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A hybrid deep learning scheme
for MRI-based preliminary
multiclassification diagnosis
of primary brain tumors
Zhichao Wang1,2†, Chuchu He1†, Yan Hu1,2, Haifeng Luo1,
Chao Li1, Xiandong Wu1, Yang Zhang1, Jingjing Li1*

and Jun Cai1*

1Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China,
2Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
Objectives: The diagnosis and treatment of brain tumors have greatly benefited

from extensive research in traditional radiomics, leading to improved efficiency

for clinicians. With the rapid development of cutting-edge technologies,

especially deep learning, further improvements in accuracy and automation

are expected. In this study, we explored a hybrid deep learning scheme that

integrates several advanced techniques to achieve reliable diagnosis of primary

brain tumors with enhanced classification performance and interpretability.

Methods: This study retrospectively included 230 patients with primary brain

tumors, including 97 meningiomas, 66 gliomas and 67 pituitary tumors, from the

First Affiliated Hospital of Yangtze University. The effectiveness of the proposed

scheme was validated by the included data and a commonly used data. Based on

super-resolution reconstruction and dynamic learning rate annealing strategies,

we compared the classification results of several deep learning models. The multi-

classification performancewas further improved by combining feature transfer and

machine learning. Classification performance metrics included accuracy (ACC),

area under the curve (AUC), sensitivity (SEN), and specificity (SPE).

Results: In the deep learning tests conducted on two datasets, the DenseNet121

model achieved the highest classification performance, with five-test accuracies

of 0.989 ± 0.006 and 0.967 ± 0.013, and AUCs of 0.999 ± 0.001 and 0.994 ±

0.005, respectively. In the hybrid deep learning tests, LightGBM, a promising

classifier, achieved accuracies of 0.989 and 0.984, which were improved from

the original deep learning scheme of 0.987 and 0.965. Sensitivities for both

datasets were 0.985, specificities were 0.988 and 0.984, respectively, and

relatively desirable receiver operating characteristic (ROC) curves were

obtained. In addition, model visualization studies further verified the reliability

and interpretability of the results.
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Conclusions: These results illustrated that deep learning models combining

several advanced technologies can reliably improve the performance,

automation, and interpretability of primary brain tumor diagnosis, which is

crucial for further brain tumor diagnostic research and individualized treatment.
KEYWORDS

brain tumor classification, MRI images, deep learning, transfer learning,
model interpretability
1 Introduction

Brain and central nervous system (CNS) tumors are among the most

deadly cancers and have a high incidence. In the United States,

approximately 80,000 people were diagnosed with brain or CNS tumors

in 2021, and 18,600 died from these diseases (1). Common brain tumors

include gliomas, meningiomas, and pituitary tumors (approximately 23%,

38%, and 17% of primary brain and CNS tumors, respectively) (2, 3).

Primary intracranial tumors arise from various sites, including brain tissue,

meninges, pituitary gland, cranial nerves, and vascular tissue. Available

treatment options include surgical resection, radiotherapy, and

chemotherapy. Therefore, accurate early diagnosis is essential for

individualized treatment and prognostic assessment.

Magnetic resonance imaging (MRI) is a widely employed

technique for the preliminary diagnosis of brain tumors, which

can provide clear visualization of the nervous system structure and

local lesions. Clinical application of MRI-based manual diagnosis

can be influenced by professional level, work pressure, and degree of

automation. In recent years, artificial intelligence has achieved

significant progress in medicine (4, 5). Numerous studies have

investigated the potential of machine learning combined with

radiomics in brain tumor detection, molecular and genetic

diagnosis (6–8). Nevertheless, further improvements are needed

regarding the level of automation, reproducibility, and feature

extraction performance of machine learning in radiomics to

address the limitations associated with its inherent flaws (9–11).

As deep learning has demonstrated powerful adaptive feature

extraction and end-to-end advantages in various fields, intelligent

tumor diagnosis has also been widely researched and clinical

application. Afshar analyzed the advantages of deep learning-

based radiomics, such as freedom from prior knowledge and

target area outlining, and end-to-end training (11). Lao validated

the potential of deep learning in feature extraction and overall

survival prediction based on 112 glioma patients (12). However,

while acknowledging the significance of preliminary brain tumors

diagnosis, the recent report highlighted the presence of the Smart

Hans phenomenon in automated classification studies, where the

model achieved better results without specifically focusing on the

tumor region (13). This study revealed this previously overlooked

bias, and provided valuable guidance for subsequent research. On

one hand, deep learning models integrating multiple cutting-edge
02
technologies can adaptively extract local information and assign

appropriate weights, showing better performance than

undifferentiated manual feature extraction based on the entire

slice. On the other hand, the model visualization is crucial for

interpreting whether it indeed focuses on the tumor area, which is

an important verification of diagnostic reliability.

