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emulated prospective study
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Feier Chen1,2, Lin Liu4, Jingjia Liu3, Shisan Bao2 and Kun Tao1,2*

1Department of Pathology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China,
2Department of Pathology, Tongren Hospital, School of Medicine Shanghai Jiaotong University,
Shanghai, China, 3Wision Ltd., Chengdu, China, 4Institute of Natural Sciences, MOE-LSC, School of
Mathematical Sciences, CMA-Shanghai, SJTU-Yale Joint Center for Biostatistics and Data Science,
Shanghai Jiao Tong University, Shanghai, China
Background: The progress in Colorectal cancer (CRC) screening and

management has resulted in an unprecedented caseload for histopathological

diagnosis. While artificial intelligence (AI) presents a potential solution, the

predominant emphasis on slide-level aggregation performance without

thorough verification of cancer in each location, impedes both explainability

and transparency. Effectively addressing these challenges is crucial to ensuring

the reliability and efficacy of AI in histology applications.

Method: In this study, we created an innovative AI algorithm using transfer

learning from a polyp segmentation model in endoscopy. The algorithm

precisely localized CRC targets within 0.25 mm² grids from whole slide

imaging (WSI). We assessed the CRC detection capabilities at this fine

granularity and examined the influence of AI on the diagnostic behavior of

pathologists. The evaluation utilized an extensive dataset comprising 858

consecutive patient cases with 1418 WSIs obtained from an external center.

Results: Our results underscore a notable sensitivity of 90.25% and specificity of

96.60% at the grid level, accompanied by a commendable area under the curve

(AUC) of 0.962. This translates to an impressive 99.39% sensitivity at the slide

level, coupled with a negative likelihood ratio of <0.01, signifying the

dependability of the AI system to preclude diagnostic considerations. The

positive likelihood ratio of 26.54, surpassing 10 at the grid level, underscores

the imperative for meticulous scrutiny of any AI-generated highlights.

Consequently, all four participating pathologists demonstrated statistically

significant diagnostic improvements with AI assistance.

Conclusion: Our transfer learning approach has successfully yielded an

algorithm that can be validated for CRC histological localizations in whole slide
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imaging. The outcome advocates for the integration of the AI system into

histopathological diagnosis, serving either as a diagnostic exclusion application

or a computer-aided detection (CADe) tool. This integration has the potential to

alleviate the workload of pathologists and ultimately benefit patients.
KEYWORDS

CRC (colorectal cancer), pathological diagnosis, AI-assisted pathological diagnosis,
transfer learning, artificial intelligence (AI)
Introduction

Colorectal cancer (CRC) ranks as the second-most prevalent

global cancer, impacting both men and women (1–3). In recent

years, advancements in colonoscopy techniques have significantly

improved the identification of precancerous lesions and early-stage

cancers (4–7). Notably, artificial intelligence (AI) in computer-

aided detection (CADe) for colon polyps, is firmly substantiated

by randomized controlled trials and clinical guidelines (8–14). The

heightened capability underscores the critical need for precise

histopathological diagnoses due to the substantial caseload.

However, AI to enhance histopathological diagnosis for

colorectal samples has lagged, experiencing limited progress.

Studies indicate that these systems can classify tumors on a slide

level with results comparable or superior to traditional observation

methods, but primarily in retrospective slide-level analyses and on

non-consecutive patient datasets (15–18). This underscores the

need for further development and validation of AI technologies in

histopathology to ensure their effectiveness in real-world

clinical scenarios.

Furthermore, the apparent stagnation of AI in histopathology

diagnosis, not only for CRC but in a broad context, can be

attributed to a lack of explainability and transparency, stemming

from the universal adoption of a two-tiered methodology in

analyzing whole slide imaging (WSI): the feature extractor and

the aggregation module (19, 20). The feature extractor relies on a

convolutional neural network (CNN), processing multiple small

tissue regions known as tiles or patches. The aggregation module

employs various techniques, from simple max or average pooling to

more complex deep learning networks, generating binary

predictions for the entire slide or patient (19, 20). However, most

validations to date have concentrated on primary performance

metrics limited to slide-level binary predictions (21–23). This

emphasis on aggregations has overshadowed the evaluation of

real image analysis, particularly in recognizing the targeted

cancers, i.e., the feature extractors.

While employing aggregation approaches, previous studies have

endeavored to localize cancer within WSI. The provision of

heatmaps may provide an orientation of highly suspected areas,

but their quantitative evaluation remains challenging. Yu et al.

conducted internal validations on selected patches of WSI to
02
identify better feature extractors (14). Griem et al. undertook

exhaustive pixel-level cancer segmentation on 30 slides, achieving

a Dice score of 0.895 (24). However, the complexity and annotation

workload associated with this approach hinders its scalability to

large datasets. Thus, a crucial need in the field is a practical,

measurable method to assess AI’s proficiency in recognizing and

localizing cancer features within slides, aiming to improve

prediction transparency and explainability.

