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of malignant soft tissue tumors
based on dual-modal ultrasound
images and clinical indexes
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Chenyang Zhao1, Yun Tian1, Lu Xie1, Wangjie Wu1, Qi Yang1,
Li Liu1, Desheng Sun1, Li Qiu4, Linlin Shen2* and Yusen Zhang1*

1Shenzhen Hospital, Peking University, Shenzhen, China, 2College of Computer Science and Software
Engineering, Shenzhen University, Shenzhen, Guangdong, China, 3National Engineering Laboratory for
Big Data System Computing Technology, Shenzhen University, Shenzhen, China, 4West China
Hospital, Sichuan University, Chengdu, Sichuan, China
Background: Soft tissue tumors (STTs) are benign or malignant superficial

neoplasms arising from soft tissues throughout the body with versatile

pathological types. Although Ultrasonography (US) is one of the most common

imaging tools to diagnose malignant STTs, it still has several drawbacks in STT

diagnosis that need improving.

Objectives: The study aims to establish this deep learning (DL) driven Artificial

intelligence (AI) system for predicting malignant STTs based on US images and

clinical indexes of the patients.

Methods: We retrospectively enrolled 271 malignant and 462 benign masses to

build the AI system using 5-fold validation. A prospective dataset of 44 malignant

masses and 101 benign masses was used to validate the accuracy of system. A

multi-data fusion convolutional neural network, named ultrasound clinical soft

tissue tumor net (UC-STTNet), was developed to combine gray scale and color

Doppler US images and clinic features for malignant STTs diagnosis. Six

radiologists (R1-R6) with three experience levels were invited for reader study.

Results: The AI system achieved an area under receiver operating curve (AUC)

value of 0.89 in the retrospective dataset. The diagnostic performance of the AI

system was higher than that of one of the senior radiologists (AUC of AI vs R2:

0.89 vs. 0.84, p=0.022) and all of the intermediate and junior radiologists (AUC of

AI vs R3, R4, R5, R6: 0.89 vs 0.75, 0.81, 0.80, 0.63; p <0.01). The AI system also
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achieved an AUC of 0.85 in the prospective dataset. With the assistance of the

system, the diagnostic performances and inter-observer agreement of the

radiologists was improved (AUC of R3, R5, R6: 0.75 to 0.83, 0.80 to 0.85, 0.63

to 0.69; p<0.01).

Conclusion: The AI system could be a useful tool in diagnosing malignant STTs,

and could also help radiologists improve diagnostic performance.
KEYWORDS

deep learning, artificial intelligence, ultrasound, soft tissue tumor, malignant tumor
Highlights
• The deep-learning driven system has a high accuracy in

diagnosing malignant soft tissue tumors.

• The deep-learning system showed superior performance

than junior radiologists.

• The system is a useful tool for radiologists in discerning

malignant soft tissue tumors.
Introduction

Soft tissue tumors (STTs) are a group of superficial neoplasms

with heterogeneous clinical manifestations and diverse pathological

types. The ratio of benign to malignant is close to 100:1 (1). Soft

tissue sarcomas are the most common malignant STTs, accounting

for only 1% of all adult cancers (2). Despite the rarity of malignant

STTs compared with other malignant entities, their hazards cannot

be ignored due to the substantial mortality and morbidity (3, 4). The

overall five-year survival rate of malignant STTs is about 50% (1).

They also present high metastasis and postoperative recurrence

rates, up to 39% for soft tissue sarcomas (5). Soft tissue sarcoma is

one of the leading causes of death for young adults, particularly for

certain subtypes (6). As a result, accurate diagnosis and timely

treatment for malignant STTs is crucial to improve the prognosis of

the patients. However, as STTs substantially vary in clinical

manifestations, morphological changes, and biological behaviors,

it is difficult to make precise classification of malignant STTs, which

might lead to delayed diagnosis. It is reported that the diagnosis of

soft tissue sarcoma was usually delayed for up to 94.6 weeks (7),

which might cause disastrous consequences on patients’ outcome,

such as a shorter survival time (8, 9).

Ultrasonography (US) is considered to be the first-line imaging

method for STTs, due to its fast speed, high resolution, lower cost,
S), soft tissue tumors

TNet).

02
availability, dynamic observation, and no contraindications (2).

Gray-scale US can map the locations and morphological changes

of STTs, including size, margin, shape, and internal components.