Therefore, this study proposed a hybrid deep learning scheme

that integrated several advanced technologies for automated

preliminary diagnosis of tumors. By focusing on the study of

primary brain tumors, this study provided an important

foundation for further extensions, such as brain metastasis

prediction and pathological classification. The main contributions

of this work are summarized as follows:
• In model construction, super-resolution reconstruction and

dynamic learning rate strategies were applied to improve

image quality and training efficiency.

• Based on the advantages of deep learning (DL) in feature

extraction, machine learning models were further combined

to improve classification performance.

• To assess the generalization performance and alleviate the

interpretability problem, this study utilized t-SNE and

Score-Grad techniques and verified the effectiveness of the

scheme based on our institute and public datasets.
The remaining parts are organized as follows. Section 2

(Materials and methods) introduces the patient population and

methodologies employed in the proposed scheme. The datasets and

results of the experiments are presented in Section 3 (Results).

Based on the displayed results, Section 4 (Discussion) analyzes the

performance of the proposed scheme in detail. Finally, conclusions

are summarized in Section 5 (Conclusions).
2 Materials and methods

2.1 Patient population

This retrospective study was approved by the ethics committees

of the First Affiliated Hospital of Yangtze University, and informed

consent was waived. Patients were enrolled based on the following
frontiersin.org
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criteria: 1) available postoperative pathological diagnosis results; 2)

MRI examinations performed in our hospital within 2 weeks before

surgery; 3) available medical records. Exclusion criteria were as

follows: 1) history of preoperative treatment (radiation,

chemotherapy, or other treatments); 2) unavailable contrast-

enhanced T1-weighted sequence; 3) presence of MRI artifacts or

tumors too small to seriously affect tumor imaging.
2.2 Image acquisition and preprocessing

Contrast-enhanced MRI scans were performed at our institution

using two 1.5 T scanners (Philips prodiva) and one 3.0 T scanner. MRI

examinations included T1-weighted imaging (T1WI), T2-weighted

imaging (T2WI), fluid-attenuated inversion recovery (Flair), diffusion-

weighted imaging (DWI), and contrast-enhanced T1WI (CE-T1WI).

The CE-T1WI sequence included transverse, sagittal, and coronal

views, and several slices near the largest tumor level were acquired in

each view. In addition, multi-sequence modal analysis can be

considered in further studies. The scan parameter settings were as

follows: a repetition time (TR) and echo time (TE) of 5.5ms and 2.4ms,

a pixel matrix of 256*236, a slice thickness and slice gap of 1mm and

0.5mm, and a deflection angle of 15 degrees.

In addition, image resolution can be affected by factors such as

hardware configuration, acquisition time, and radiation exposure,

which can potentially hinder accurate diagnosis and treatment. In

recent years, super-resolution reconstruction technology based on

artificial intelligence has been widely studied in image

preprocessing and data enhancement, with strong evidence of its

effectiveness (14–17). In this study, the generative adversarial

network (GAN) model supported by the Onekey platform was

applied to learn the mapping from low-resolution to high-

resolution, thereby improving the spatial resolution of the MRI

slice in detail (18). The model was trained on millions of medical
Frontiers in Oncology 03
images, which enabled high-quality image preprocessing, including

denoising, artifact removal, and intensity values normalization. The

resolution of MRI slice was increased by a factor of 4, resulting in a

transformation from 1*1 pixels to 0.25*0.25 (Figure 1). Although

the image enhancement was reflected in small pixel changes, it

provided the deep learning model with accurate feature information

and fine tumor boundaries.
2.3 Deep learning model construction

The workflow of this study is illustrated in Figure 2. After image

acquisition and preprocessing, the model construction was

employed. This model consisted of a deep learning network, a

feature adaptation module, and a full-connected classification layer.