In this context, we developed an AI system focused on detecting

histological features of CRC and reporting imaging recognition

results per location. Exhaustive validations were conducted at the

sub-slide level, working at a granularity of 0.5*0.5 mm² grid

segments within the fully meshed WSI (Figure 1). This approach

minimizes ambiguity by directly translating AI’s identification of

cancerous regions into the slide-level output without adopting any

aggregation models. This process involved transferred learning

from a proven successful segmentation model originally designed

for gastrointestinal endoscopy (25).

This study represents a pioneering effort in the field of

histopathological deep-learning research. The evaluation of

performance metrics and the observation of pathologist behavioral

changes at this fine-grained level provided unprecedented insights

into the reliability of AI in localizing cancerous regions and how on-

slide markers influenced pathologists’ decisions. We anticipate that

our findings will offer valuable insights, potentially catalyzing a

revolutionary transformation in the development of AI applications

in CRC and other histopathological diagnosis areas.
Method

Before the external validation through performance assessments

and a simulated prospective reader study, the deep learning

algorithm had been finalized and incorporated into the software

system outside the institution.
Algorithm development

In the context of prior work focused on colorectal polyp

detection in endoscopy imaging, the customized SegNet model
frontiersin.org
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has demonstrated proficiency with a local-feature-oriented

recognition capability through rigorous testing (6, 25, 26),

including randomized controlled trials (RCTs) (6, 8, 10, 11, 27).

Therefore, rather than training an entirely blank network, a transfer

learning approach was adopted with the polyp segmentation model

under white-light endoscopy as the start point (28). This approach

is particularly crucial in histopathological feature recognition,

where local features play a significant role in the absence of

prominent macro features (29). The new algorithm commenced

its training process with an initial set of 15,279,170 parameters. This

training utilized an extensive dataset comprising 431,078 pixel-level

annotated patches extracted from 219 WSIs sourced from The

Cancer Genome Atlas database (TCGA, https://www.cancer.gov/

ccg/research/genome-sequencing/tcga).

The algorithm employed a fully-supervised, multilayered

convolutional neural network (CNN) based on the SegNet system.

The SegNet architecture comprised an encoder and a decoder,

facilitating the capture and computation of annotated morphological

features for each input image (30). In sequence, the images underwent

warping into a binary mask through a probability calculation. In this

binary mask, a value of 1 denoted the presence of cancer, while 0

indicated the absence of cancer, aligning with the intensity of the pixels.

The AI system generates predictions based on 0.25*0.25 mm2 grids but

presents the results on 0.5*0.5 mm2 grids for improved human visual

comfort. Additionally, the 0.5*0.5 mm2 grids are better suited for

pathologists to capture gland structures for labeling. It is important to

note that the visualization of the 0.5*0.5 mm2 grids is derived from the

prediction results of the 0.25*0.25 mm2 grids. Specifically, a positive

label is assigned to any 0.25*0.25 mm2 grid where the cumulative area
Frontiers in Oncology 03
of positive predictions exceeds 625 μm²; otherwise, it is labeled

as negative.

The development dataset and internal validation results are

described in Supplementary Material.
AI software system description

The algorithm was encapsulated in the PathoCruz software

system (Wision Ltd., Shanghai, China). The AI system

automatically meshes the original WSI into 0.5*0.5 mm2 square

grids according to the Micron Per Pixel (MPP) of the WSI

(Figure 1). Annotating the bounding boxes of each grid offers the

full breadth localization of cancerous tissues on visualized slides.

The AI system provides a WSI Viewer to enable pathologists to

switch from the original scanned slide image to the full-meshed grid

view with AI labels. Images can be zoomed in to examine and

measure targets at the viewer interface.

The model and software have remained unmodified since

established. The development and validation process are

summarized in Supplementary Material.
Study design

We conducted the standalone performance validation as well as

an emulated prospective study, to assess the diagnostic behavior

impact of employing the AI system for grid-level CRC detection in

histopathological diagnosis.
FIGURE 1

Transfer Learning Model Framework. CRC Segmentation Model Training Process: The CRC segmentation model was derived through transfer
learning from a pre-existing colon polyp segmentation model. This transfer learning process involved utilizing histological patches with pixel-level
annotations extracted from whole slide imaging sourced from The Cancer Genome Atlas (TCGA) database. AI System Workflow: The AI system
processes the whole slide images, segments it into grids, and predicts the presence or absence of cancerous tissue. The viewer interface displays
marked regions with bounding boxes indicating detected cancerous tissue, based on segmentation results. Final AI predictions for individual grids
and the entire slide are shown, with red or yellow bounding boxes indicating cancerous regions ≥ or < 6400 mm², respectively. The color of the
bounding boxes was disregarded in this study. WSI, Whole slide image; CRC, Colorectal cancer.
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Four pathologists participated in this emulated prospective

study: three junior pathologists (JP) with less than 5 years of

experience and one senior pathologist (SP) with 5-10 years of

experience. Their involvement included conducting diagnostic

reviews and annotations on WSI grids of colorectal specimens

obtained from consecutive patients.

The WSI dataset was digitized with slides from consecutive

patients between July 1, 2021, and July 31, 2021. This time frame

covers 12 months preceding the commencement of our study,

ensuring an adequate washout period for the participating

pathologists. Patients were eligible for inclusion in the study if

they had undergone endoscopic and surgical procedures on the

colon or rectum, with tissue samples sent for histopathological

assessment. Exclusion criteria were applied to patients with

metastatic colon cancer originating from other organs.

Additionally, slides were excluded if they experienced scan

failures, exhibited quality issues, or showed signs of

contamination. The emulated prospective study procedure is

described in Supplementary Material (Figure 2).
External data collection

A total of 1,517 slides from 886 consecutive patients who

underwent endoscopic or surgical removal from the colon or

rectum in July 2021 were retrieved from the Department of

Pathology at Shanghai Tongren Hospital, China. A total of 1418

slides from 858 patients were finally included by the inclusion and

exclusion criteria. The colorectal specimens were from either

endoscopic or surgical removal and processed with the

hematoxylin-eosin (H&E)-stained formalin-fixed paraffin-
Frontiers in Oncology 04
embedded (FFPE) method. All slides were digitized at 40x

magnification using a Digital Scan System SQS-1000 (TEKSQRAY,

China) from June 12 to June 30, 2022.
Ground truth

Ground truth revolves around determining the presence of

cancer within each image grid. Each WSI was subdivided in a full

mesh style into disjoint grids, each measuring 0.5*0.5 mm2. The

slide-level ground truth, on the other hand, was established by

assessing whether any of the grids within a WSI contained

cancer (31).

The process of establishing the ground truth was conducted

before the study procedure, which was separate from the below

diagnostic study procedure. Two pathologists, each with between 5

and 10 years of experience, were tasked with independently

annotating grids that exhibited signs of cancer presence on each

WSI. Subsequently, a dedicated software program automatically

compared their annotations with the outputs generated by the AI

system. If consensus was reached among two pathologists and AI,

then the ground truth of grids was made. Any grids that exhibited

disagreements between the two pathologists or discrepancies

between either pathologist and the AI output were escalated to

the chief pathologist for a final decision, and the ground truth of

these grids was made by the chief pathologist.

It’s important to note that the two pathologists conducting the

annotations were blind to the AI outputs, and they did not

participate as WSI readers in the study. Similarly, the chief

pathologist remained blinded to both the AI outputs and the

annotations made by the two pathologists.
FIGURE 2

Study Flowchart. Ground truth acquisition and the diagnostic study are distinct and conducted independently.
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Outcome measures

For the justification of the AI facilitation on pathological

diagnosis of CRC, we pre-defined the performance metrics as the

sensitivity and specificity of the four pathologists and their averages,

with the aid of AI versus without, respectively at the grid and slide

levels. In addition, the AI standalone performance was evaluated by

yielding the receiver operating characteristic (ROC) curve following

the trapezoidal rule (32). Furthermore, modifications with AI

assistance, false negative(FN) to true positive (TP), TP to FN, true

negative (TN) to false positive (FP), and FP to TN were analyzed.
Statistical analysis

The primary analysis was composed of per-grid and per-slide

sensitivity/specificity, compared with the ground truth. The results

were analyzed by calculating 2-sided 95% confidence intervals (CIs)

of variance estimate, using the Wald Interval model (R version

4.2.0). The P value was calculated using McNamara’s test.

The WSI was divided into 0.5*0.5 mm² disjoint grids. AI labeling

a grid with cancerous tissue constituted a true positive (TP), while the

absence of a label on such a grid was deemed a false negative (FN).

Sensitivity at the grid level was defined as TP/(TP+FN). For grids

without cancerous tissue, the absence of a label indicated a true

negative (TN), whereas a label marked a false positive (FP). Specificity

at the grid level was calculated as TN/(TN+FP).

At the slide level, metrics were directly derived from grid-level

results. A positive slide required at least one TP grid to call TP,

otherwise it was an FN slide. For negative slides, the absence of FP

grids determined true negatives (TN). Sensitivity and specificity

were calculated accordingly.
Results

Study population

A total of 1517 WSIs of colorectal specimens from 886 patients

who underwent endoscopy and/or surgical resection were

consecutively enrolled, of these, 858 patients with 1,418 WSIs were

included. Among them, 238 slides were obtained from 23 patients who

underwent surgery, and 1,180 slides were from 847 patients who

underwent endoscopy. