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from advanced MR imaging
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Purpose: To investigate the predictive value of multi-parameters derived from

advanced MR imaging for Ki-67 labeling index (LI) in glioma patients.

Materials and Methods: One hundred and nine patients with histologically

confirmed gliomas were evaluated retrospectively. These patients underwent

advanced MR imaging, including dynamic susceptibility-weighted contrast

enhanced MR imaging (DSC), MR spectroscopy imaging (MRS), diffusion-

weighted imaging (DWI) and diffusion-tensor imaging (DTI), before treatment.

Twenty-one parameters were extracted, including the maximum, minimum and

mean values of relative cerebral blood flow (rCBF), relative cerebral blood volume

(rCBV), relative mean transit time (rMTT), relative apparent diffusion coefficient

(rADC), relative fractional anisotropy (rFA) and relative mean diffusivity (rMD)

respectively, and ration of choline (Cho)/creatine (Cr), Cho/N-acetylaspartate

(NAA) and NAA/Cr. Stepwise multivariate regression was performed to build

multivariate models to predict Ki-67 LI. Pearson correlation analysis was used to

investigate the correlation between imaging parameters and the grade of glioma.

One-way analysis of variance (ANOVA) was used to explore the differences of the

imaging parameters among the gliomas of grade II, III, and IV.

Results: The multivariate regression showed that the model of five parameters,

including rCBVmax (RC=0.282), rCBFmax (RC=0.151), rADCmin (RC= -0.14), rFAmax

(RC=0.325) and Cho/Cr ratio (RC=0.157) predicted the Ki-67 LI with a root mean

square (RMS) error of 0. 0679 (R2 = 0.8025).The regression check of this model

showed that there were no multicollinearity problem (variance inflation factor:

rCBVmax, 3.22; rCBFmax, 3.14; rADCmin, 1.96; rFAmax, 2.51; Cho/Cr ratio, 1.64), and

the functional form of this model was appropriate (F test: p=0.682). The results of

Pearson correlation analysis showed that the rCBVmax, rCBFmax, rFAmax, the ratio

of Cho/Cr and Cho/NAA were positively correlated with Ki-67 LI and the grade of

glioma, while the rADCmin and rMDmin were negatively correlated with Ki-67 LI

and the grade of glioma.
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Conclusion: Combining multiple parameters derived from DSC, DTI, DWI and

MRS can precisely predict the Ki-67 LI in glioma patients.
KEYWORDS

magnetic resonance imaging, diffusion tensor imaging, diffusion weighted imaging,
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Introduction

Glioma is the most common neuroepithelial tumor of the cerebral

nervous system (1). Ki-67 labeling index (LI) is a nuclear antigen

expressed only by proliferating cells (2). Previous studies showed that

Ki-67 LI was one of the vital biological behavior biomarkers in glioma

and correlated with glioma grading and prognosis (3, 4).Therefore,

accurate measurement of the Ki-67 LI is important for grading and

synthesizing prognosis information in glioma.

Advanced MR imaging, such as dynamic susceptibility-weighted

contrast enhanced imaging (DSC), diffusion-weighted imaging (DWI),

diffusion tensor imaging (DTI) and magnetic resonance spectroscopic

imaging (MRS), provide important information for evaluating tumors

preoperatively. DSC magnetic resonance (MR) imaging is the most

commonly used MR perfusion technique in clinical practice and is well

established for evaluating relative cerebral blood volume (rCBV) and

relative cerebral blood flow (rCBF) in brain tumors (5). Many studies

have shown that the rCBV and the rCBF correlate with tumor grade

and tumor vascularity (6, 7). Diffusion tensor imaging (DTI) can

provide two quantitative parameters, namely mean diffusivity (MD)

which is inversely correlated with tumor cellularity and grading in

glioma (8) and fractional anisotropy (FA) (9). Recent studies

demonstrated that the FA derived from DTI may correlate with

tumor cellularity (10). Diffusion-weighted imaging (DWI) can

noninvasively provide insight into the microscopic properties of

tissues through evaluating Brownian movement of water, and the

apparent diffusion coefficient (ADC) value can quantitatively reflect

cellularity of the lesions (11, 12). MRS is a noninvasive tool which

estimates the concentration of metabolites (13). Previous studies

showed that choline (Cho)-containing compounds in tumors were

considered to be markers for cell proliferation (14). Shimizu H and

colleagues found a direct correlation between Ki-67 LI and Cho, Cho/

Cr and Cho/NAA ratio (14).

To date, most of studies explored the correlation between

individual parameters and Ki-67 LI. Few studies have combined
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multiple parameters to predict Ki-67 LI. Although there have been

some efforts to combine advanced MR imaging in characterizing

gliomas (15, 16). However, most of these studies focused on the

grading of gliomas (17, 18) and few focused on cell proliferation or

Ki-67 LI.

Therefore, the aim of this work was to investigate whether the

multi-parameters derived from DSC, MRS, DWI and DTI

technique can predict Ki-67 LI in glioma patients using stepwise

multivariate regression.
Materials and methods

Participants

The institutional review board approved this retrospective study

and waived the informed consent requirement. We retrospectively

reviewed our institution’s database and identified 710 patients who

underwent MR imaging for brain tumor evaluation from September

2018 to December 2023. Among these patients, 109 patients were

finally enrolled for analysis according to the following inclusion

criteria: a) patients were confirmed to have gliomas by pathologic

analysis (excluded 357 subjects); b) The samples of pathologic

analysis were from surgical resection (excluded 29 subjects); c)

the reports of pathologic analysis included Ki-67 LI (excluded 39

subjects); d) The MR imaging were performed before any treatment

(excluded 156 subjects); e) Their MR imaging had adequate image

acquisition and without motion or susceptibility artifact (excluded

20 subjects). Therefore, 109 patients (61 men and 48 women, aged

4–80 years; mean age, 41.63 years) were finally evaluated.
MR acquisition

MR acquisition were performed with a 3-T MR imaging system

(Magnetom Skyra, Siemens Healthineers) with a twenty channel head

and neck combined coil. All patients underwent conventional MR

imaging and DTI, DWI, MRS and DSC imaging. The precontrast

DTI protocol included TR/TE, 6000/93 ms; FOV, 230mm × 230mm;