The mobility, compressibility, and its anatomical associations with

adjacent structures can also be confirmed by dynamic US. Color

Doppler US can further display the distribution of intra-tumoral

and peri-tumoral blood vessels (10–14). However, US presented an

unstable and relatively low diagnostic performance for classifying

benign and malignant STTs. The reported accuracy rate of US

varied among studies, ranging from 69% to 93% (10–12, 15, 16).

And most of the previous studies only involved a small number of

cases for evaluation, compromising their reliability. Meanwhile,

conventional US is characterized by high operator-dependence and

relatively low inter-observer agreement, which also degrade its

performance in classifying malignant STTs. How to improve the

diagnosis accuracy of US for malignant STTs, at the same time

decrease operator dependence, is a very important research topic.

Advanced techniques like Artificial intelligence (AI), especially

deep learning (DL) algorithms, possess an excellent ability in image

recognition tasks. DL is emerging as a promising tool to resolve

various radiology tasks using US images, including screening breast

cancer (17, 18), classifying thyroid nodules (19–21), diagnosing

liver diseases (22–24), and assessing musculoskeletal abnormality

(25). Apart from showing good diagnostic performances in some

diseases, DL can also assist radiologists in enhancing their accuracy

and reliability in reading US images (26). Currently, AI-based

malignant STTs diagnosis based on US images is still in the initial

stage (27–29). These studies applied non-DL methods to develop

assistant tools for malignant STTs diagnosis, with limited enrolled

STTs cases. And clinical indexes were not fully utilized for the

model construction in the previous studies.

To overcome the barrier of US diagnosis of malignant STTs, we

established this DL-driven AI system, named ultrasound clinical

soft tissue tumor net (UC-STTNet), for predicting STTs based on

US images and clinical indexes of the patients. First, one of the

highlights of the study is the application of two modalities of US

imaging, gray-scale US and color-Doppler US, in model

construction, which could provide more morphological

information of STTs masses. And basic clinical indexes were also
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incorporated in the system for a more comprehensive diagnosis of

the tumors. Also, we used 5-fold cross validation method in the

model building based on a large database. The AI system could also

provide heatmaps of US images illustrating the features relevant to

model predictions for radiologists to make diagnosis. The AI system

could successfully improve the performances and stability of the

radiologists in classifying malignant STTs. To the best of our

knowledge, our work is the first one applying DL technology for

US diagnosis of malignant STTs.

Materials and methods

Ethical approval

The study was designed as a retrospective study and approved

by the ethics committee of Peking University Shenzhen Hospital

(Approval number: 202200901). The informed content was not

waived since the retrospective study was observational and did not

involve any interventional procedures. And all the information of

the patients is anonymized throughout the study. The ethics

committee approved the omission of informed content.
Study participants enrollment

In this work we employed five-fold cross validation for network

evaluation. Among 5 folds, 4 and 1 folds were employed for training

and testing, respectively. To build the training and testing dataset,

we retrospectively reviewed the clinical and imaging data of the

patients with STTs from July 2013 to December 2021. The patients

with dual-modal US images and pathological results from surgical

resections or biopsies were enrolled. To further evaluate the

performance of the AI system, we collected a prospective testing

dataset from April 2022 to September 2022 in our hospital. Tumors

that occurred in superficial organs, including thyroid gland, breast,

salivary gland, and lymph nodes, were excluded in both of the

retrospective and prospective workflows.
US imaging and clinical data collection

All US images were derived from US imaging database at Peking

University Shenzhen Hospital. The US examinations were performed

by radiologists with over five-year experiences of US using

commercial US equipment with 5-15MHz probes. Two

representative pictures of each patient, one gray scale image

showing the largest section of tumor and one color Doppler flow

image with the most abundant blood vessels, were selected for model

building. The US images of STTs were reviewed and selected from the

patients by two radiologists with five-year experiences in US together

for image quality control. When disagreement occurred between the

two radiologists, they would refer to a third radiologist with over 10-

year experiences for the final decision. Two clinicians collected the

clinical data for the enrolled patients, including sex, age, duration,

locations, layer, the maximum and minimum diameter of lesions,

depth from skin, history of malignancy, and surgical history.
Frontiers in Oncology 03
DL architecture development

We designed a multi-data fusion convolutional neural network,

named as UC-STTNet, to combine gray scale and color Doppler US

images and clinic features for malignant STTs diagnosis. Detailed

descriptions about UC-STTNet are shown in Supplementarymaterials

(Supplementary 1; Supplementary Figure 1; Supplementary Table 1).

The image feature extraction consisted of a tumor area

enhancement block and a tumor feature extraction block. The

tumor area enhancement block was an encoder-decoder network,

which employed ResNet18 as backbone and with five down- and

up-sample layers. The encoder was employed to extract the region

of interest (ROI) feature of STTs, and the decoder was used to

generate a ROI feature map which represented the possibility of

tumor area (abbr. ROI-map).

The clinical data was directly digitized as a feature vector, which

was then processed by a multi-layer perceptron and directly input

into the multi-data fusion block. The multi-data fusion block

consisted of feature concatenation and attention mechanism. The

segmentation and tumor area features were concatenated together,

and then the combined features were input into an attention block.

Global average pooling was used to align the image features to

linear space and then concatenated with the features of clinic data to

generate a multi-data fusion feature for the final STTs classification.

Gradient-weighted Class Activation Mapping (Grad-CAM) was

adopted in the classification tasks on deep learning to explain the

performance of the proposed UC-STTNet. And we used a weighted

combination for the forward activation map and activated the result

by Rectified Linear Activation function (ReLU) to get the

visualization heatmap.
Reader study and AI-assisted reader study

Six radiologists with three experience levels were invited to

review the dual-modal US images and clinical manifestations

independently and make diagnosis. The six radiologists

participated the reader study included two senior radiologists

with 21 and 24 years of experience (R1 and R2), two intermediate

radiologists with 10 and 12 years of experience (R3 and R4), and

two junior radiologists with 4 and 7 years of experience (R5 and

R6). The radiologists were blind to the pathologic results of the

tumors. One month after the original reader study, the same STTs

cases were re-presented to the six radiologists for a second

diagnosis, along with the AI-predicted results and heatmaps as

reference. The radiologists were blind to their first-time results and

pathological results of the tumors.
Statistical analysis

The 5-fold cross validation was used for model training and

testing. The split was randomly repeated for five times and the

average performances were recorded. The receiver operating curve

(ROC), area under ROC curve (AUC), accuracy, sensitivity,

specificity, positive predictive value (PPV) and negative predictive

value (NPV) with 95% confidence interval (CI) were used to evaluate
frontiersin.org
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the diagnostic performance of the model, the radiologists, and the

radiologists with AI assistance. AUC values of the same dataset and

different datasets were compared to use the methods reported by

DeLong et al (30) and Hanley and McNeil (31), respectively. We

further calculated the intra-class correlation (ICC) with 95% CI to

evaluate the inter-observer variability of the six radiologists before

and after the assistance of AI results. P < 0.05 was considered as

statistically significant. The statistical analyses were performed by

using Medcalc (Version 20.0, MedCalc Software Ltd, Belgium).
Results

In this study, we developed and presented UC-STTNet, an AI

system based on a deep-learning architecture for malignant STTs

diagnosis. The study flow of the construction and validation of UC-

STTNet is shown in Figure 1.

From July 2013 to December 2021, a total of 15120 adult

patients with STTs were received from pathology data, which

came from core biopsy or surgery. There were 546 patients with

malignancy and 14574 patients with benign. Finally, 733 masses of

693 patients, including 271 malignant masses of 231 patients and

462 benign masses of 462 patients, were enrolled in this study to

build the model. For the prospective validation of the model, we

recruited 145 masses of 145 patients, including 44 malignant masses

of 44 patients and 101 benign masses of 101 patients from April

2022 to September 2022. The workflow of the retrospective and

prospective patient recruitment is shown in Figure 2.
Clinical data and pathological results

The clinical features and pathological results of the

retrospectively enrolled and prospectively enrolled STTs were
Frontiers in Oncology 04
listed in Table 1. Except sex, the other clinical characteristics

between benign and malignant masses, were significantly different.
Performance of the AI system on the
retrospective dataset for model building

The performance of the AI system was evaluated using 5-fold

cross validation. Of the five validation sets, the highest AUC was

0.91 (95% CI: 0.84, 0.95), with accuracy of 0.89 (95% CI: 0.84, 0.94),

sensitivity of 0.82 (95% CI: 0.72, 0.82), specificity of 0.93 (95% CI:

0.88, 0.98), PPV of 0.88 (95% CI: 0.79, 0.97), NPV of 0.90 (95% CI:

0.84, 0.96), respectively. The average AUC, accuracy, sensitivity,

specificity, PPV and NPV of the model in the five validations were

0.89 (95% CI: 0.87, 0.92), 0.84 (95% CI: 0.82, 0.87), 0.76 (95% CI:

0.71, 0.81), 0.90 (95% CI: 0.87, 0.92), 0.81 (95% CI: 0. 76, 0.86) and

0.86 (95% CI: 0.83, 0.89), respectively. The AI system showed higher

specificity than sensitivity, indicating that the majority of the benign

cases (above 90%) were accurately recognized. While there were

around 20% of the malignant cases mistakenly classified as benign.

Similarly, the NPV value of the model was slightly higher than the

PPV value, indicating that the AI system had more confidence

(around 3%) in predicting benign cases.

Figure 3A presents the ROCs of all five folds. According to the

figure, UC-STTNet appears to be robust and stable when trained

and tested with different folds of data. The AUC values of the AI

system in the five validations ranged from 0.84 to 0.91, with the

standard deviation 0.028. Figure 3B depicted the performances of

radiologists with three different experience levels. The diagnostic

performance of UC-STTNet was higher than that of one of the

senior radiologists (AUC of UC-STTNet vs AUC of R2: 0.89 vs.

0.84, p=0.022) and all the intermediate and junior radiologists

(AUC of UC-STTNet vs AUC of R3, R4, R5, and R6: 0.89 vs

0.75, 0.81, 0.80, 0.63; p <0.01), and was comparable to one of the
FIGURE 1

Overall study flow of UC-STTNet, the AI system for STTs diagnosis. The AI system was developed on a deep learning frame work using the tumor
information from both dual-modal US images, including gray-scale US and color-Doppler US, and clinical features. The AI system could help
radiologists in clinical decision-making by providing prediction results of STTs and heatmaps of US images as reference.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1361694
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xie et al. 10.3389/fonc.2024.1361694
high-level radiologists (AUC of UC-STTNet vs AUC of R1: 0.89 vs

0.87, p=0.30). And there were no significant differences in accuracy,

specificity and PPV between the AI system and the intermediated-

level radiologists (p=0.09, 0.96, and 0.72, respectively). And the AI

system showed better sensitivity and NPV than the intermediated-

level radiologists (p=0.01 and 0.04, respectively).
Assistant role of the AI system
for radiologists

. The change in diagnostic performance of each radiologist after the

assistance from the AI system was displayed in Figure 4l Table 2. For

junior radiologists (R5 and R6) and one of the intermediate radiologists

(R3), the AUC values after the AI assistance were significantly

improved (R3: 0.75 to 0.83, p<0.01; R5: 0.80 to 0.85, p<0.01; R6: 0.63

to 0.69, p<0.01), indicating that the diagnostic performances of the

radiologists could be enhanced via the aid of the AI system.

Subsequently, we calculated the ICC value among the six

radiologists in classifying the malignant STTs. The original ICC

value of the radiologists before referring to the AI system was 0.87

(0.84-0.89), which increased to 0.92 (0.91-0.93) after AI assistance,

indicating the diagnostic agreement of the radiologists could be

improved via the aid of the AI system.
Explainability of the AI system

Explainability of UC-STTNet was demonstrated as heatmaps

that highlights the significant areas attended by the model for
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malignant STTs diagnosis. The examples of the AI prediction of

malignant STTs were illustrated in Figure 5. UC-STTNet gave the

prediction result of a malignant STTs mass based on its dual modal

US images and clinical indexes. The heatmap of the mass was

generated by the AI system and used as reference for radiologists.
Performance of the AI system on the
prospective dataset

The AUC, accuracy, sensitivity, specificity, PPV and NPV of the

AI system on the prospective dataset were 0.85 (95% CI: 0.82, 0.89),

0.83 (95% CI: 0.77, 0.90), 0.63 (95% CI: 0.49, 0.78), 0.91 (95% CI:

