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Purpose: Glioblastoma is the most common type of primary brain malignancy and

has a poor prognosis. The standard treatment strategy is based on maximal safe

surgical resection followed by radiotherapy and chemotherapy. Surgical resection

can be optimized by using 5-delta-aminolevulinic acid (5-ALA)–induced

fluorescence, which is the current mainstay. Although 5-ALA–induced

fluorescence has gained general acceptance, it is also limited by inter-observer

variability and non-standardized fluorescence parameters. We present a new

software for processing images analysis to better recognize the tumor infiltration

margins using an intraoperative immediate safety map of 5-ALA–induced

fluorescence.We tested this in a brainmodel using a commercial surgical exoscope.

Methods: A dedicated software GLIOVIS (ACQuF-II, Advanced Colorimetry-

based Quantification of Fluorescence) was designed for processing analysis of

images taken on the Intraoperative Orbital Camera Olympus Orbeye (IOC) to

determine the relative quantification of Protoporphyrin IX (5-ALA metabolite)

fluorescence. The software allows to superpose the new fluorescence intensity

map and the safety margins over the original images. The software was tested on

gel-based brain models.

Results: Two surrogate models were developed: PpIX agarose gel–integrated in

gelatin-based brain model at different scales (1:25 and 1:1). The images taken with

the IOC were then processed using GLIOVIS. The intensity map and safety

margins could be obtained for all available models.
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Conclusions: GLIOVIS for 5-ALA–guided surgery image processing was

validated on various gelatin-based brain models. Different levels of

fluorescence could be qualitatively digitalized using this technique. These

results need to be further confirmed and corroborated in vivo and validated

clinically in order to define a new standard of care for glioblastoma resection.
KEYWORDS

glioblastoma, 5-ALA–guided surgery, fluorescence quantification, safety
margins, gliolan
1 Introduction

The clinical outcome of glioblastoma patients is poor with a

median overall survival of approximately 15–18 months (1–4). The

extent of resection defined as the removal of the contrast-enhancing

(CE) tumor is directly correlated with overall survival and

progression-free survival (5–8).

Fluorescence-guided surgery has emerged as a sensitive and

effective method to define tumor location and delineate its margins

during the procedure, maximizing the extent of resection (9–11).

Several fluorescent agents have been assessed in clinical trials over

the past few years for malignant glioma including 5-aminolevulinic

acid (5-ALA), fluorescein, indocyanine green, hypericin, 5-

aminofluorescein bound to human serum albumin, and

endogenous spectroscopy (9, 12). However, 5-ALA is the only

agent that has been tested in a multi-center randomized

controlled trial that has been approved by the Food and Drug

Administration and by the European Medicines Agency (13, 14).

Furthermore, 5-ALA–guided surgery is limited by inter-observer

subjectivity and by the variability and the lowering of fluorescence

intensity at the tumor margins (15). Moreover, the microscopic

visualization of the PpIX fluorescence needs repeated transitions

between white light and blue light, resulting in time consuming

surgeries and risk of injuries of critical structures (12).

In addition to these limitations, when the normal brain overlaps

the pathological tissue or the orientation of the microscope view is

not appropriate (“non-orthogonal working corridors” or “dark

corridors”), no fluorescence can be seen under the blue light filter

(11). Similarly, blood, CSF, cottonoids, or other hemostatic agents

can hide fluorescent tissue and limit the extent of resection.

Therefore, the surgeon’s eye appears to be not always reliable for

the identification of the tumor-brain interface.

Over the past few years, our multidisciplinary team

(neurosurgeons, biologists, and engineers) dedicated its efforts to

design an intraoperative microscope able to provide an intensity

map (IM) of the fluorescence and the tumor safety margins (SMs).

This project started with the construction of our custom-made

microscope (Qp9), and several upgrades of the hardware and of

the software were implemented, leading to the actual concept. We

present the software GLIOVIS (ACQuF-II, Advanced Colorimetry-
02
based Quantification of Fluorescence), which provides both

fluorescence IM and well-defined SMs based on relative digital

fluorescence quantification of 5-ALA–induced protoporphyrin

(PpIX). This new technique may possibly lead and support the

surgeon for optimal resection of high-grade glioma (HGG) lesions

of the brain.
2 Methods

GLIOVIS was developed for post-processing the fluorescent

images taken by the Intraoperative Orbital Camera Olympus

Orbeye (IOC). The core of the code consists of a specific

Colorimetry Camera–Based Algorithm (CCBA) for the relative

quantification of different fluorescence intensity levels within the

same sample and thus generating the IM allowing a better

visualization of the tumor-mimicking samples. The CCBA was

applied on original RGB (red, green, and blue) images taken by

the IOC with samples illuminated by blue light. Each original image

(OI) was post-processed so that a filtered active fluorescence image

(AFI) was extracted based on RGB colorimetry approaches.