Matrix, 128 × 128; section thickness, 3 mm; voxel size, 1.8×1.8×3mm;

number of section, 44; diffusion gradient encoding in 30 directions; b

value, 1000 s/mm2.DWI scan parameters were as follows: TR/TE =

8200/102 ms; FOV, 230mm × 230mm; Matrix, 128 × 128; section
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thickness, 5 mm; b values = 0 and 1000 s/mm2. Multivoxel 2D MR

spectroscopy was performed before the administration of contrast

agent. The detailed imaging parameters for the MRS study were as

follows: TR/TE, 1700/135 ms; flip angle 90°; section thickness, 10mm;

FOV, 160mm×160mm; voxel size,10×10×10mm; coding phase,

16 ×16; Averages, 1. DSC MR perfusion imaging was performed by

using a gradient-echo echo-planar sequence during the

administration of 0.2 mmol/kg of gadoterate meglumine delivered

with a power injector at a rate of 2ml/s followed by a 20ml bolus of

saline administered at the same rate. Scan parameters were as follows:

TR/TE, 1640 ms/30 ms; flip angle 90°; Averages, 1; FOV, 220

mm×220 mm; matrix 128 ×128; section thickness, 5mm; voxel size,

1.7×1.7×5mm; number of section, 21.
Image processing and analysis

All imaging data were transferred from the scanner to a MMWP

workstation (Siemens Healthcare, Erlangen, Germany) for

postprocessing. For quantitative analysis, CBV maps, CBF maps,

MTT maps, ADC maps, FA maps and MD maps were

independently evaluated by two experienced neuro-radiologists
Frontiers in Oncology 03
who were blinded to the clinical and pathological information

and any disagreements were resolved by consensus. The multi-

parameters were calculated according to the method described in

the previous studies (8, 19). The specific steps were as follows: a)

Five circular regions of interest (ROIs) of 25mm2 to 30mm2 were

carefully placed within the regions with the highest signal strength

in the contrast-enhanced T1-weighted images to ensure the ROIs

were placed in the solid component of a tumor and the normal

tissue, the cystic, large necrotic, or hemorrhagic components of the

tumor were avoided. These locations were then copied to the CBV

maps, CBF maps, MTT maps, ADC maps, FA maps and MD maps;

b) Five circular ROIs of same size from a) were placed in

contralateral normal-appearing white matter. The mean value of

these five ROIs was calculated as reference value; c) The highest,

lowest, and mean CBV, CBF, MTT, ADC, FA and MD among the

five ROIs acquired from a) were divided by the reference value to

compute rCBVmax, rCBVmin, rCBVmean, rCBFmax, rCBFmin,

rCBFmean, rMTTmax, rMTTmin, rMTTmean, rADCmax, rADCmin,

rADCmean, rFAmax, rFAmin, rFAmean, rMDmax, rMDmin, rMDmean.

An example of ROI placement was shown in Figure 1.

The spectra were automatically analyzed for the relative signal

intensity (area under the fitted peaks in the time domain) of the
B C

D E F

A

FIGURE 1

An example of ROI placement. This figure showed the ROI placement for a 62-year-old male patient with IDH1 wild-type grade IV glioma in the left
temporal lobe. Firstly, we placed five circular regions of interest (ROIs) of 25mm2 to 30mm2 within the regions with the highest signal strength in the
contrast-enhanced T1-weighted images (A). Then, we copied the ROIs to the ADC maps (B), FA maps (C), CBV maps (D), CBF maps (E). Finally, five
circular ROIs of same size from the above maps were placed in contralateral normal-appearing white matter. In MRS, the VOIs were placed in the
structural MR imaging (F) within the solid portion of the tumor to avoid contamination from normal tissue or areas of necrosis, cysts or hemorrhage.
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following metabolites: Cho, Cr, NAA. The metabolite peaks were

assigned at the following frequencies: choline (Cho) at 3.22 ppm,

creatine (Cr) at 3.02 ppm, N-acetylaspartate (NAA) at 2.02 ppm.

We selected one to three Volumes of interest (VOIs) (250mm3 to

300mm3) within the solid portion of the tumor to avoid

contamination from normal tissue or areas of necrosis, cysts or

hemorrhage based on conventional MR imaging as much as

possible. The measured metabolites in these VOIs were averaged

to represent the tumor. The ratios of Cho/Cr, Cho/NAA and NAA/

Cr were finally calculated.
Pathology

The histopathologic diagnosis was performed by pathologists

and based on the WHO 2016 classification (20). The specimens

were obtained from continuous sections after surgical resection.

Surgical specimens were fixed in formalin and embedded in

paraffin. The hematoxylin and eosin-stained specimens were

checked to make the primary histopathological tissue diagnoses.

The Ki-67 LI was obtained using the technique described in

previous study (10, 21). Briefly, Ki-67 immunohistochemical

staining was performed on paraffin embedded sections using the

MIB-1 anti-human Ki-67 LI mouse monoclonal antibody (Dako,

Carpinteria CA) at dilution of 1/600 and the EnvisionTM FLEX

Targeted Retrieval System at high pH (Dako). Diaminobenzidine

(DAB) was used as the chromogen. The Ki-67 LI was determined by

calculating the percentage of MIB-1–positive tumor cell nuclei in a

microscopic field containing approximately 400 to 500 tumor cells.

In each case, areas with the highest number of positive-staining

tumor nuclei were selected for calculating the Ki-67 LI.
Statistical analyses

Interobserver and intraobserver reliability coefficient of MRI

parameters was assessed using intraclass correlation coefficients

(ICC) with 95% confidence intervals (SPSS, version 20.0, IBM). All

other statistical analyses were performed using stata (version,15.0).

Firstly, the Pearson correlation was used to analyze the correlation

between each parameter and Ki-67 LI respectively. Through

correlation analysis, we screened out the imaging indicators that

had the greatest correlation with Ki-67 LI among the maximum,

minimum and mean values of CBF, CBV, MTT, ADC, FA and MD

respectively. Using these indicators with high correlation with Ki-67

LI to represent tumors can reduce the possible mismatch between

the location of pathological sampling and the placement of ROI or

VOI. Therefore, these screened indicators and those obtained in

MRS were used for subsequent statistical analysis.

Jones (22) pointed out that it is most appropriate to use

multivariate linear regression to explore the predictive

relationship between multiple parameters. In this study, Ki-67 LI

was dependent variable, the image indicators were independent

variables, age and sex were control variables.

The following was the mathematical formula and statistical

process of the regression model of this study:
Frontiers in Oncology 04
Regressionequation : Yik = a + bikXik + eik(i = 1……79; k

= 1……n)

Where i is the sample size and k is the number of model’s

independent variables. Yik is the predicted value of the dependent

variable (Ki-67 LI) and Xik is the column vectors, which represents

the independent variables. bik is the regression coefficient of the kth

variable (ie, the prediction effect), and eik is the regression residual

term, a is the intercept term of the regression equation. The above

selected image indicators were gradually added into the model as

independent variables according to the order of correlation with Ki-

67 LI to form the predictive model of Ki-67 LI. We used the R2,

RMSE, AIC and BIC to assess model quality.

We used the Ki-67 LI prediction model constructed above in the

validation sample set to estimate the Ki-67 LI index for these subjects,

and t test was used to compare whether there were differences

between these predicted Ki-67 LI and the actual Ki-67 LI.

In addition, we analyzed the correlation between imaging

indicators and the grade of glioma using the Pearson correlation

analysis. We compared the differences of imaging indicators among

the gliomas of grade II, III, and IV using one-way analysis of

variance (ANOVA). Post-hoc tests using Bonferroni correction for

multiple comparisons. Since there were only two subjects with

glioma of grade I in this study, gliomas with tumor grade I were

not included in the group comparison.
Results

Among the 109 subjects included in this study, 79 subjects (age,

40.63 ± 16.82 years; age range, 4–80 years; female, 49; male, 30)

were used as a dataset to construct the predictive model of Ki 67 LI,

and 30 subjects (age, 43.16 ± 15.71 years; age range, 9–76 years;

female, 12; male, 18) were used as a validation set for the predictive

model. The information for the samples used to construct the Ki-67

LI prediction model was shown in Table 1. The average size of the

ROIs which were placed within the solid component of the tumor

were 26.3 ± 11.9mm2 for the neuroradiologist A and 28.75 ± 15.10

mm2 for the neuroradiologist B, respectively. There was no

difference in the size of ROIs by the two neuroradiologists. The

detailed size of ROIs placed by two neuroradiologists in each MRI

maps were listed in Table 2. Intra-observer and inter-observer

agreements for MRI parameters were good to excellent with ICCs

ranging from 0.836 to 0.964 (Table 3).

The results of the correlation analysis between each imaging

indicators and Ki-67 LI showed that the rCBVmax (r=0.815,

p<0.001), rCBFmax (r=0.782, p<0.001), rADCmin (r= -0.657,

p<0.001), rFAmax (r=0.8, p<0.001), rMDmin (r=-0.682, p<0.001)

had relatively high correlation with Ki-67 LI (Table 3). Therefore,

the above indicators and ratios of Cho/Cr and Cho/NAA were

included in subsequent stepwise regression analysis and group

comparison. The ratio of NAA/Cr was not correlated with Ki-67

LI, so it was excluded from stepwise regression analysis.

The regression coefficients listed in our study were all non-

standardized coefficients unless otherwise stated. The results of the
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https://doi.org/10.3389/fonc.2024.1362990
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hu and Zhang 10.3389/fonc.2024.1362990
stepwise regression analyses were as follows (Table 4): The model 1

showed that the regression coefficient of rCBVmax was 0.03

(P<0.001). In this model, the regression coefficients of age and

sex were not statistically significant. Therefore, we excluded age and

sex in the subsequent model construction. When the rFAmax was

added, the model had higher R2 and lower RMSE, AIC and BIC,

which means model 2 had better explanatory power for Ki-67 LI. In

addition, the regression coefficient of rCBVmax was 0.03 (P<0.01).

Thus, the model 1 overestimated the regression coefficient of

rCBVmax. We found that the model 3 had higher R2 and lower

RMSE, AIC and BIC compared to model 2. The model 4 had higher

increased R2 and lower RMSE, AIC and BIC compared to model 3.

Therefore, model 3 was better than model 2, and model 4 was better

than model 3. In model 4, the regression coefficient of rMDmin was

not statistically significant. Therefore, we excluded rMDmin in the

subsequent model construction. The model 5 had higher increased

R2 and lower RMSE, AIC and BIC compared to model 4. The model

6 had higher increased R2 and lower RMSE, AIC and BIC compared

to model 5. Therefore, model 5 was better than model 4, and model

6 was better than model 5. In addition, the value of regression

coefficient of rCBVmax, rFAmax, rCBFmax were gradually decreased
Frontiers in Oncology 05
frommodel 1 to model 6 (Table 4), which means that the regression

coefficients were overestimated in model 1 to model 5. The R2 in

model 7 were similar with model 6. However, the RMSE, AIC and

BIC were increased in model 7 compared to model 6 (Table 4). That

is to say, the explanatory power of model 7 did not increase, but the

simplicity of the model was affected compared to model 6.

We could conclude thatmodel 6 (Ki67 = 0.0199 + 0.0108rCBVmax +

0.219rFAmax + 0.00677rCBFmax + 0.0115Cho/Cr - 0.0443rADCmin) may

be the best model among these seven models. The standardized

regression coefficients of each imaging indicator in this model were as

follows: rCBVmax (RC= 0.282), rFAmax (RC=0.325), rCBFmax

(RC=0.151), rADCmin (RC= -0.14), Cho/Cr (RC=0.157).

Then, we did regression check on model 6 and the results

showed that there were no multicollinearity problem (Variance

inflation factors of all independent variables were less than five:

rCBVmax, 3.22; rCBFmax, 3.14; rADCmin, 1.96; rFAmax, 2.51;
TABLE 2 The size of the ROIs or VOIs.