The deep learning networks were pre-trained using real images,

including AlexNet, VGG16, ResNet18, ResNet50, DenseNet121,

DenseNet169, GoogleNet, MobileNetV2, and MobileNetV3. The

feature adaptation module consisted of two fully-connected layers

and was connected behind the deep learning network. Its output

was called deep learning (DL) feature with a dimension of 128. The

DL features were then input into the classification layer to obtain

the final tumor type. 5-fold cross-validation was implemented in

this work to avoid overfitting of the deep learning model and ensure

the reliability of the results.

Model training is critical to classification results and involves

fine-tuning of hyperparameters, especially the learning rate. A fixed

learning rate can lead to non-convergence or a local optimal

solution. Inspired by recent successful applications of various

dynamic learning rate strategies, this study applied them to

improve model training efficiency and classification performance

(19–22). It is recommended to adopt a larger learning rate in early

training and reduce the learning rate with iteration. Therefore,

based on the results of several previous tests, the dynamic learning
A B

Original MRI SR MRI

FIGURE 1

The super-resolution reconstruction result based on a generative adversarial network model. The reconstructed image (B) is not only very similar to
the original transverse image (A), but also has more reasonable edges and finer textures. The boxes represent local enlarged images, with red and
green arrows representing the original MRI and SR MRI, respectively.
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annealing rate of lr = 0.01/(1 + 10 * p)0.75 was applied in model

training. The p changed linearly from 0 to 1 with iteration. The

batch size and momentum were set to 32 and 0.9, and models were

trained for 200 epochs. During model training, cross-entropy loss

was calculated, parameters were optimized based on stochastic

gradient descent algorithm and backpropagation algorithm.
2.4 Deep learning feature and machine
learning construction

As shown in Figure 2, the hybrid scheme integrates deep

learning features and machine learning to improve classification

accuracy. In this study, 128-dimensional DL features were first

applied for data preprocessing, including data format validation,

statistical outlier detection, and z-score standardization.

Subsequently, Pearson’s correlation coefficient was calculated for

preliminary feature evaluation and selection, with the threshold set

at 0.9. Features were filtered in the training set based on the least

absolute shrinkage and selection operator (LASSO), and non-zero
Frontiers in Oncology 04
items in high-dimensional features were determined as available

inputs. Ultimately, non-redundant low-dimensional features can be

used to construct machine learning classifier, and perform

preliminary diagnose of brain tumors.
2.5 Model performance evaluation

In the deep learning scheme, various key metrics such as

accuracy, AUC, sensitivity and specificity were calculated to

evaluate the classification performance. The multi-classification

performance was demonstrated based on the confusion matrix.

More importantly, feature visualization was performed to explore

the reliability and interpretability of the model. In the hybrid

scheme, accuracy, sensitivity and specificity were used to compare

the classification performance of machine learning, including LR,

NaiveBayes, SVM, RandomForest, ExtraTrees, XGBoost,

LightGBM, Adaptive Boosting (AdaBoost), Multi-layer

Perceptron (MLP). The ROC curves were compared using the

DeLong test to analyze multi-classification performance.
FIGURE 2

Workflow of the study. MRIs were retrospectively collected and selected, then pre-processed and input into the deep learning model. In deep
learning diagnosis, the model can directly output common tumor types. In the hybrid classification scheme, the extracted DL features were further
used for machine learning construction after preprocessing and selection. The performance of both schemes was verified and analyzed on the test
set. LR, logistic regression; SVM, support vector machines; XGBoost, eXtreme gradient boosting; LightGB, light gradient boosting machine.
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2.6 Statistical analysis

Statistical analysis was performed using SPSS (version 26.0).

Continuous variables were described as mean ± standard deviation,

while categorical variables were presented as frequencies and

percentages. Continuous variables were analyzed using Student’s t

test or analysis of variance. Chi-square test or Fisher’s exact test was

used to compare categorical variables. P value < 0.05 was considered

statistical significance. Data preprocessing and feature evaluation,

LASSO regression analysis, and DeLong test were performed using

Python (version 3.11).
3 Results

3.1 General patient characteristics

Between January 2018 and December 2022, a total of 230

patients with common brain tumors were enrolled in this study.

They were initially divided into meningiomas (97 cases), gliomas

(66 cases), and pituitary tumors (67 cases) according to the

pathological results, which were labeled as 0, 1, 2 in this study.