Subsequently, an intensity threshold mask was applied to the AFI

in order to obtain a Boolean mask image (BMI). Thereafter, the IM

with relative fluorescence colored scale was generated by merging

both images AFI and BMI. Finally, the SM was outlined by

extracting the contour from the BMI. Both the IM and SM were

overlapped with the OI, resulting in an improved visualization of

the area corresponding to the tumor mimicking samples.

A proof-of-concept 3D brain phantom with integrated tumor-

surrogate mass was developed in two different scales: small-brain

model (1:25) and half-brain model (1:1). Both brain models

consisted of gelatin and the tumor-surrogate mass was made of

agarose gel containing a known concentration of PpIX. The

developed brain models represent a known and stable

fluorescence source that simulate the tumor fluorescence

emission, which in the real tumor is created by cell metabolism

starting from 5-ALA.

The purpose of the 3D brain phantom was limited to the

preliminary assessment of the sensitivity of the IOC combined

with the new post-processing software GLIOVIS. The suitability of
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the 3D brain phantom in faithfully reproducing the tumor

infiltrations was also rather limited.

The assessment phase on the available IOC took place over 5

weeks (from 18 April 2023 to 26 May 2023). A first acquisition

session was performed using the small-brain model (scale, 1:25)

with the incorporation of PpIX agarose gels at a relative high

concentration of 50 µg/mL and 100 µg/mL (Figure 1). The second
Frontiers in Oncology 03
acquisition was obtained by inserting in a half-brain model (scale,

1:1) PpIX agarose gels at a lower concentration of 0.5 µg/mL and 5

µg/mL (Figure 2). The third step was to acquire the images in an

improved half-brain model (scale, 1:1) with modulation of opacity

and color (Figure 3).

The third acquisition sessions mentioned above were intended

as very preliminary tests to verify the range of sensitivity of the IOC
FIGURE 2

Intensity map and safety margins on half-brain model. On the top: IOC source image of the half-brain model (scale, 1:1) integrating tumor-surrogate
masses illuminated with white light (WI; left) and with blue light (BI; right). On the bottom: IOC source image of the half-brain model (scale, 1:1)
integrating tumor-surrogate masses illuminated with blue light and overlapped intensity map (left) and safety margins (right). The latter are
determined with GLIOVIS. All shown fluorescent zones have the same PpIX concentration (5 µg/mL). As for the small-brain model in Figure 1, the
quantification of fluorescence depends on the depth of the tumor-surrogate mass. The two areas on the top right have a higher quantified
fluorescence (250 au) than those on the left (180 au), despite the concentration being the same (5 µg/mL).
FIGURE 1

Intensity map and safety margins on small-brain model. On the top: IOC source image of the small-brain model (scale, 1:25) integrating tumor-
surrogate masses illuminated with white light (WI; left) and with blue light (BI; right). On the bottom: IOC source image of the small-brain model
(scale, 1:25) integrating tumor-surrogate masses illuminated with blue light and overlapped intensity map (left) and safety margins (right). The latter
are determined with GLIOVIS. The fluorescent zones with high PpIX concentration (100 µg/mL) are quantified with a mean value of around 190 au,
whereas lower PpIX concentrations (50 µg/mL) are quantified with higher mean value of around 250 au. The origin of this phenomenon could be
found in the fact that the tumor-surrogate mass with the higher concentration lies deeper in the model and, therefore, the greater attenuation of
the light falsifies the result by making a lower quantification appear.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1361022
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mazevet et al. 10.3389/fonc.2024.1361022
and not to exactly quantify the concentration of PpIX. Moreover,

because the fluorescent zone was inside the brain model, the

attenuation of the light was not uniform but dependent of the

thickness of the gelatin layer.

Finally, the last acquisition session was performed on a coronal

section of the half-brain model with inside two different tumor-

surrogate masses representing two different PpIX gel concentrations

(0.5 µg/mL and 5 µg/mL). The depth of fluorescence and the

different level of fluorescence intensity were obtained (Figure 4).

Although the analysis was done retrospectively, the software

may be adapted to any RGB camera system (Exoscope, Microscope)

with the adequate interface for immediate imaging.
Frontiers in Oncology 04
3 Results

The IM was obtained for all 3D brain models used in the

experiment (small-brain model, half-brain model, and half-brain

model with modulation of opacity and color).

The first raw images obtained with the incorporation of PpIX

gels (50 µg/mL and 100 µg/mL) in a gelatin-based model (scale,

1:25) were processed using the software GLIOVIS: the IM and the

SM visualization of the tumor mock are shown in Figure 1. The IM

obtained in this case must be considered a positive preliminary

result confirming that PpIX concentrations in the range between 50

µg/mL and 100 µg/mL can be easily detected and relative-quantified
FIGURE 4

Intensity map and safety margin on optimized half-brain model coronal sections. Coronal sections were made on optimized brain models to
observe depth of fluorescence and relative quantification on two tumor-surrogate different PpIX concentrations (0.5 µg/mL and 5 µg/mL). On the
left: The source image with blue illumination. The intensity map and safety margins of sections illuminated with blue light were displayed in the
middle and right, respectively. Two different levels of fluorescence could be observed in these pictures: at the top, the PpIX gel of 5mg/mL; and at
the bottom, the PpIX gel of 0.5mg/mL. The fluorescent spot on the bottom (PpIX concentration of 0.5 µg/mL) shows relative concentrations
between 0 au and 150 au (mean value of 120 au), whereas the one on the top (PpIX concentration of 5 µg/mL) shows relative concentrations
between 0 au and 255 au (mean value of 240 au). The higher PpIX concentrations show higher relative values than the lower ones. The relative
quantified fluorescence of the tumor-surrogate mass in this case is proportional with the PpIX concentration, because the light is not attenuated by
the brain model gelatin.
FIGURE 3

Intensity map and safety margins on optimized half-brain model. On the top: IOC source image of the optimized opaque-pinkish half-brain model
(scale, 1:1) integrating tumor-surrogate masses illuminated with white light (WI; left) and with blue light (BI; right). On the bottom: IOC source image
of the optimized opaque-pinkish half-brain model (scale, 1:1) integrating tumor-surrogate masses illuminated with blue light and overlapped
intensity map (left) and safety margins (right). The latter are determined with GLIOVIS. The shown fluorescent zones have various PpIX
concentrations between 1.25 mg/mL and 5 mg/mL. As for the small-brain model (Figure 1) and the half-brain model (Figure 2), the quantification of
fluorescence depends on the depth of the tumor-surrogate mass. Therefore, also in this case, the quantified fluorescence is not direct proportional
with the PpIX concentration.
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by post-processing the images of the IOC by means of the GLIOVIS

software. The fluorescent zones with high PpIX concentration (100

µg/mL) are quantified with a mean value of around 190 au, whereas

lower PPIX concentrations (50 µg/mL) are quantified with higher

mean value of around 250 au. The origin of this phenomenon could

be found in the fact that the tumor-surrogate mass with the higher

concentration lies deeper in the model and, therefore, the greater

attenuation of the light falsifies the result by making a lower

quantification appearance.

The same tests were performed on a half-brain model (scale,

1:1) using PpIX agarose gels at a much lower concentrations of 0.5

µg/mL and 5 µg/mL, the latter corresponding to the maximum

PpIX concentration within glioblastoma tumors (16). This resulted

in a more realistic effect as shown in Figure 2. All shown fluorescent

zones have the same PpIX concentration (5 µg/mL). As for the

small-brain model (Figure 1), the quantification of fluorescence

depends on the depth of the tumor-surrogate mass. The two areas

on the top right have a higher quantified fluorescence (250 au) than

those on the left (180 au), despite the concentration being the same

(5 µg/mL).

To limit the light reflection on the sample and to be more

similar to the human brain, the half-brain model was optimized to

render it opaque with a pinkish color (Figure 3). The IM obtained in

the last two cases proves that also lower PpIX concentrations within

the range existing inside real glioblastoma tumors can be detected

and relative-quantified on a 1:1 scale 3D brain phantom by post-

processing the images of the IOC by means of the GLIOVIS

software. As for the small-brain model (Figure 1) and the half-

brain model (Figure 2), the quantification of fluorescence depends

on the depth of the tumor-surrogate mass. Consequently, also in

this case, the quantified fluorescence is not directly proportional

with the PpIX concentration.

The half-brain model considered above (Figure 3) was then

sectioned (coronal sections to observe the depth of fluorescence and

the different levels of fluorescence intensity on two PpIX gels (0.5

µg/mL and 5 µg/mL) as represented in Figure 4. Compared to the

source image (left), the GLIOVIS software post-processed image

(middle) shows more clearly the PpIX concentration level, and the

limits of the PpIX presence are clearly recognizable. The relative

quantification visible on the IM (image in the middle) must be

further investigated, but, considering that the colored scale is not

linear and the camera/illumination system was not calibrated, the

qualitative preliminary result obtained has to be considered

positive. The fluorescent spot on the bottom (PpIX concentration

of 0.5 µg/mL) shows relative concentrations between 0 au and 150

au (mean value of 120 au), whereas the one on the top (PpIX

concentration of 5 µg/mL) shows relative concentrations between 0

au and 255 au (mean value of 240 au). The higher PpIX

concentrations shows higher relative values than the lower ones.
4 Discussion

Recently, the “RANO resect group” presented data

demonstrating that more important than the extent of resection is

the measurement of the remaining tumor tissue (17). Therefore, the
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removal of non-CE tumors beyond the CE tumor borders is

