung tumors and less prevalent malignant lung tumors.

The results are comprehensively outlined in Table 6. Patients with final

pathological diagnoses of squamous cell carcinoma, adenocarcinoma,

and small cell lung cancer were classified under the “common” group.

Meanwhile, those with less prevalent malignant lung tumors and non-

primary lung tumors were grouped under “others”, and patients

pathologically diagnosed as malignant but without a specific subtype

were categorized under “no specific subtype.” Since all patients in these

three groups were diagnosed with malignant tumors, sensitivity

equaled accuracy, and specificity, PPV, and NPV were 0%, 100%,

and 0%, respectively. Consequently, we solely presented accuracy as the

performance metric in Table 6. In the internal testing dataset, the

accuracy for the “common,” “others,” and “no specific subtype” groups

was 91.81%, 88.89%, and 84.38%, respectively. For the external testing

dataset, no patients were diagnosed with the “others” category, and as

such, no accuracy is reported for this group. The accuracy for the

remaining two groups in the external testing dataset was 96.39% for the

“common” group and 86.67% for the “no specific subtype” group. The

Kappa test was subsequently administered to the “common” group in

both the internal and external testing datasets, yielding Kappa values of

0.930 and 0.932, respectively. These results suggest almost perfect

consistency between the diagnoses provided by the ROSE AI system

and those of experienced cytopathologist for common lung

malignant tumors.
4 Discussion

In this study, we developed a novel ROSE AI system to render

ROSE during transbronchial biopsy. The ROSE AI system showed

promising performance in identifying whether there exist lung

malignant cells in the ROSE cytological images, and in diagnosing

lung cancer based on all ROSE cytological images of the patient. The

results of this study indicated that the diagnostic performance of the
TABLE 3 Performance of the ROSE AI system in image classification.

dataset
accuracy

(%)
sensitivity

(%)
specificity

(%)
PPV
(%)

NPV
(%)

internal
testing

ROSEa) AIb) 92.97 94.40 90.37 94.67 89.89

human 97.15 100.00 91.98 95.76 100.00

external
testing

ROSEa) AIb) 90.26 90.76 88.89 95.74 77.78

human 94.83 94.69 95.24 98.20 86.71
a) ROSE, Rapid On-Site Evaluation; b)AI, Artificial Intelligence.
FIGURE 2

Specificity-sensitivity curve of image classification.
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ROSE AI system could be comparable to that of experienced

cytopathologists. To the best of our knowledge, this study was the

first to establish a deep learning-based classification system for

identifying lung malignant cells in ROSE during transbronchial

biopsy, which might improve the diagnostic performance of FB.

ROSE can evaluate the diagnostic adequacy of the specimens

obtained with transbronchial biopsy instantly and thus is pivotal to

improve the diagnostic yield of FB and help to avoid unnecessary

repeat biopsy (10, 20–22). However, the lack of cytopathologists in

many hospitals has refrained from the wide use of ROSE. Recently,

with the rapid development of AI, especially the fast progress in

deep learning technique, the application of AI in digital pathology

have made great success (23–26). It may be promising to utilize AI

to render ROSE during transbronchial biopsy. However, to our

knowledge, there have been no studies implementing AI in

evaluating the diagnostic adequacy of transbronchial biopsy for

diagnosing lung cancer. In this paper, we developed a ROSE AI

system, which achieved an accuracy of 92.97% and 90.26% in

identifying the existing of lung malignant cells in ROSE

cytological image in the internal testing dataset and external

testing dataset respectively, and is comparable with the

performance of experienced cytopathologists. The accuracy only

decreased slightly on the external testing dataset compared with

that on the internal testing dataset, which indicated the trained

ROSE AI classification model generalized well and was accurate and

robust. Therefore, the ROSE AI system exhibits potential for

assessing the adequacy of biopsy specimens during FB in

clinical settings.

Furthermore, the ROSE AI system also showed promising

performance in identifying lung cancer, with an accuracy of

89.61% and 87.59% on the internal testing dataset and external

testing dataset respectively, which was slightly inferior than that of

experienced cytopathologists (97.03% on the internal testing

dataset, and 95.17% on external testing dataset). It was reported

that the ROSE diagnostic accuracy of the junior and mid-level

endoscopists for superficial esophageal squamous cell carcinoma

was less than 80% (27). Our ROSE AI system achieved better

diagnostic performance than the junior and mid-level

endoscopists. Besides, the sensitivity of our ROSE AI system was

90.57% and 94.90% on the internal testing dataset and external

testing dataset respectively, which means less than 10% of patients

with lung cancer were misdiagnosed by the ROSE AI system.

Hence, our ROSE AI system has the potential to be implemented

in clinical settings to support endoscopists in enhancing the

diagnostic yield of FB.
Frontiers in Oncology 07
Compared to pathologists, the performance of the ROSE AI

system was slightly inferior in image classification. Table 5 indicated

that when the patient’s final pathological diagnosis was “non-

cancer,” “no specific subtype,” or “small cell lung cancer,” there

was a higher likelihood of discrepancies between the ROSE AI

system’s interpretation and that of pathologists. Conversely, when

the patient’s diagnosis was “squamous cell carcinoma” or

“adenocarcinoma,” the agreement between the two was higher.

This suggests that, compared to cases diagnosed as “non-cancer,”

“no specific subtype,” or “small cell lung cancer,” the current ROSE

AI system demonstrates more accurate interpretations for cases

diagnosed as “squamous cell carcinoma” or “adenocarcinoma.” In

this study, cases diagnosed as “non-cancer” encompassed various

conditions such as infections and benign nodules, resulting in

greater diversity in the images. This increased diversity might

make it more challenging for the ROSE AI system to diagnose

such cases accurately. This also suggests that enhancing the

diversity of cytopathological images for training could be a

potential improvement to enhance the performance of the ROSE

AI system.

Moreover, we conducted an in-depth analysis of the ROSE AI

system’s performance in distinguishing various types of tumors as

malignant, with a specific emphasis on non-primary lung tumors

and less prevalent malignant lung tumors. As depicted in both

Tables 4, 6, when compared to its overall performance in identifying

all lung tumors as malignant, the ROSE AI system exhibits a higher

accuracy in identifying common lung tumors as malignant—

encompassing squamous cell carcinoma, adenocarcinoma, and

small cell lung cancer (89.61% vs. 91.81% in the internal testing

dataset and 87.59% vs. 96.39% in the external testing dataset). The

consistency between the ROSE AI system’s diagnoses and those of

experienced cytopathologists reached nearly perfect levels for

common lung tumors, with Kappa values of 0.930 and 0.932 in

the internal and external testing datasets, respectively. This implies

that the ROSE AI system excels in identifying common lung tumors

as malignant. However, for less prevalent malignant lung tumors

and non-primary lung tumors, the accuracy was slightly lower,

standing at 88.89% in the internal testing dataset. This discrepancy

may be attributed to the scarcity of training data, as the training

dataset comprised 1438 images for common lung tumors compared

to only 127 images for less prevalent malignant lung tumors and

non-primary lung tumors.

Even though our ROSE AI system has achieved promising

results, several limitations still exist in this study. Firstly, it is

essential to acknowledge that ROSE cannot substitute the
TABLE 4 Performance of the AI ROSE system in identifying lung cancer.

dataset
accuracy

(%)
sensitivity

(%)
specificity

(%)
PPV
(%)

NPV
(%)

internal
testing

ROSEa) AIb) 89.61 90.57 88.00 92.75 84.62

human 97.03 100.00 92.00 95.50 100.00

external
testing

ROSEa) AIb) 87.59 94.90 72.34 87.74 87.18

human 95.17 96.94 91.49 95.96 93.48
a) ROSE, Rapid On-Site Evaluation; b) AI, Artificial Intelligence.
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comprehensive assessment offered by a final pathological

examination. Achieving perfect consistency (100%) between

ROSE and pathological examination poses a significant challenge.

Moreover, it’s important to note that ROSE cannot offer detailed

information on tumor subtyping and staging. Secondly, the study

design employed was a single-center retrospective approach. This

choice, characteristic of a single-center study, raised concerns about

the potential limitation in data diversity, thereby constraining a

thorough evaluation of the ROSE AI system’s performance.

