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Progress of research on the
relationship between
efferocytosis and tumor
Xuexin Yao, Ling Zhang, Siyi Sun, Aishuang Fu and Yanlei Ge*

North China University of Science and Technology Affiliated Hospital, Tangshan, China
Tumors are genetic changes that develop in an organism as a result of many

internal and external causes. They affect the biological behavior of cells, cause

them to grow independently, and give rise to new, perpetually proliferating

organisms. Recent research has supported the critical function of tumor-

associated macrophages in the development, progression, and metastasis of

tumors through efferocytosis. Yet, there is still much to learn about the

mechanisms behind their contribution to tumor pathological processes. As a

result, it’s critical to actively investigate how cytosolic processes contribute to the

growth of tumors and to create novel therapeutic approaches.
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1 Introduction

A tumor, which frequently appears as a localized aberrant tissue mass in the body, is a

new organism created by the improper multiplication of cells under the influence of

different tumor-causing substances and major problems in the regulation of cell growth.

Generally speaking, a tumor results from the “mutiny” of human cells if all infectious

diseases are thought of as the invasion of foreign organisms on the human body. The phrase

“efferocytosis,” also known as “programmed cell removal,” refers to the process by which

macrophages remove programmed dead apoptotic cells. The term “efferocytosis” is derived

from the Latin word “efferre.” This process can be understood as the burial of apoptotic

cells. One kind of macrophage engaged in efferocytosis is called tumor-associated

macrophages (TAMs) (1, 2). The immune-silencing clearance of apoptotic cells by

efferocytosis has been shown in recent studies to play a significant role in the tumor

microenvironment, tumor progression, and metastasis (3, 4). This process also promotes

inflammatory catabolism and immunosuppression and gives cancer cells a safe haven from

immune surveillance, which aids in the progression of tumors (5, 6). Therefore, one

possible target for therapy and for regulating tumor progression and metastasis is to

interfere with macrophage efferocytosis. In this study, we explore the mechanism of

efferocytosis as well as the connection between the tumor microenvironment

and efferocytosis.
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2 The process of efferocytosis

A healthy body can remove billions of senescent, apoptotic, and

necrotic cells every day, and cytokinesis is performed not only by

specialized phagocytes, macrophages, and dendritic cells, but also

by many non-specialized cells in the body, such as epithelial,

endothelial, and fibroblasts. Even in tissues with a high cell

turnover rate, dead cells do not accumulate, indicating a very

efficient clearance, a process known as efferocytosis. This ability is

a necessary process to maintain tissue homeostasis in normal

physiology and to restore it in the event of disease (7, 8) In some

chronic diseases, efferocytosis cells become defective and an

accumulation of dead cells ensues (9) Apoptotic cells can become

necrotic secondary to autoimmune deficiencies and pathological

inflammation (10, 11).

The efferocytosis cells of apoptotic cells is synergistically

regulated by a variety of signaling molecules, such as “find me,

eat me and do not eat me”, and the process is roughly divided into

three phases (Figure 1). In the first stage, the recruitment of buried

cells, cells undergoing apoptosis will release the “find me” signal,

which can be recognized by specific receptors on the surface of

buried cells, and can induce the migration and aggregation of buried

cells to the apoptotic cells. Currently known “find me” signaling

molecules include hemolyzed lecithin(LysoPC), Sphingosine-1-

phosphate (S1P), chemokine CX3CL1, and nucleotide ATP/UTP,

and the surface receptors include the G protein-coupled receptor

G2A family (G2A), sphingosine-1-phosphate receptor (S1PR), C-

X3-CMotif Chemokine Receptor 1, and G protein-coupled receptor

P2Y family (P2Y) (12, 13). In the second phase, the recognition

phase of apoptotic cells, “eat me” signals are released during

apoptosis that bind to receptors on the surface of buried cells.

The most important “eat me” signal is phosphatidylserine (PS),

which is exposed on the surface of apoptotic cells and binds directly

or indirectly to receptors. Direct receptors include brain-specific

angiogenesis inhibitory factor (BAI), T-cell immunoglobulin mucin
Frontiers in Oncology 02
receptor 4 (TIM4), scavenger receptor stabilin2, and myeloid-

associated immunoglobulin receptor CD300f (14), etc., whereas

the tyrosine kinase TYRO3/AXL/MERTK receptor binds to PS

indirectly through some soluble bridging molecules. This phase is

also negatively regulated by “do not eat me” signaling molecules,

which have been identified as CD47, CD31, CD61, CD46, of which

CD47 is the most important. and the living cells prevent themselves

from being recognized by the buried cells through the interaction of

CD47-SIRP1, and play the function of inhibiting the efferocytosis

(13, 15, 16). In the third phase, phagocytosis and processing phase,

the binding of apoptotic cells to receptors on efferocytosis cells

triggers a complex cytoskeletal rearrangement that promotes the

formation of phagolysosomes, which then fuse with lysosomes,

which contain a number of pH-sensitive degrading enzymes, thus

promoting the release and biodegradation of apoptotic cell

contents. The processing of apoptotic material can be carried out

either by the typical degradation program, whereby early

phagosomes mature into late phagosomes that eventually fuse

with lysosomes, or by microtubule-associated protein 1A/1B light

chain 3 (LC3)-associated phagocytosis.

In contrast to apoptosis, non-apoptotic dead cells lose plasma

membrane integrity and belong to a regulated form of necrosis,

which is also activated by external apoptotic receptors (death

receptors known to mediate exogenous apoptosis include

members of the tumor necrosis family, including tNFr1, Fas

receptor (CD95), and tumor necrosis factor-associated apoptosis-

inducing ligand (traiL) receptor), and necrosis is initiated by the

activation of riPK1, which upon phosphorylation binds and

activates riPK3. riPK3-mediated phosphorylation of mixed-

spectrum kinase structural domain-like proteins (MLKLs)

promotes their oligomerization and insertion into the plasma

membrane, forming a membrane-disrupting pore that leads to the

release of death- and damage-associated molecular patterns

(DAMPs) (17–19). DAMPs originate from cells and are released

upon cell death, triggering an inflammatory response, and also act
FIGURE 1

The process of efferocytosis.
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as chemotactic agents for macrophages, and they have multiple

effects on macrophage action and immune activation.DAMPs are

metabolically diverse entities that include genomic and

mitochondrial DNA, nuclear proteins (high mobility group

protein B, histones), cytoplasmic proteins (S100), cytokines (IL-

1a, IL-33, IL-36) and other small molecules (ATP, UTP, uric acid

crystals) (20, 21). The different modes of cell death of various cells

have unique forms of activation and present different signals to

phagocytes, followed by the initiation of associated clearance

programs that lead to different formal physiological outcomes

through efferocytosis.
3 Tumor microenvironment
and macrophages

Tumor microenvironment (TME), which is crucial to the

growth of tumors, is made up of blood vessels, fibroblasts,

macrophages, B-cells, T-cells, and other host cells and

components besides cancer cells (22, 23). It is now well

established that macrophages make up a sizable fraction of the

host leukocyte infiltration in most malignant tumors (24). TAMs

are a flexible, varied population of cells in the TME that make up a

sizable portion of some malignancies. TAMs influence the TME in a

variety of ways that may impact tumorigenesis and development

through the synthesis and release of a wide range of cytokines

(25).Virchow originally saw leukocytes in 1863 (26), whereas Ellie

Metchnikoff first recognized macrophages in 1882 (27). Bone

marrow monocytes give rise to the majority of macrophages, an

essential type of immune cells in the human body. As an essential

part of innate immunity, it may directly phagocytose and eradicate

invading pathogens such as bacteria, fungus, and parasites.

Moreover, it possesses the capacity to discharge an array of

immune constituents that can expose foreign antigens to T cells,

elicit activation of supplementary adaptive immune cells, and

facilitate the induction of adaptive immunity via antigen

presentation (28).

Macrophage polarization, the transition between M1 and

M2 types that happens when macrophages behave differently in

distinct microenvironments, is controlled by a number of

microenvironmental elements in addition to signals from tumor

and stromal cells. The M1/M2 macrophage subtypes exhibit distinct

functions, express corresponding genes, release distinct

immunological markers, and cytokines (29). It is critical to

human health that M1 and M2 macrophages coexist in

equilibrium. But the appearance of illness could upset this

equilibrium, causing an overreaction to inflammation or a

reduced ability to heal wounds. For instance, in order to evade

detection by the immune system, viruses have developed a number

of clever strategies for causing a shift in the macrophage to an M2-

skewed state during infections (30, 31). An imbalance in the

polarization of M1/M2 macrophages in autoimmune disorders

may worsen the condition and prolong chronic inflammation

(32). Both M1-type and M2-type large cells are involved in

atherosclerosis; M1 macrophages cause plaque rupture, while M2

macrophages aid in the calcification of the plaque (31, 33). M2-type
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macrophages primarily secrete anti-inflammatory cytokines like

interleukin 10 (CXCL-10), interleukin 13 (IL-13), and interleukin

4 (IL-4), and express abundant arginine-1, mannose receptor (MR,

CD206), and scavenger receptor, which contribute to tumor growth

and spread. In contrast, M1-like TAMs primarily secrete pro-

inflammatory cytokines like interleukin 12 (IL-12), tumor

necrosis factor (TNF)-a, C-X-C motif chemokine 10 (CXCL-10),

and interferon (IFN)-g. Additionally, they produce high levels of

nitric oxide synthase, which has an anti-tumor effect (34, 35).

TAMs are macrophages that have developed M2-like behavior,

according to the current consensus among experts (36–39). In

summary, carcinogenesis and tumor development are significantly

influenced by the tumor microenvironment. Since macrophages

comprise the majority of the tumor microenvironment, by

comprehending their polarization, we may take measures to

manage the environment and prevent the tumor from spreading.
3.1 Molecular mechanism of polarization of
TAMs from M1-type to M2-type

Colony-stimulating factor 1 (CSF-1) and C-C motif ligand 2 are

the two most well-documented macrophage recruitment factors

and M2 stimulating factors in the literature at this time

(CCL2).Macrophage polarization is greatly influenced by CSF-1,

which is also overexpressed in the infiltrative margins of a variety of

malignancies and is linked to a much higher risk of metastasis (34).

Abraham D. et al. observed that when CSF-1 expression was

restored in mice with CSF-1 deletion mutations, tumor

development and metastasis were accelerated (40). Furthermore,

CSF-1 depletion results in a large reduction in macrophage density,

which delays tumor progression and significantly inhibits

metastasis, as demonstrated by tumor transplantation models (34,

40–42). CCL2 polarizes macrophages toward the pre-tumor

phenotype by binding to the surface of macrophages through the

C-C chemokine receptor 2 (CCR2) (43). Research has

demonstrated that preventing the CCL2-CCR2 connection

through gene ablation or antibody treatment greatly reduces the

expression of pre-tumor cytokines, delays the onset of metastasis,

and increases the longevity of hormonal animals (43–45).

Furthermore, a wealth of clinicopathological information supports

the correlation between elevated tumor CCl2 concentrations and

heightened TAM infiltration as well as metastases (34, 44, 46).

A pro-tumorigenic effector with pro-angiogenic qualities,

vascular endothelial growth factor A (VEGF-A) (47–49) stimulates

the formation of malignant tumors by causing TAM infiltration and

M2 polarization in the presence of IL-4 and IL-10 (50). Gain-of-

function studies using xenograft models of skin cancer revealed that

VEGF-A overexpression reduced the depletion of macrophages

produced by sodium chlorophosphate, hence shortening the

survival of the xenografts (50–52). Furthermore, carcinogenesis,

development, and metastasis are frequently associated with

hyperactivation caused by overexpression or mutation of the

epidermal growth factor receptor (EGFR) signaling pathway (53–

55). Indeed, EGFR signaling modulates M2-like polarization and

macrophage recruitment, which in turn controls TME production. It
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also directly stimulates the proliferation and invasion of tumor cells

(56–58). In a study by Zhang et al. it was shown that inhibition of

EGFR signaling in colon cancer cells to regulate cytokine secretion

and block M1 to M2 macrophage polarization inhibited tumor cell

growth (59).

Apart from the components mentioned above that have been

thoroughly examined, there are other newly discovered unique

elements that are also involved in the recruitment and

polarization of TAMs. For instance, prostaglandin E2 (PGE2) and

CSF-1 work together to trans-activate the CSF-1 receptor (CSF-1R),

which promotes M2 polarization. PGE2-induced macrophage

infiltration was significantly inhibited in the absence of CSF-1R

(60). Through the down-regulation of phosphatase and tensin

homologue (PTEN) expression and activation of the PI3K/AKT

signaling pathway to induce M2 macrophage polarization, Zhao

et al. showed that exosome miR-934 derived from colorectal cancer

cells promotes M2 polarization (61), which in turn promotes tumor

progression.IL-4 and IL-13 secreted by Helper T cell 2 (TH2) aid in

the polarization of the M2 phenotype (62). By depleting arginine,

IL-4 and IL-13 restrict the generation of nitric oxide, an

inflammatory mediator that leads to the loss of the M1 phenotype

and encourages polarization towards the M2 phenotype through the

cytokines IL-4 and IL-13 (63). Additionally, glutamine ligase

(GLUL), which catalyzes the conversion of glutamate to

glutamine, can encourage TAM polarization toward the M2

phenotype (64). In turn, it exerts a pro-tumorigenic effect.

Notably, hypoxia is a major promoter of macrophage recruitment

and polarization in TME, and it is present in the majority of solid

tumors. Hypoxia-induced chemokines such as CCL2, C-Cmotif ligand

5 (CCL5), CSF-1, VEGF, Semaphorin 3A (Sema3A), endothelial cell

monocyte-activating polypeptide II (EMAP-II), endothelin, stromal

cell-derived factor 1a (SDF1a), eosinophilic cytokines Eotaxin and

Oncostatin M, and others are crucial for TAMS migration to hypoxic

regions (39, 65). High mobility group protein B1 (HMGB1) is most

typically linked to hypoxia-induced macrophage polarization.HMGB1

is overexpressed in numerous solid tumors and has been linked to skin

carcinogenesis (66), inflammatory responses in hepatocellular

carcinoma (67), and colon cancer (68). Additionally, Huber et al.’s

study revealed that patients with metastatic melanoma had serum

levels of HMGB1 that were higher than those of healthy people. They

also used flow cytometry to analyze isolated tumors and discovered

that the expression and release of HMGB1 within the tumors

promoted the accumulation of M2-like macrophages in the

microenvironment (69).

In summary, the regulation of TAMs polarization is crucial in

relation to tumor development, and TAMs are the main cells

involved in efferocytosis (1, 2). Therefore, we can control or delay

tumor development by regulating the polarization of TAMs and

thus efferocytosis.
4 Efferocytosis in the
tumor microenvironment

During the growth of tumors, cell death (apoptosis or necrosis)

is a regular occurrence. The evacuation of dead cell corpses from the
Frontiers in Oncology 04
tumor microenvironment (TME) through efferocytosis is a

common immunosuppressive phenomena (70), with significant

implications on the immunological phenotype within the TME.

Growth arrest-specific protein 6 (GAS6) and protein S (PROS1)

function as bridging ligands when the TAM (TYRO3, AXL,

MERTK) receptor interacts to phosphatidylserine (PS) on

apoptotic cells in TAMs, causing efferocytosis (71).

For macrophages and epithelial cells to be effectively

efferocytosed, MERTK must be increased during postnatal

remodeling (72). Jamie et al.’s study (73) looked at the impact of

postnatal mammary gland remodeling and resurfacing on the

development and spread of spontaneous breast cancers. Using

immunocompetent mice, they found that during postnatal

resurfacing, an increase in M2-like macrophages, wound repair,

and an amplification of immune-suppressing cytokines were

induced by the stromal response to significant tumor cell death.

This ultimately resulted in a 10-fold increase in metastasis. In the

meantime, MERTK controlled the stroma’s microenvironmental

alterations. Their research revealed the vital roles that efferocytosis

and MERTK play in the process of mesenchymal wound healing

and remodeling, as well as the significance of efferocytosis in the

tumor microenvironment. proving once more how strongly

efferocytosis and cancer are related. Bondanza et al. (74)

discovered that inhibiting efferocytosis by disrupting PS-

phagocytic connections via Annexin V effectively reduced tumor

development and metastasis. Annexin V has a strong affinity for PS

on the surfaces of apoptotic and necrotic cells, which influences

macrophage uptake. Stach et al. (75) have also demonstrated this

process. Thus, we can intervene in tumor development and spread

by inhibiting PS-dependent recognition and immunosuppressive

clearance of necrotic cells, also known as efferocytosis.

Werfel et al.’s work (76) showed that efferocytosis and

indoleamine-2,3-dioxygenase (IDO1, an immunomodulatory

factor known to enhance maternal-fetal antigen tolerance,

respectively) are two ways in which apoptotic and necrotic tumor

cells promote tumor growth. Apoptotic or necrotic tumor cells are

eliminated by efferocytosis action in a Her2-positive breast cancer

model, while immunosuppressive cytokines, myeloid-derived

suppressor cells (MDSCs), and regulatory T lymphocytes (Tregs)

proliferate. Secondary necrosis of apoptotic cells was induced if the

efferocytosis effect was stopped, however this did not stop the rise in

immunosuppressive cytokines, MDSC, and Treg. It was discovered

that cytarabine increased type II interferon (IFN-g) expression,

which in turn increased IDO1 expression. The immunosuppressive

phenotype brought on by necrotic and apoptotic cells was also

inhibited and tumor metastasis was prevented when cytarabine and

IDO1 expression were inhibited together. This further illustrated

the tight connection between tumor development and the burying

action of efferocytosis.

M2-type macrophages were detected in prostate cancer (PCa)

bone tumors in mice during an investigation by Jones et al. (77) into

the mechanism of PCa skeletal metastasis. Compared to M1-type

macrophages, in vitro-induced M2-type macrophages were superior

at phagocytosing (efferocytosing) apoptotic tumor cells.

Furthermore, it has been demonstrated in experiments that the

mere existence of macrophages is not enough to trigger the
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formation of tumors, indicating the significance of efferocytosis

function. A bridging protein called milk fat globule epidermal

growth factor 8 (MFG-E8) has been linked to the suppression of

pro-inflammatory reactions and the promotion of efferocytosis. The

enhancement of M2 polarization by MFG-E8-mediated

efferocytosis was examined by Soki et al. (78). It was discovered

that the STAT3/SOCS3 pathway caused PCa-associated

macrophages to become polarized through MFG-E8-mediated

efferocytosis. PCa progression was caused by impaired

macrophage efferocytosis function in mice. When PCa is paired

with bone metastases, proinflammatory cytokines, particularly

CXCL5, are expressed when PCa cells are efferocytosed in vitro

by macrophages, allowing the tumor cells to proliferate and thrive

in an inflammatory milieu. According to these research,

macrophages polarize into tumor-promoting M2 cells through a

special mechanism called efferocytosis, which is facilitated by MFG-

E8.Roca et al. (79) have provided evidence for this mechanism,

reporting higher serum levels of CXCL5, a chemokine with a C-X-C

motif, and increased efferocytosis activity in PCa bone metastases.

Studies aimed at preventing tumor progression can focus on

efferocytosis inhibition or disruption, as this process expedites the

growth of tumors.

The E3 ubiquitin ligase (SIAH2)-nuclear respiratory factor 1

(NRF1) axis affects tumor mitochondrial activity, TAMs

polarization, and cell death. It also supports tumor maintenance

by altering the TME, as demonstrated by Ma et al’s (80) study on

breast cancer. Their research also revealed that tumor cells

experienced secondary necrosis due to inhibited macrophage

polarization and were more vulnerable to apoptosis when

efferocytosis was hampered by hypoxic inhibition of NRF1

degradation. Furthermore, cytoburial-induced cytokines linked to

wound healing, such as IL-4, IL-10, IL-13, and transforming growth

factor B (TGF-B), cause widespread cell necrosis in TME, which

furthers the progression of metastatic tumors (73).
5 Conclusion

The current understanding of the mechanism of action between

efferocytosis and malignancies is limited to the impact of

macrophage polarization on the tumor microenvironment and

has not been fully investigated. The mechanism of efferocytosis-

tumor interactions cannot be disregarded because tumor cells and

their microenvironment interact to cause tumor heterogeneity and

to promote tumor development. Furthermore, macrophages are

involved in many different aspects of the microenvironment that

supports the formation and development of tumors. Research on

the connection between efferocytosis and tumor progression has

produced positive results recently, particularly in the cases of breast

cancer, prostate cancer, and hematological system tumors. It has

also been discovered that there is a close relationship between

efferocytosis and tumor progression. This is due to advancements in

science, technology, and medical technology. Unfortunately, there

are still a lot of gaps in our understanding of the relationship
Frontiers in Oncology 05
between tumors and efferocytosis action. One such gap is the lack of

thorough research in this area, particularly with regard to lung

cancer, which is the second most common cause of cancer incidence

and the primary cause of cancer deaths (81), as well as the

malignant tumor with the highest incidence and mortality rates

in our nation (82), Since the low prevalence of early lung cancer

screening makes it extremely ground-breaking research to identify

pertinent pathways that can impede the disease’s progression. We

are not at a loss for diseases that afflict the entire human race thanks

to the role of efferocytosis, which offers fresh perspectives and

productive avenues for the research of tumor progression.
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