This dataset was labeled as BT-YU in this study. In one data division

of 5-fold cross-validation, the baseline clinical characteristics in the

training and test cohorts were presented in Table 1. These

characteristics included histologic diagnosis and demographic

information. No significant differences were observed in any of

the detailed characteristics between the two cohorts (all P > 0.05).
Frontiers in Oncology 05
3.2 The performance of various deep
learning models

In this section, several deep learning models were compared,

including AlexNet, VGG16, ResNet18, ResNet50, DenseNet121,

DenseNet169, GoogleNet, MobileNetV2, and MobileNetV3. Besides,

a commonly used dataset CE-MRI was applied as an auxiliary test to

further verify the effectiveness of the models (23). CE-MRI is a T1-

weighted contrast-enhanced MRI image set with a total of 3064

images, including meningiomas (708 slices), gliomas (1426 slices)

and pituitary tumors (930 slices). The images are a combination of

transverse, sagittal and coronal, with a resolution of 512 × 512. The

classification of CE-MRI was consistent with the BT-YU dataset. In

the 5-fold cross-validation test, the influence of random effects and

overfitting were avoided, and the results are shown in Figure 3;

Table 2. Further, Supplementary Tables S1, S2 show the detail

classification performance. Table 2 also presents the results of state-

of-the-art models on the CE-MRI dataset. Among them, references

(23) and (27) represent methods combining radiomics and machine

learning, references (24) (25), and (26) represent cutting-edge

convolutional neural network (CNN) models, and reference (28)

represents an improved vision transformer model.

Figure 3 visually shows the results of the five tests. The

DenseNet121 model achieved the highest accuracy and relatively

low standard deviation in both datasets. In addition, Table 2

quantitatively describes the average statistical indicators of the

tests. The classification performance of the DenseNet121 model

reached the optimal level, with an accuracy of 0.989 ± 0.006, AUC of
TABLE 1 Patient characteristics.

Characteristics Entire Cohort (n=230) Training Cohort (n=185) Test Cohort (n=45) P value

Age, year 54.63 ± 12.53 54.79 ± 12.61 53.96 ± 12.32 0.820

Tumor size, cm 4.17 ± 1.60 4.13 ± 1.57 4.34 ± 1.78 0.233

Gender, No. (%) 0.309

Male 92 77 15

Female 138 108 30

Tumor position (%) 0.271

Frontal Lobe 78 64 14

Parietial Lobe 20 19 1

Occipital Lobe 7 4 3

Temporal &
Insular Lobe

40 29 11

cerebellum 15 12 3

pituitary 67 54 13

Others 3 3 0

MRI Images 2901 2334 567
fro
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0.999 ± 0.001, sensitivity and specificity of 0.987 ± 0.007 and 0.988 ±

0.006 in CE-MRI; the accuracy in BT-YU was 0.967 ± 0.013, AUC

was 0.994 ± 0.005, sensitivity and specificity were 0.966 ± 0.014 and

0.967 ± 0.013, respectively.

To examine the multi-classification performance in detail,

Figure 4 shows the confusion matrix of the DenseNet121 model
FIGURE 3

The diagnostic results of deep learning models in five tests.
TABLE 2 The diagnostic results of deep learning models.

Datasets Models ACC AUC SEN SPE

CE-MRI

AlexNet
0.955
±

0.008

0.994
±

0.002

0.949
±

0.007

0.953
±

0.008

VGG16
0.980
±

0.004

0.997
±

0.002

0.979
±

0.005

0.980
±

0.004

ResNet18
0.978
±

0.008

0.999
±

0.001

0.976
±

0.008

0.977
±

0.008

ResNet50
0.984
±

0.010

0.998
±

0.002

0.981
±

0.011

0.983
±

0.010

DenseNet121
0.989
±

0.006

0.999
±

0.001

0.987
±

0.007

0.988
±

0.006

DenseNet169
0.985
±

0.002

0.999
±

0.001

0.983
±

0.003

0.984
±

0.002

GoogleNet
0.978
±

0.007

0.998
±

0.001

0.975
±

0.008

0.978
±

0.007

MobileNetV2
0.983
±

0.005

0.999
±

0.000

0.982
±

0.006

0.983
±

0.005

MobileNetV3
0.981
±

0.006

0.998
±

0.001

0.978
±

0.007

0.980
±

0.007

Radiomics (23) 0.9128 —— —— ——

CNN (24) 0.9780 0.9890 0.9640 0.9830

VGG16 (25) 0.9800 0.9900 0.9800 0.9800

CNN (26) 0.9870 —— 0.9860 0.9870

BoF-SURF +
KNN (27)