Parameter
Mean ± SD* Mean ± SD*

P value
Radiologists A Radiologists B

rCBVmin 26.164 ± 2.012 (mm2) 27.149 ± 2.378 (mm2) 0.056

rCBVmean 27.235 ± 1.954 (mm2) 26.150 ± 2.320 (mm2) 0.061

rCBVmax 26.567 ± 2.177 (mm2) 25.852 ± 2.543 (mm2) 0.053

rCBFmin 27.419 ± 2.124 (mm2) 26.234 ± 2.491 (mm2) 0.066

rCBFmean 26.320 ± 2.066 (mm2) 26.535 ± 2.433 (mm2) 0.134

rCBFmax 26.512 ± 2.289 (mm2) 27.112 ± 2.656 (mm2) 0.078

rMTTmin 26.282 ± 2.138 (mm2) 26.876 ± 2.505 (mm2) 0.271

rMTTmean 26.183 ± 2.080 (mm2) 26.497 ± 2.447 (mm2) 0.186

rMTTmax 27.315 ± 2.303 (mm2) 26.329 ± 2.570 (mm2) 0.053

rADCmin 26.667 ± 2.251 (mm2) 26.818 ± 2.617 (mm2) 0.357

rADCmean 26.568 ± 2.193 (mm2) 27.213 ± 2.559 (mm2) 0.089

rADCmax 26.137 ± 2.416 (mm2) 26.715 ± 1.782 (mm2) 0.092

rFAmin 26.289 ± 1.993 (mm2) 26.165 ± 2.359 (mm2) 0.371

rFAmean 27.151 ± 1.935 (mm2) 26.166 ± 2.301 (mm2) 0.061

rFAmax 26.583 ± 2.158 (mm2) 26.198 ± 2.524 (mm2) 0.376

rMDmin 27.354 ± 2.105 (mm2) 26.550 ± 2.471 (mm2) 0.082

rMDmean 26.536 ± 2.047 (mm2) 26.551 ± 2.413 (mm2) 0.467

rMDmax 27.568 ± 2.270 (mm2) 26.583 ± 2.636 (mm2) 0.079

Cho/Cr 272.18 ± 20.99 (mm3) 268.44 ± 2.014 (mm3) 0.183

Cho/NAA 264.01 ± 22.41 (mm3) 270.45 ± 25.83 (mm3) 0.299

NAA/Cr 274.33 ± 23.64 (mm3) 270.77 ± 28.06 (mm3) 0.357
fro
*The values listed in this column were the size of the ROIs. #The values listed in this column
were the p-values of the T-test between the two neuro radiologists. The subscript “min”
indicated the minimum value. The subscript “mean” indicated the mean value. The subscript
“max” indicated the maximum value. rCBV, relative cerebral blood volume; rCBF, relative
cerebral blood flow; rMTT, relative mean transit time; rADC, relative apparent diffusion
coefficient; rFA, relative fractional anisotropy; rMD, relative mean diffusivity; Cho/Cr,
choline/creatine; Cho/NAA, choline/N-acetylaspartate; NAA/Cr, N-acetylaspartate/creatine;
SD, standard deviation.
TABLE 1 Patient demographic data characteristics.

Grade/
Histology

IDH
(Mut/
WT)

Sex
(Male/
Female)

Age
(Mean
± SD)

Ki-67
(Mean
± SD)

Grade I (n=2) 0/2 1/1 14 ± 9.899 0.045 ± 0.007

Pilocytic
astrocytoma (n=2)

0/2 1/1 14 ± 9.899 0.045 ± 0.007

Grade II (n=30) 18/12 18/12
38.567
± 16.425

0.071 ± 0.053

Diffuse
astrocytoma (n=17)

7/10 11/6
35.688
± 17.296

0.059 ± 0.040

Oligodendro-
glioma (n=11)

11/0 7/4
41.09

± 13.042
0.09 ± 0.068

Pleomorphic
xanthoastrocytoma

(n=2)
0/2 0/2 37 ± 31.113 0.055 ± 0.064

Grade III (n=15) 6/9 7/8 46.4 ± 9.326 0.189 ± 0.085

Anaplastic
astrocytoma (n=8)

1/7 4/4
47.5

± 10.085
0.169 ± 0.059

Anaplastic
oligodendro-
glioma (n=7)

5/2 3/4
45.143
± 8.989

0.211 ± 0.108

Grade IV (n=32) 2/30 23/9
41.531
± 18.719

0.301 ± 0.146

Glioblastoma
(n=25)

1/24 18/7
46.8

± 15.885
0.33 ± 0.141

Diffuse midline
glioma (n=7)

1/6 5/2
21.875
± 15.459

0.183 ± 0.12

Sum (n=79) 26/53 49/30
40.633
± 16.822

0.186 ± 0.148
SD, standard deviation; IDH, Isocitrate dehydrogenase; Mut, IDH-mutant; WT, IDH-
wild-type.
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Cho/Cr ration, 1.64), which means that the model had no

redundant information. In addition, the regression check

demonstrated that the residuals were normally distributed

(Shapiro-Wilk W normality test: z, 2.140; p, 0.016), which means

that the model did not miss important variables. Finally, there was

an appropriate functional form (Test for appropriate functional

form: F, 0.502; p, 0.682). The scatterplot matrix showed that Ki-67

LI was positively linearly distributed with rCBVmax, rCBFmax,

rFAmax and ratio of Cho/Cr respectively, while it was negatively

linearly distributed with rADCmin (Figure 2). We used the Ki-67 LI

prediction model obtained above to estimate the Ki-67 LI of the

validation sample. There was no difference (P=0.087 for t test)

between the estimation of Ki-67 LI (0.177 ± 0.126) estimate and the

actual value of Ki-67 LI (0.186 ± 0.147) in the validation sample.

In addition, the analysis of the correlation between imaging

indicators and the grade of glioma showed that the rCBVmax,

rCBFmax, rFAmax, the ratio of Cho/Cr and Cho/NAA were

positively correlated with the grade of glioma, while the

rADCmin and rMDmin were negatively correlated with the grade
Frontiers in Oncology 06
of glioma (Table 5). The results of ANOVA showed that the

rCBVmax, rCBFmax, rADCmin, rFAmax, rMDmin, the ration of

Cho/Cr and Cho/NAA were different among grade II, III, and IV

(Table 5). The Post-hoc tests showed that the rCBVmax, rCBFmax,

rADCmin and rFAmax were different between grade II and grade

III, the rCBVmax, rCBFmax, rADCmin, rFAmax, rMDmin, the

ration of Cho/Cr and Cho/NAA were different between grade II and

grade IV, and the rFAmax, rMDmin and the ration of Cho/Cr were

different between grade III and grade IV (Table 5). The box blots of

rCBVmax, the rCBFmax, the rADCmin, the rFAmax, the rMDmin,

the ration of Cho/Cr, the Cho/NAA and the NAA/Cr in grade II,

grade III and grade IV gliomas were showed in Figure 3.
Discussion

This study estimated Ki-67 LI in glioma patients based on

multi-parameters derived from DSC, DWI, DTI and MR

spectroscopy imaging using multivariate regression and
TABLE 3 The results of correlation analysis and intra-class correlation coefficients.

Parameter Mean ± SD* r (P)#
ICC (95%CI)##

Inter-observer Intra-observer

rCBVmin 3.879 ± 3.054 0.357 (0.001) 0.931 (0.905–0.951) 0.964 (0.943–0.972)

rCBVmean 4.703 ± 2.686 0.755(<0.001) 0.925 (0.914–0.963) 0.958 (0.933–0.975)

rCBVmax 6.023 ± 3.877 0.815 (<0.001) 0.942 (0.900–0.978) 0.953 (0.929–0.968)

rCBFmin 3.495 ± 2.568 0.502 (<0.001) 0.946 (0.931–0.959) 0.949 (0.931–0.960)

rCBFmean 4.700 ± 2.641 0.755(<0.001) 0.920 (0.892–0.928) 0.923 (0.898–0.940)

rCBFmax 5.866 ± 3.290 0.782 (<0.001) 0.909 (0.882–0.919) 0.918 (0.894–0.933)

rMTTmin 1.044 ± 0.187 -0.184 (0.105) 0.897 (0.687–0.921) 0.911 (0.882–0.936)

rMTTmean 1.104 ± 0.627 -0.053 (0.64) 0.857 (0.633–0.914) 0.905 (0.892–0.943)

rMTTmax 1.486 ± 0.200 -0.150 (0.188) 0.869 (0.662–0.932) 0.921 (0.878–0.956)

rADCmin 1.400 ± 0.460 -0.657 (<0.001) 0.961 (0.943–0.972) 0.962 (0.944–0.973)

rADCmean 1.496 ± 0.510 -0.367 (<0.001) 0.933 (0.904–0.941) 0.936 (0.911–0.953)

rADCmax 1.851 ± 0.808 -0.422 (<0.001) 0.922 (0.894–0.932) 0.931 (0.907–0.946)

rFAmin 0.3 ± 0.145 0.787 (<0.001) 0.876 (0.666–0.900) 0.890 (0.861–0.915)

rFAmean 0.35 ± 0.183 0.778 (<0.001) 0.836 (0.612–0.893) 0.884 (0.871–0.922)

rFAmax 0.414 ± 0.219 0.8 (<0.001) 0.848 (0.641–0.911) 0.901 (0.857–0.935)

rMDmin 1.826 ± 0.142 -0.682 (<0.001) 0.940 (0.922–0.951) 0.941 (0.923–0.952)

rMDmean 1.998 ± 0.087 -0.533 (<0.001) 0.912 (0.883–0.920) 0.915 (0.890–0.932)

rMDmax 2.188 ± 0.088 -0.548 (<0.001) 0.901 (0.873–0.911) 0.910 (0.886–0.925)

Cho/Cr 2.784 ± 2.014 0.627 (<0.001) 0.884 (0.675–0.908) 0.898 (0.869–0.923)

Cho/NAA 2.030 ± 1.271 0.402 (<0.001) 0.844 (0.621–0.901) 0.892 (0.879–0.930)

NAA/Cr 1.560 ± 1.183 0.086 (0.454) 0.856 (0.650–0.919) 0.908 (0.865–0.943)
*The values listed in this column were the measurements of Multi-parameters derived from MR Imaging. #The values listed in this column were the results of correlation analysis between each
parameter and ki-67 respectively. Data in parentheses were P values. ##Data in parentheses are the 95% confidence interval. The subscript “min” indicated the minimum value. The subscript
“mean” indicated the mean value. The subscript “max” indicated the maximum value. rCBV, relative cerebral blood volume; rCBF, relative cerebral blood flow; rMTT, relative mean transit time;
rADC, relative apparent diffusion coefficient; rFA, relative fractional anisotropy; rMD, relative mean diffusivity; Cho/Cr, choline/creatine; Cho/NAA, choline/N-acetylaspartate; NAA/Cr, N-
acetylaspartate/creatine; SD, standard deviation; ICC, intraclass correlation coefficient; CI, confidence interval.
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TABLE 4 The results of stepwise multivariable regression.

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

rCBVmax 0.0300*** 0.0189*** 0.0140** 0.0133** 0.0125** 0.0108** 0.0108**

rFAmax 0.299*** 0.247** 0.245** 0.224** 0.219** 0.220**

rCBFmax 0.0106** 0.00812 0.00926* 0.00677** 0.00680

rMDmin -0.101

rADCmin -0.0427** -0.0443** -0.0444**

Cho/Cr 0.0115* 0.0117*

Cho/NAA -0.000748

Age 0.00108

Sex -0.0219

Constant -0.0253 -0.0518*** -0.0636*** 0.1411 0.0225 0.0199 0.0208

Radj
2 0.6815 0.7584 0.7781 0.782 0.7875 0.8025 0.8025

RMSE 0.08511 0.07364 0.07103 0.07089 0.06999 0.06793 0.06839

AIC -161.1932 -185.0233 -189.7623 -189.1394 -191.16 -194.9535 -192.966

BIC -151.7154 -177.9149 -180.2845 -177.2921 -179.3128 -180.7368 -176.3799
F
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The data listed in the table were non-standardized coefficients. rCBVmax, maximum relative cerebral blood volume; rCBFmax, maximum relative cerebral blood flow; rADCmin, minimum
relative apparent diffusion coefficient; rFAmax, maximum relative fractional anisotropy; rMDmin, minimum relative mean diffusivity; Cho/Cr, the ration of choline and creatine; Cho/NAA, the
ration of choline and N-acetylaspartate; NAA/Cr, the ration of N-acetylaspartate and creatine; RMSE, root mean square error; AIC, Akaike information criterion; BIC, Bayesian information
criterion. “-” indicated that the variables in the column were not included in the row correspondence model.
***p<0.01, **p<0.05, *p<0.1
FIGURE 2

Scatterplot matrix of all variables in model 6. In each plot, the variable to the side of the graph was used as the Y variable, and the variable above and
below the graph was used as the X variable. For example, in all the plots in the first column, the horizontal coordinate was Ki-67 LI, and the vertical
coordinate from top to bottom was rCBVmax, the rFAmax, the rCBFmax, the rADCmin and Cho/Cr respectively. In addition, in all the plots in the
first row, the vertical coordinate was Ki-67 LI, and the horizontal coordinate from left to right was rCBVmax, the rFAmax, the rCBFmax, the rADCmin
and Cho/Cr respectively. From this figure, it can be seen that Ki-67 LI may have a positive correlation with rCBVmax, rFAmax, rCBFmax,Cho/Cr
ration, while Ki-67 LI may have a negative correlation with rADCmin. ChoCr, Cho/Cr ration; rCBVmax, maximum relative cerebral blood volume;
rCBF, relative cerebral blood flow; rADCmin, minimum relative apparent diffusion coefficient; rFAmax, maximum relative fractional anisotropy.
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demonstrated that combining multiple parameters can precisely

predict the Ki-67 LI. The model in our study with five dominant

variables (rCBVmax, rCBVmax, rADCmin, rFAmax and Cho/Cr ratio)

could predict Ki-67 LI with an R2 of 0. 8025 and a root mean square

(RMS) error of 0.0679.

In addition, we found that rCBVmax, rCBFmax, rFAmax, the ratio

of Cho/Cr and Cho/NAA were positively correlated with Ki-67 LI

and the grade of glioma, while the rADCmin and rMDmin were

negatively correlated with Ki-67 LI and the grade of glioma.

The results about the correlation between various imaging

indicator and Ki-67 LI and the grade of glioma in our study were

generally agree with previous studies. Many studies reported a

significant inverse correlation between ADC values or ADC ratio

(lesion-to-normal) and Ki-67 LI (21, 22). Yan et al. (23)

demonstrated that ADC was a reliable biomarker in predicting
Frontiers in Oncology 08
the proliferation level. This may be due to the level of ADC signal

correlated with cell density in gliomas (23). MD measures the

average motion of water molecules, independent of tissue

directionality (24); it is considered a synonym of the coefficient of

diffusion in different space guidelines (25). Therefore, our study also

found that the rMDmin were negatively correlated with Ki-67 LI and

the grade of glioma. Fractional anisotropy (FA) provides a

quantitative estimation of diffusion anisotropy, and positive

correlation was observed between the FA and Ki-67 LI in many

studies (26, 27). George A. Alexiou and colleagues found significant

negative correlation between the ADC ratio (lesion-to-normal

ration) and the Ki-67 LI (rho = −0.545, p = 0.0087) and

significant positive correlation between the FA ratio and the Ki-

67 LI (rho = 0.489, p =0.02) (26). DSC imaging has been widely used

to estimate CBV and CBF. Many studies reported a positive
TABLE 5 The results of correlation analysis between each parameter and grade and the results of group comparison.

Parameter
Mean ± SD

r (P)* ANOVA#
Grade II

vs
Grade III #

Grade II
vs

Grade IV #

Grade III
vs

Grade IV #Grade II Grade III Grade IV

rCBVmax 3.055 ± 2.48 6.498 ± 3.193 8.738 ± 3.287 0.649 (<0.001) <0.001 0.002 <0.001 0.062

rCBFmax 3.416 ± 2.198 6.348 ± 2.700 8.159 ± 2.685 0.663 (<0.001) <0.001 0.002 <0.001 0.076

rADCmin 1.684 ± 0.366 1.303 ± 0.409 1.134 ± 0.377 -0.586 (<0.001) <0.001 0.009 <0.001 0.367

rFAmax 0.252 ± 0.095 0.401 ± 0.126 0.574 ± 0.23 0.630 (<0.001) <0.001 0.026 <0.001 0.007

rMDmin 1.913 ± 0.083 1.889 ± 0.113 1.702 ± 0.103 -0.704 (<0.001) <0.001 0.737 <0.001 <0.001

Cho/Cr 1.549 ± 0.7 2.702 ± 1.832 4.055 ± 2.236 0.554 (<0.001) <0.001 0.110 <0.001 0.047

Cho/NAA 1.323 ± 0.432 2.203 ± 1.406 2.473 ± 1.407 0.283 (0.012) <0.001 0.054 0.001 0.748

NAA/Cr 1.32 ± 0.782 1.384 ± 0.903 1.715 ± 1.308 0.022 (0.849) 0.314 0.982 0.347 0.608
*The values listed in this column were the results of correlation analysis between each parameter and grade of glioma respectively. The P values were listed in parentheses. #The values listed in
these column were the P values of ANOVA and Post-hoc tests. rCBVmax, maximum relative cerebral blood volume; rCBFmax, maximum relative cerebral blood flow; rADCmin, minimum
relative apparent diffusion coefficient; rFAmax, maximum relative fractional anisotropy; rMDmin, minimum relative mean diffusivity; Cho/Cr, the ration of choline and creatine; Cho/NAA, the
ration of choline and N-acetylaspartate; NAA/Cr, the ration of N-acetylaspartate and creatine; SD, standard deviation.
B C D