Furthermore, being retrospective in nature, the research cannot

assure the completeness of data. An illustrative example is the

unavailability of precise statistics regarding lesion sizes, hindering

our ability to conduct a detailed assessment of the ROSE AI system’s

efficacy across lesions of different sizes. In the future, multi-center

prospective randomized controlled clinical trials are needed to

assess the potential role of ROSE AI system in clinical practice.

Finally, our ROSE AI system demonstrated performance

comparable to, albeit slightly below, that of experienced

cytopathologists. The observed limitation could stem from the

insufficient diversity in the training data, particularly in cases

where patients were diagnosed as “non-cancer.” To address this,

we intend to expand our collection of ROSE cytological images,

aiming to augment the diversity of the training data and

consequently improve the performance of our ROSE AI system.

Additionally, exploring novel deep learning based classification

network architectures, specifically those tailored for small

samples, represents a promising avenue for enhancing the

capabilities of the ROSE AI system.

In the integration of the ROSE AI system into clinical

applications, several ethical considerations demand attention.

Firstly, the inherent biases within AI algorithms, derived from the

data they are trained on, may result in disparate healthcare

outcomes among various demographic groups. Besides, there exist

risks of overreliance on algorithms which may lead to potential

errors or misdiagnoses. Therefore, ensuring the rigorous validation

and continuous monitoring of the ROSE AI system is paramount to

uphold patient safety. Conducting more extensive and larger multi-

center randomized control assays becomes essential to validate its

safety and reliability before widespread use in medical applications.

Secondly, the reliance of AI diagnostic systems on vast amounts of
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TABLE 6 Comparison on the performance of the AI ROSE system in
identifying different tumors as malignant.

dataset

accuracy (%)

commona) othersb)
no specific
subtypec)

internal testing 91.81 88.89 84.38

external testing 96.39 – 86.67
a) “common” includes: squamous cell carcinoma, adenocarcinoma, and small cell lung cancer;
b) “others” includes: adenoid cystic carcinoma (1 patient), B-cell lymphoma (1 patient),
mesothelioma (2 patients), sarcoma (1 patient), squamous cell carcinoma combined with
neuroendocrine carcinoma (1 patient), cervical cancer lung metastasis (1 patient), thyroid
cancer metastasis (1 patient), classical Hodgkin lymphoma (1 patient).
c) The specimens obtained from the patients were diagnosed as malignant through
histopathology, but a specific subtype was not identified. Follow-up immunohistochemistry
was either not conducted, or the follow-up information was unavailable.
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sensitive patient data underscores the critical need for robust data

privacy regulations and cybersecurity measures. Finally, the

integration of the ROSE AI system in medicine presents complex

regulatory and legal challenges, including issues of responsibility

attribution in cases of errors or adverse outcomes. It is imperative to

establish ethical frameworks and guidelines that prioritize patient

welfare, autonomy, and informed consent, while also addressing the

broader societal implications of AI adoption in healthcare.
5 Conclusion

We developed a ROSE AI system to assist endoscopists in

rendering ROSE during transbronchial biopsy. Our ROSE AI

system showed comparable performance to experienced

cytopathologists in identifying the existence of malignant cells in

ROSE cytological images, indicating its potential role in evaluating

the adequacy of biopsy specimens during FB in clinical practice.

Besides, the good performance of our ROSE AI system in

identifying lung cancer indicated its potential deployment in

clinical settings to aid endoscopists in enhancing the diagnostic

yield of FB. Nevertheless, the ROSE AI system requires additional

validation, considering the limitations of this study being a single-

center retrospective analysis. Furthermore, the current performance

of the ROSE AI system remains subpar compared to experienced

cytopathologists. It is crucial to emphasize that, at this stage, the

ROSE AI system cannot serve as a substitute for experienced

cytopathologists in clinical practice. Moreover, a comprehensive

examination of ethical considerations is essential before advocating

for the broader implementation of the ROSE AI system in clinical

applications. This scrutiny should encompass issues such as bias

and fairness within the AI algorithm, patient safety, data privacy

and security, as well as regulatory compliance and legal

implications, necessitating thorough and rigorous attention.
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