0.9870 —— 0.9840 0.9860

0.9886 —— 0.9846 0.9939

(Continued)
TABLE 2 Continued

Datasets Models ACC AUC SEN SPE

RanMerFormer
(28)

BT-YU

AlexNet
0.920
±

0.021

0.979
±

0.009

0.914
±

0.031

0.918
±

0.022

VGG16
0.957
±

0.010

0.994
±

0.004

0.958
±

0.012

0.957
±

0.011

ResNet18
0.950
±

0.017

0.990
±

0.005

0.947
±

0.020

0.949
±

0.018

ResNet50
0.958
±

0.015

0.993
±

0.006

0.957
±

0.020

0.957
±

0.016

DenseNet121
0.967
±

0.013

0.994
±

0.005

0.966
±

0.014

0.967
±

0.013

DenseNet169
0.963
±

0.014

0.996
±

0.003

0.963
±

0.014

0.963
±

0.014

GoogleNet
0.951
±

0.019

0.992
±

0.006

0.948
±

0.023

0.950
±

0.020

MobileNetV2
0.955
±

0.015

0.994
±

0.003

0.952
±

0.019

0.954
±

0.015

MobileNetV3
0.933
±

0.026

0.985
±

0.013

0.930
±

0.037

0.933
±

0.028
frontie
- indicates that the indicator is not included in the listed literature.
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in one test. It can be observed that the model showed excellent

multi-classification performance for brain tumors. However, as

shown in Table 2, the metrics of DenseNet121 model were not all

optimal. For example, its AUC on BT-YU was slightly lower than

that of the DenseNet169 model. Therefore, actual applications

require model selection based on specific conditions.
3.3 The performance of various
hybrid models

To further improve accuracy of the Densenet121 model, this

section combined deep learning features and machine learning

classifiers for diagnostic testing. The models include LR,

NaiveBayes, SVM, RandomForest, ExtraTrees, XGBoost,

LightGBM, AdaBoost, and MLP. After feature selection and

preprocessing, the 128-dimensional deep learning features were

applied to construct machine learning classifier. Table 3 shows the

learning effect of the model on the deep learning features in one test.

In addition, Figure 5 shows the multi-classification ROC curve of

each model in the BT-YU dataset. In summary, the LightGBMmodel

maintained the highest accuracy on both datasets, which were 0.989

and 0.984 respectively. Compared to the original Densenet121 model,

the accuracy of this hybrid scheme was improved to some extent,

especially on the BT-YU dataset. The AUC of the LightGBM model

was slightly lower than the original Densenet121 model, but the

sensitivity and specificity were optimal (0.985 and 0.988 in CE-MRI

dataset; 0.985 and 0.984 in BT-YU dataset). Further, Supplementary

Tables S3, S4 show the detail classification performance.
3.4 Feature and model visualization

The classification performance of brain tumors in this study

depends on the adaptive extraction of features fromMRI images. To

improve the interpretability of the classification results, this section

first implemented feature visualization based on test sets. T-

distributed stochastic neighbor embedding (t-SNE) technology
Frontiers in Oncology 07
can effectively preserve data similarity and local structure

information during dimensionality reduction, while also

alleviating the congestion problem (29–31). T-SNE was applied

for dimensionality reduction of 128-dimensional features of

DenseNet121 model, and cluster analysis was performed in 2-

dimensional space for intuitive visualization (Figure 6). There

were several misclassified features distributed in concentrated

areas of the three clusters. More importantly, the deep learning

features in both datasets were intuitively distinguished, providing

useful features for multi-classification.

Score-weighted class activation mapping (Score-CAM) is a

model visualization technology that obtains weights by the

forward pass score of each activation map on the target class.