E F G H

A

FIGURE 3

The box blots of various MRI metrics in different tumor grade. This figure showed the box plots for the rCBVmax (A), the rCBFmax (B), the rADCmin
(C), the rFAmax (D), the rMDmin (E), the Cho/Cr (F), the Cho/NAA (G) and the NAA/Cr (H) in grade II, grade III and grade IV gliomas. The P-values
listed in the picture were the results of Post-hoc tests using Bonferroni correction for multiple comparisons. rCBF, relative cerebral blood flow;
rCBV, relative cerebral blood volume; rADC, relative apparent diffusion coefficient; rFA, relative fractional anisotropy; rMD, relative mean diffusivity;
Cho/Cr, choline/creatine; Cho/NAA, choline/N-acetylaspartate; NAA/Cr, N-acetylaspartate/creatine; SD, standard deviation.
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correlation between absolute or relative CBV and CBF values and

cell density (28, 29). George A. Alexiou (26) and Anastasia K. Zikou

(27) found strong correlation between rCBV and the Ki-67 LI in

glioma (rho = 0.853, p < 0.0001) and in glioblastomas (r = 0.628, p =

0.07). Higher Cho metabolites at MR spectroscopy indicate

increased membrane turnover and increased cellular density (30).

However, Hiroaki Shimizu and colleagues showed that the Cho

value tends to be underestimated in heterogeneous tumors resulting

from intratumoral cyst, necrosis, hematoma, and indicate that the

Cho value may no longer be reliable (14). Hiroaki Shimizu and

colleagues demonstrated a linear relationship between the Ki-67 LI

and Cho/Cr ratio (r =0.58, p = 0.02) and the Cho/NAA ratio (r=

0.60, p=0.02) (16). The regression coefficients between Ki-67 LI and

rCBVmax, rADCmin, rFAmax and Cho/Cr ration in our study were

relatively lower in our study compared with previous studies. The

inconsistency may be due to the differences in statistical analyses.

They performed univariate linear regression analysis which may

lead to miscalculation of regression coefficients resulting from

missing important variables. The above showed that diffusion,

perfusion and spectroscopy imaging can be used to assess

vascularity, metabolic activity, biochemical concentration and

cellularity. These may be the reasons for the correlation between

the parameters obtained in advanced MRI and the Ki-67 LI and the

grade of glioma in this study.

We are not aware of previous work presenting Ki-67 predictive

models based on multi-parameters derived from MR imaging using

stepwise multivariate regression. Recently, Evan D. H. Gates and

colleagues estimated Ki-67 maps using multi-parameters and

reported the random forest algorithm best modeled Ki-67 with 4

imaging inputs (T2-weighted, fractional anisotropy, cerebral blood

flow, Ktrans) and with a RMSE of 0.035 (R2 = 0.75) (4). In our

study, the model with also 5 variables (rCBVmax, rCBFmax,

rADCmin, rFAmax and Cho/Cr ration) predicted Ki-67 LI with a

RMSE of 0.0679 (R2 = 0.8025). The RMSE in our research was

slightly larger, the reason maybe the MR sequences and statistical

analyses were different between our and their study which may lead

to some differences in results. However, our model was tested by

regression diagnosis which showed there was an appropriate

functional form and the model did not miss important variables.

In addition, we also tested in the validation set that there was no

statistical difference between the Ki-67 LI evaluated by the

predictive model constructed in this study and the actual Ki-67

LI. Therefore, our model also had important clinical value in

noninvasively predicting the Ki-67 LI.

Ki-67 LI, a tumor cell proliferation index, is a widely recognized

biomarker for quantitative evaluation of glioma growth and

prognosis of patients (31). The Ki-67 LI prediction model

constructed in this study wil l lead to more accurate

characterization of tumors and allows us to distinguish between

high-proliferating and low-proliferating gliomas. Such features

afford additional presurgical information to the conventional

morphological images. In clinical application, we suggest that

advanced magnetic resonance examination, especially DTI, DWI,

DSC and MRS imaging, be performed before surgery in glioma

patients, and combine the model in our study to predict Ki-67 LI
Frontiers in Oncology 09
before surgery to noninvasive evaluation of pathological features

of glioma.

This study has several limitations. Firstly, this was a retrospective

research and only DSC, DWI, DTI and MR spectroscopy imaging

were analyzed. In the future, more advanced MR imaging techniques

need to be included to verify the results of this study. Second, the

relation between the ROIs placement on the parameter maps of MR

imaging and the histologic sampling used for the proliferation

analysis remains unclear, although Ki-67 LI was determined in the

highest density of stained areas. Another limitation was the

heterogeneity of Ki-67 LI in glioma. The Ki-67 LI of the same

lesion in the same patient in different areas was very different,

although we try to enroll the maximum of Ki-67 LI in the section

in this study, and select the ROI representing the most serious lesions

in the image, so as to achieve the match between MR image and

pathology as much as possible. The third limitation is that all MRI

scans were performed on a single machine, which can avoid errors

due to different machines, but it is also impossible to know whether

the models constructed in this study will be applicable on other MRI

machines. In the future, it is necessary to include more patients

scanned on different MRI machines to verify whether the model

obtained in this study is applicable to other machines, or to build a

standardized model that can be applied to different MRI machines.

The fourth limitation is that due to the limited sample size, the

prediction model of glioma histological type was not constructed in

this study, and the prediction model of glioma Ki-67 LI was not

constructed according to the histological types. It may be possible to

get a more accurate predictive model by building models based on

histological types. Therefore, a larger sample size including various

histological types will be needed in the future to complete this work.

Finally, there are many new methods for feature extraction of

magnetic resonance data, such as texture analysis. It is unknown

whether the magnetic resonance parameters obtained by these new

methods can build a more reliable prediction model for Ki-67 LI.

Although the magnetic resonance parameters obtained in this study

are more convenient compared with texture analysis, it is of great

value to use more new magnetic resonance parameters to construct

the Ki-67 LI model, and compare the differences between the model

obtained in this study and the model obtained by the new method, or

standardize the model between the parameters obtained by the

traditional method and the parameters obtained by the new method.