0.86, 0.97), 0.75 (95% CI: 0.62, 0.90) and 0.85 (95% CI: 0.79, 0.92),

respectively. The AUC value of the AI system on the prospective

dataset had no statistical difference with the average AUC value on

the model-building dataset (0.89 vs 0.85, p=0.282). The diagnostic

performance of the AI system in the prospective dataset is shown

in Figure 6.
Discussion

In this study, a total of 733 and 145 masses were collected

retrospectively and prospectively. We successfully built a DL-driven

AI system, named UC-STTNet, for distinguishing the malignant

STTs from benign ones based on dual modal US images and clinical

manifestations. The AI system achieved the average AUC value of

0.89 in the retrospective dataset, showing a diagnostic performance
FIGURE 2

Flow chart of the retrospective and prospective patients’ recruitment.
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comparable to high-level radiologists, superior to intermediate and

junior radiologists. With the assistance of the system, the diagnostic

performances and inter-observer agreement of the radiologists

could be further enhanced. To note, the number of STTs patients
Frontiers in Oncology 06
and cases involved in our study is so far the largest, among all

available literature works.

Diagnostic models for classifying malignant STTs based on US

images have been developed by several studies. Despite of their high
TABLE 1 Clinical characteristics of 733 retrospective STTs masses and 145 prospective STTs masses.

AUC Accuracy Sensitivity (%) Specificity (%) PPV NPV

AI system
0.89

(0.87-0.92)
0.84

(0.82-0.87)
0.76

(0.71-0.81)
0.90

(0.87-0.92)
0.81

(0.76-0.86)
0.86

(0.83-0.89)

R1
0.87

(0.85-0.90)
0.88

(0.86-0.91)
83.4

(78.4-87.6)
91.34

(88.4 - 93.7)
0.85

(0.81 ~ 0.89)
0.90

(0.88 ~ 0.93)

R1+AI
0.88

(0.86-0.91)
0.89

(0.87-0.91)
86.4

(81.7-90.2)
90.26

(87.2 - 92.80)
0.84

(0.79 ~ 0.88)
0.92

(0.89 ~ 0.94)

R2
0.84

(0.81-0.87)
0.87

(0.85 -0.89)
72.7

(67.0-77.9)
95.24

(92.9 - 97.0)
0.90

(0.86 ~ 0.94)
0.86

(0.83 ~ 0.89)

R2+AI
0.82

(0.79-0.85)
0.86

(0.83-0.89)
68.3

(62.4-73.8)
96.32

(94.2 - 97.8)
0.92

(0.88 ~ 0.95)
0.84

(0.81 ~ 0.87)

R3
0.75

(0.72-0.78)
0.80

(0.78-0.83)
54.6

(48.5-60.6)
95.45

(93.1 - 97.2)
0.88

(0.83 ~ 0.93)
0.78

(0.75 ~ 0.82)

R3+AI
0.83

(0.80-0.86)
0.85

(0.82-0.88)
75.3

(69.7-80.3)
90.69

(87.7 - 93.2)
0.83

(0.78 ~ 0.87)
0.86

(0.83 ~ 0.89)

R4
0.81

(0.78-0.83)
0.82

(0.79-0.85)
76.1

(70.5-81.0)
85.06

(81.5 - 88.2)
0.75

(0.70 ~ 0.80)
0.86

(0.83 ~ 0.89)

R4+AI
0.81

(0.78-0.84)
0.83

(0.81-0.86)
71.6

(65.8-76.9)
90.04

(86.9 - 92.6)
0.81

(0.76 ~ 0.86)
0.84

(0.81 ~ 0.88)

R5
0.80

(0.77-0.83)
0.80

(0.77-0.83)
83.4

(78.4-87.6)
77.27

(73.2 - 81.0)
0.68

(0.63 ~ 0.73)
0.89

(0.86 ~ 0.92)

R5+AI
0.85

(0.82-0.88)
0.86

(0.84-0.89)
80.07

(74.8-84.7)
90.04

(86.9 - 92.6)
0.83

(0.78 ~ 0.87)
0.89

(0.86 ~ 0.91)

R6
0.63

(0.59-0.66)
0.71

(0.68-0.74)
31

(25.5-36.9)
94.16

(91.6 - 96.1)
0.76

(0.68 ~ 0.84)
0.70

(0.66 ~ 0.74)