Score-CAM effectively reduces gradient dependence, thus providing

excellent visual representation (32–34). Therefore, Score-CAM was

introduced to visualize the attention weights of the DenseNet121

model to demonstrate decision support for classification. Figure 7

shows representative sample heatmaps in the two datasets. The red

core area indicates a large weight area that contributes significantly

to the model classification. Besides, this area matched well with the

tumor area, which further confirmed the effectiveness of

feature extraction.
4 Discussion

In this study, we proposed a hybrid intelligent scheme that

combined deep learning and machine learning for automated

diagnosis of brain tumor types based on CE-MRI images. This

solution integrated several advanced technologies to improve

feature extraction performance, such as super-resolution

reconstruction, dynamic learning rate strategy, convolutional

neural network and machine learning. Our proposed scheme

demonstrated excellent accuracy, AUC, sensitivity, and specificity.

Besides, the generalization performance, robustness, and

interpretability of the hybrid scheme were further verified on

two datasets.
FIGURE 4

Confusion matrix of DenseNet121 model.
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Brain tumor diagnosis has always been a meaningful and

challenging clinical research hotspot. Previous studies have

focused on traditional radiomics solutions for predicting

glioblastoma, brain metastasis, and isocitrate dehydrogenase

(IDH) mutations (35–37). The process of traditional radiomics

includes image acquisition, reconstruction and preprocessing,

region of interest delineation, manual feature extraction, feature

selection, machine learning construction. Meißner developed a

radiomics classifier to predict intracranial BRAF V600E mutation

status in patients with melanoma brain metastases, and achieved an

AUC value of 0.92 (38). Zhao implemented the World Health

Organization (WHO) classification of meningiomas based on

radiomics and clinical information, and the AUC value reached

0.860 (95% CI, 0.788–0.923) (39). However, recent research has

revealed that traditional radiomics may have inherent limitations

that restrict its application in clinical and more complex tasks (40,

41). The level of automation for ROI delineation remains a

challenge, and reproducibility may be difficult to ensure in testing

and prospective applications, leading to low generalization

performance. In addition, manual feature extraction is difficult to

comprehensively analyze image features, making the test results

potentially accidental. Humphries developed a deep learning

algorithm using full-resolution axial images as input to diagnose
Frontiers in Oncology 08
emphysema patterns, which provided important guidance for other

tumor diagnosis (42). Therefore, comprehensive analysis of tumor-

related slices, as well as adaptive extraction of tumor region features

without pre-definition, may achieve more efficient data processing

and more robust information mining.

Deep learning has powerful image processing and feature

extraction capabilities, which provides an effective technical

support for the above limitations. Convolutional neural networks,

with many image processing advantages such as local receptive

field, weight sharing and down-sampling, are able to extract local

and key features, and are widely used in computer vision and target

detection (43–46). Bhattacharjee implemented automatic multi-

classification diagnosis of full-slice lung and kidney CT images

based on the Xception model, and achieved accuracies of 99.39%

and 100% respectively (47). Ziegelmayer verified the excellent

robustness of deep learning features relative to radiomics features

based on CT scans of 60 patients with hepatocellular carcinoma and

hepatocolon cancer metastasis (48). Similar to these studies, our

deep learning-based model showed good performance in tumor

region detection and feature extraction. In addition, the

combination of deep learning features and machine learning is

considered an effective strategy to further improve the accuracy.

Therefore, to improve the limitations of traditional radiomics,

this study first introduced several deep learning models to directly

analyze MRI images. These models include AlexNet, VGG16,

ResNet18, ResNet50, DenseNet121, DenseNet169, GoogleNet,

MobileNetV2, and MobileNetV3. In addition, the proposed

solution integrated super-resolution reconstruction technology

and dynamic learning rate annealing technology to ensure the

quality of image preprocessing and model training.

In the deep learning model test, the DenseNet121 model

achieved the best comprehensive classification performance, and

its accuracy reached 0.989 ± 0.006 and 0.967 ± 0.013 in the two

datasets. It can be seen from Table 2 that in terms of accuracy, this

work was slightly better than the comparison models, which may be

caused by the comprehensive factors of image preprocessing,

training strategy and model construction. Of course, the accuracy

of most models was also close to 0.99, and the results of VGG16,

ResNet, GoogleNet and MobileNet models in this work were not

significantly lower, which indicated that accuracy, model

complexity and training time should be comprehensively

considered in model selection. This also inspired us to look for

another effective solution to improve accuracy instead of changing

deep learning model.