In conclusion, we found that rCBVmax, rCBFmax, rADCmin,

rFAmax and Cho/Cr ratio are correlated to Ki-67 LI in glioma

patients. At the same time, combining multiple parameters derived

from DSC, DWI, DTI and MRS can precisely predict the Ki-67 LI in

glioma patients. This will allow us to noninvasively evaluate the

pathological features and predict the prognosis of patients with

glioma before surgery, and provide some information for the

selection of clinical treatment.
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Characterization of brain tumors by MRS, DWI and Ki-67 labeling index. J Neurooncol.
(2005) 72:273–80. doi: 10.1007/s11060-004-3342-2

20. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D,
Cavenee WK, et al. The 2016World Health Organization classification of tumors of the
central nervous system: a summary. Acta neuropathologica. (2016) 131:803–20.
doi: 10.1007/s00401-016-1545-1

21. Saksena S, Jain R, Narang J, Scarpace L, Schultz LR, Lehman NL, et al. Predicting
survival in glioblastomas using diffusion tensor imaging metrics. J Magn Reson
Imaging. (2010) 32:788–95. doi: 10.1002/jmri.22304

22. Jones AM. Health econometrics[M]. Elsevier. (2000) 1:265–344. doi: 10.1016/
S1574-0064(00)80165-1

23. Yan R, Haopeng P, Xiaoyuan F, Jinsong W, Jiawen Z, Chengjun Y, et al. Non-
Gaussian diffusion MR imaging of glioma: comparisons of multiple diffusion
parameters and correlation with histologic grade and MIB-1 (Ki-67 labeling) index.
Neuroradiology. (2016) 58:121–32. doi: 10.1007/s00234-015-1606-5

24. Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy.
Magn Reson Med. (1996) 36:893–906. doi: 10.1002/mrm.1910360612

25. Mori S, Barker PB. Diffusion magnetic resonance imaging: its principle and
applications. Anat Rec. (1999) 257:102–9. doi: 10.1002/(ISSN)1097-0185

26. Alexiou GA, Zikou A, Tsiouris S, et al. Correlation of diffusion tensor, dynamic
susceptibility contrast MRI and 99mTc-Tetrofosmin brain SPECT with tumor grade
and Ki-67 immunohistochemistry in glioma. Clin Neurol Neurosurg. (2014) 116:41–5.
doi: 10.1016/j.clineuro.2013.11.003
frontiersin.org

https://doi.org/10.1007/s00330-018-5704-8
https://doi.org/10.1007/s00330-018-5704-8
https://doi.org/10.1097/00000478-198609000-00003
https://doi.org/10.1093/neuonc/noz004
https://doi.org/10.1148/radiol.2231010594
https://doi.org/10.2214/ajr.171.6.9843274
https://doi.org/10.1148/radiology.191.1.8134596
https://doi.org/10.1148/radiol.2413051276
https://doi.org/10.1093/neuonc/noq197
https://doi.org/10.1016/j.neuroimage.2008.06.041
https://doi.org/10.1007/s00330-017-4910-0
https://doi.org/10.1007/s00330-023-09695-w
https://doi.org/10.1093/neuonc/now159
https://doi.org/10.1148/radiol.2223010558
https://doi.org/10.1016/j.ejmp.2019.03.014
https://doi.org/10.1002/jmri.26265
https://doi.org/10.1007/s11060-004-3342-2
https://doi.org/10.1007/s00401-016-1545-1
https://doi.org/10.1002/jmri.22304
https://doi.org/10.1016/S1574-0064(00)80165-1
https://doi.org/10.1016/S1574-0064(00)80165-1
https://doi.org/10.1007/s00234-015-1606-5
https://doi.org/10.1002/mrm.1910360612
https://doi.org/10.1002/(ISSN)1097-0185
https://doi.org/10.1016/j.clineuro.2013.11.003
https://doi.org/10.3389/fonc.2024.1362990
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hu and Zhang 10.3389/fonc.2024.1362990
27. Zikou AK, Alexiou GA, Kosta P, Goussia A, Astrakas L, Tsekeris P, et al.
Diffusion tensor and dynamic susceptibility contrast MRI in glioblastoma. Clin Neurol
Neurosurg. (2012) 114:607–12. doi: 10.1016/j.clineuro.2011.12.022

28. Sadeghi N, Salmon I, Decaestecker C, Levivier M, Metens T, Wikler D, et al.
Stereotactic comparison among cerebral blood volume, methionine uptake, and
histopathology in brain glioma. Am J Neuroradiol. (2007) 28:455–61.

29. Sadeghi N, D’Haene N, Decaestecker C, Levivier M, Metens T, Maris C, et al.
Apparent diffusion coefficient and cerebral blood volume in brain gliomas: relation to
Frontiers in Oncology 11
tumor cell density and tumor microvessel density based on stereotactic biopsies. Am J
Neuroradiol. (2008) 29:476–82. doi: 10.3174/ajnr.A0851

30. Tamiya T, Kinoshita K, Ono Y, Matsumoto K, Furuta T, Ohmoto T. Proton
magnetic resonance spectroscopy reflects cellular proliferative activity in astrocytomas.
Neuroradiology. (2000) 42:333–38. doi: 10.1007/s002340050894

31. Jiang JS, Hua Y, Zhou XJ, Shen DD, Shi JL, Ge M, et al. Quantitative assessment
of tumor cell proliferation in brain gliomas with dynamic contrast-enhanced MRI.
Acad Radiol. (2019) 26:1215–21. doi: 10.1016/j.acra.2018.10.012
frontiersin.org

https://doi.org/10.1016/j.clineuro.2011.12.022
https://doi.org/10.3174/ajnr.A0851
https://doi.org/10.1007/s002340050894
https://doi.org/10.1016/j.acra.2018.10.012
https://doi.org/10.3389/fonc.2024.1362990
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Noninvasive assessment of Ki-67 labeling index in glioma patients based on multi-parameters derived from advanced MR imaging
	Introduction
	Materials and methods
	Participants
	MR acquisition
	Image processing and analysis
	Pathology
	Statistical analyses

	Results
	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