R6+AI
0.69

(0.65-0.72)
0.76

(0.73-0.79)
40.22

(34.3-46.3)
96.97

(95.0 - 98.3)
0.89

(0.83 ~ 0.94)
0.73

(0.70 ~ 0.77)
f

STTs, soft tissue tumors.
BA

FIGURE 3

Receiver operating characteristic curves (ROC) of UC-STTNet assessed by 5-fold cross validations and comparing the different level radiologists. 3
(A). ROC of each fold of the AI system and three different levels of radiologists; 3 (B). the average performance of the AI system compared with
three levels radiologists.
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accuracy, the previous models have some disadvantages and are not

suitable for clinical promotion. Chen et al. developed a computer-

aid-diagnosis (CAD) system using US images to improve the

accuracy of 89.5% for malignant STTs (27). However, manual

identifications of lesions were required in their CAD system,

which is time-consuming and not convenient for clinical

application. Wu MJ et al. established a STTs diagnostic

nomogram integrating ultrasound and clinical features via

multivariable regression analysis, which achieved an AUC value

of 0.896 (29). The sample size for model building was also relatively

small. Compared with previous studies, our study has the following

strengths. Firstly, we used deep learning algorithm to develop the AI

system for diagnosis, which was more intelligent and robust than

the hand-crafted systems, and could made automatic diagnosis of

the masses. Secondly, the AI system utilized the imaging data of two

US modalities, the gray scale and color Doppler US, as well as
TABLE 2 Performance of the AI system, the radiologists with three experience levels, and AI-assisted radiologists.

Clinical
Characteristics

Retrospective STTs masses Prospective STTs masses

Overall
Benign
masses

Malignant
masses

P-
Value

Overall
Benign
masses

Malignant
masses

P-
Value

Sex

0.8825 0.100Male 338 214 124 61 38 23

Female 395 248 147 84 63 21

Age 27.6±15.4 40.3±13.9 51.7±15.3 <0.001
41.96
±15.5

38.8±13.4 49.2±17.6 0.057

Malignant History

<0.001 <0.001Yes 164 17 147 13 0 13

None 579 445 124 132 101 31

Surgical History

Yes 189 63 126 <0.001 12 101 32 <0.001

None 544 399 146 <0.001 133 0 12

Tumor
Duration (months)

27.6±47.8 33.9±52.1 15.5±42.2 <0.001 28.3±42.8 31.4±46.2 21.9±34.7 0.06

Tumor Position

<0.001 <0.001

Head or neck 118 91 27 39 30 9

Truck 286 109 177 24 10 14

Upper limb 193 172 21 48 43 5

Lower limb 136 90 46 34 18 16

Tumor Side

0.012 0.688
Left 303 186 117 67 49 18

Right 342 208 134 58 39 19

Mid 88 68 20 20 13 7

Tumor Long
Diameter (mm)

33.2±29.4 25.9±19.4 45.7±38.1 <0.001 34.7±38.5 22.8±15.6 62.3±57.3 0.026

(Continued)
fron
FIGURE 4

AUC of the radiologists with and without referring to the AI system.
R1 and R2: senior radiologists; R3 and R4: intermediate radiologists;
R5 and R6: junior radiologists. For junior radiologist (R5 and R6) and
one of the intermediate radiologists (R3), the AUC after the AI
assistance were significantly improved.
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clinical information, to make a more comprehensive diagnosis of

the tumors. Also, the AI system was built on a relatively large

number of cases, and its accuracy and robustness were validated on

a prospective dataset. The diagnostic performance of UC-STTNet

was comparable with a meta-analysis of elastography in assessment

of malignant STTs (16). The average AUC and accuracy of our

system were 0.89 and 0.84, demonstrating a better performance

than the contrast-enhanced ultrasound (CEUS) for predicting the

malignancy of STTs, whose AUC and accuracy were 0.86 and 0.81,

respectively (32).

We also verified the assistant role of the AI system for

radiologists in making diagnosis of malignant STTs. While our

results showed that UC-STTNet was superior to the performance

of intermediate and junior radiologists, our AI system could help

these less experience radiologists make more accurate diagnosis.

Meanwhile, the inter-observer agreement of the radiologists was

also improved when they referred to the diagnostic results of the

AI system. UC-STTNet not only provided the final predictive

results of the masses, but also generated heatmaps representing

the active areas for diagnosis for the radiologists. Therefore, the AI
Frontiers in Oncology 08
system could be utilized as an assistant tool for the radiologists to

enhance their diagnostic performance and stability in STTs, as

well as to decrease operator dependence. To note, compared with

other models for diagnosing STTs, including the model based on

hand-crafted ultrasound features and the model based on

radiomics, the process of using our AI system is more clinical

applicable. The AI system can directly generate the result for

prediction and does not need lesion delineation and feature

extraction. For further clinical promotion of the AI system in

the future, we will attempt to integrate the DL architecture into

commercial US devices as an on-board software to help to

improve the diagnosis performance and decrease workforce

for radiologists.

The AI system tends to misdiagnose the benign masses with

large size, usually more than 30mm in longitude. The benign STTs

that possessing abundant blood vessels on color Doppler US

imaging, such as glomangioma, could also be misdiagnosed by

the system. On the other hand, the malignant tumors with small

size and scarce vasculature might be classified as benign ones. In

addition, a total of 6 cases of dermatofibrosarcoma protuberans
TABLE 2 Continued

Clinical
Characteristics

Retrospective STTs masses Prospective STTs masses

Overall
Benign
masses

Malignant
masses

P-
Value

Overall
Benign
masses

Malignant
masses

P-
Value

Tumor Short
Diameter(mm)

16.1±16.2 11.4±10.8 24.2±20.2 <0.001 16.3±20.7 9.5±8.0 32.0±30.4 <0.001

Tumor Depth(mm) 4.5±4.2 3.6±3.3 6.2±4.9 <0.001 4.3±5.0 2.8±2.1 7.8±7.5 0.005

Anatomical Level

<0.001Superficial fascia layer 613 412 201 113 95 18
<0.001

Deep fascia layer 120 50 70 32 6 26

Pathological types Retrospective STTs masses Prospective STTs masses

Malignant types 271 44

Sarcoma 74 33

Metastasis 137 0

Lymphoma 13 3

Squamous-cell carcinoma 13 5

Melanoma 9 3

Others 25 0

Benign types 462 101

lipoma 109 22

hemangioma 57 20

epidermoid cyst 51 10

schwannoma 35 8

giant cell tumor 25 0

Others 185 41
fron
AI, Artificial intelligence; R1 and R2: senior radiologists R3 and R4: intermediate radiologists R5 and R6: junior radiologists.
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(DFSP) were predicted as benign by the AI system. For DFSPs,

skin changes should also be taken into account during diagnosis.

Additionally, misdiagnosis often occurs in patients with a history

of malignancy. To prevent the aforementioned misdiagnosis

scenarios , more cases should be suppl ied for model

development in the future study. Supplementary Figure 2

demonstrated the examples of the misdiagnosed STTs cases of

the AI system.
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Our study has several limitations. First, it was a single center

research. The AI system was not verified by external validation from

multi-center datasets. The sensitivity of the AI system was relatively

low in the prospective validation dataset. which should be improved

by enrolling more malignant cases in the training dataset in further

studies. Also, we only used two modalities of US images to build the

model, and other available US modalities, including US

elastography and CEUS, were not incorporated in our study. The

two US modalities will be added to the system in our future study to

improve its diagnostic accuracy. Moreover, we compared

the performance of the DL model with the radiologists on the

retrospective dataset due to its relatively large sample size. In the

future study, the accuracy of the model will be further explored on a

large prospective data.
Conclusions

A DL-driven AI system based on dual-modal US images and

clinical features for malignant STTs diagnosis was developed on a

retrospective dataset of STTs. It achieved a high accuracy in

predicting malignant STTs on both retrospective and prospective

datasets. The performance of the AI system was comparable to

senior radiologists, and better than junior and intermediate

radiologists. The developed AI system could also assist

radiologists in improving their diagnostic accuracy and stability

in classifying malignant STTs.
FIGURE 5

Examples of the AI system classifying benign and malignant STTs. The AI system diagnosed STTs based on dual-modal US images and clinical
features. Heatmaps of the two modalities of US were also provided by the system. The above case is a 28-year-old female with a STTs mass on the
subcutaneous layer of the right hand. She had no tumor or surgical history. The tumor was found 12 months ago and had a size of 13×11mm. The AI
system diagnosed it as a benign tumor, which was identified as a benign schwannoma by pathology. The other case is a 64-year-old male with a
STTs mass on the muscular layer of abdomen. The patient also reported no tumor or surgical history. The tumor was found 10 days ago and had a
size of 22×11mm. The AI system diagnosed it as a malignant STTs tumor, which was identified as a metastatic malignant melanoma by pathology.
FIGURE 6

ROC curves of the AI system on the retrospective and
prospective datasets.
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