To further improve the accuracy of diagnosis, this study

developed a hybrid deep learning scheme for multi-classification

of brain tumors. This hybrid scheme essentially applied machine

learning to replace the final classification layer of the deep learning

model, thus combining the advantages of deep feature extraction

and machine learning classification. The machine learning models

include LR, NaiveBayes, SVM, RandomForest, ExtraTrees,

XGBoost, LightGBM, AdaBoost, and MLP. In the test based on

the features extracted by DenseNet121 model, the LightGBM

model, as a promising machine learning model, achieved an
TABLE 3 The diagnostic results of machine learning models.

Datasets Models ACC AUC SEN SPE

CE-MRI

—* 0.987 0.997 0.985 0.986

LR 0.987 0.996 0.983 0.986

NaiveBayes 0.786 0.794 0.692 0.764

SVM 0.987 0.996 0.983 0.986

RandomForest 0.982 0.994 0.978 0.981

ExtraTrees 0.985 0.994 0.982 0.984

XGBoost 0.985 0.993 0.981 0.984

LightGBM 0.989 0.993 0.985 0.988

AdaBoost 0.987 0.995 0.984 0.986

MLP 0.984 0.996 0.981 0.983

BT-YU

—* 0.965 0.985 0.962 0.964

LR 0.980 0.996 0.983 0.981

NaiveBayes 0.979 0.985 0.982 0.979

SVM 0.980 0.992 0.983 0.981

RandomForest 0.980 0.989 0.983 0.981

ExtraTrees 0.982 0.992 0.985 0.982

XGBoost 0.982 0.986 0.984 0.982

LightGBM 0.984 0.990 0.985 0.984

AdaBoost 0.982 0.991 0.985 0.982

MLP 0.982 0.996 0.985 0.982
*: The horizontal line indicates the results of the original DenseNet21 model in this test.
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FIGURE 6

Feature visualization of DenseNet121 model based on t-SNE.
FIGURE 5

ROC curves of machine learning models on BT-YU dataset.
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accuracy of 0.989 and 0.984, a sensitivity of 0.985, and a specificity

of 0.988 and 0.984 in the two datasets. Although the AUC of the

LightGBM model was not optimal, its ROC curves shown in

Figure 5 were relatively ideal. Therefore, this model was

considered to have the best comprehensive multi-class

performance. Since the original accuracy of the CE-MRI dataset

was already high, the enhancement effect of the hybrid scheme was

more obvious in the BT-YU dataset.

In addition, this study utilized the entire MRI as input to

improve automation, and it was crucial to explore feature

visualization and model focus areas. Therefore, T-SNE and Score-

Grad technologies were employed in the visualization research.

Figure 6 shows the 2-dimensional clustering of test sample features,

which well illustrates the difference in extracted features between

different tumors. Figure 7 displays the Score-Grad heat map of

representative samples, indicating that the focus areas of the model

are well consistent with the tumor and peritumoral areas, thus

reliably explaining the classification results. In summary, this

hybrid scheme can focus on key areas of brain tumors and extract

pivotal features, thereby providing decision support for targeted

diagnosis and treatment plans.

Of course, we are also aware that various current imaging

approaches can be used to non-invasively identify brain tumors

(35, 36, 39). In addition, there are many classifications and subtypes

of brain tumors, such as brain metastases, gliomas, and

meningiomas. It is extremely challenging to develop a single

validated solution to diagnose all classifications. Instead, the

purpose of this study is not to provide the only effective method,

but to demonstrate the potential application value of deep learning

in automatic processing and interpretability, and to verify the

feasibility of improving accuracy through deep learning and

machine learning. Based on our results, the next step is to solve

the problem of multi-center validation and detailed classification of

brain tumors, such as single brain metastases, glioma subtypes,

meningioma grading.
Frontiers in Oncology 10
5 Conclusions

This study investigated a hybrid deep learning scheme for

automated primary brain tumors diagnosis. The scheme

integrated various advanced technologies and used two datasets to

verify the classification performance and interpretability. By

combining super-resolution reconstruction and dynamic learning

rate annealing technologies, the deep learning model achieved high

classification accuracy. Furthermore, based on deep feature transfer

and machine learning models, the performance of brain tumor

diagnosis can be significantly improved. In addition, through t-SNE

cluster analysis and Score-Grad attention visualization, the efficient

classification results of the model can be intuitively verified and

explained. In conclusion, this study highlighted the importance of

integrating multiple advanced technologies to extract robust deep

learning features, which had important reference significance for

the development of automated radiomics for brain tumors.
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