considered to give additional survival benefit in the so-

denominated “supramaximal CE resection” (17, 18). 5-ALA is the

agent that provides real-time fluorescent guidance to the

neurosurgeon in order to perform a more complete resection of

HGGs (19, 20). Nevertheless, it is widely known that glioblastoma

does not accumulate 5-ALA–induced fluorescence homogenously:

heterogeneity has been demonstrated in relation to the tumor grade,

the tumor cell density, the cellular proliferation indices, the

infiltration, and, particularly, at the border of the MRI enhanced

lesion (21, 22). Moreover, the heterogeneous intensity of PpIX

fluorescence has also been strongly correlated with the expression of

genetic features and biomolecular markers, such as the expression

of epithelial growth factor receptor and its downstream effect on

Heme oxygenase-1 as already demonstrated by our group in a

previous work (23, 24). Therefore, quantification of fluorescence

represents the next level of information for surgeons, being useful

for the identification of areas with lower levels of PpIX

accumulation and thus accurate SM mapping (21). Over the past

few years, our multidisciplinary team (neurosurgeons, biologists,

and engineers) dedicated its efforts to design an intraoperative

microscope able to provide an IM of the fluorescence and of the

tumor SMs (24–26). Our custom-made microscope (Qp9), of which

the basic functionality was already described previously by Valdes

et al., was progressively implemented in order to reach real-time

processing for appropriate intraoperative use (27, 28). The software

GLIOVIS (ACQuF-II, Advanced Colorimetry-based Quantification

of Fluorescence) provides both fluorescence IM and well-defined

SMs based on the relative digital fluorescence quantification of 5-

ALA–induced protoporphyrin (PpIX). The assessment of the

Olympus Orbeye orbital camera system has offered the possibility

of validating the specific post-processing software GLIOVIS and the

brain models on a commercial high-quality surgical device

(Supplementary Figure 1). Finally, the developed software

GLIOVIS was shown to be able to qualitatively differentiate PpIX

concentrations in a 3D Glioma brain phantom in an online fashion

and produce a digitalized quantified image (Figure 4). This new

technique may possibly lead and support the surgeon for optimal

resection of HGG lesions of the brain thanks to the better

visualization of the SM and, particularly, to the possibility of

achieving a semi-quantitative system of real-time visualization of

the fluorescent and non-fluorescent tumor field.
4.1 Limitations and future perspectives

The software GLIOVIS applied to the single pictures and video

stream allowed us to qualitatively elaborate the IM as well as the

SMs of all our brain models (Supplementary Figure 2).

However, several limitations must be highlighted concerning

the present feasibility study.

The post-processing of the images with the software did not

consider the variability in intensity fluorescence based on the

angulation of the IOC light field while it impacts the surface.

Secondarily, further development efforts are needed to retrieve

Orbeye images in live stream, by integrating GLIOVIS directly
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into the exoscope or the microscope system, displaying the SM onto

the surgeon’s visual interface (screen, microscope, and goggles). To

achieve this goal, it will be necessary to implement both reference

camera and illumination systems and to further improve the

software GLIOVIS mentioned above, considering external

parameters such as the intensity emitted by the light source.

This enhancement will provide the surgeon with high accuracy

and repeatability of the fluorescence measurements in different

environmental conditions.

This system will be further tested ex vivo on animals and on

human glioblastoma brain tissue samples. An intraoperative human

surgical use will further require a CE certification for intraoperative

use in a commercially available surgical exo/microscope.
5 Conclusion

Accurate discrimination between tumor borders and normal

tissue is crucial to maximize tumor resection, reduce contrast

enhanced and non-contrast enhanced residual tumor volume,

and, overall, to improve OS and PFS. Qualitative fluorescence of

PpIX has been used for this purpose in HGG but its quantification

remains an open field of research. Our novel method, which

combines the Intraoperative Olympus Orbeye Camera with the

software GLIOVIS, proved the preliminary feasibility of creating an

IM of PpIX fluorescence and the SMs in all our 3D brain phantoms,

at this time, in post-acquisition. Integrating the software GLIOVIS

directly into the microscope or exoscope will allow the online

depiction of the SM image in less than a second. Further

investigations and ex vivo analysis are required to proceed to the

request for the permission to use the concept in in vivo human use.
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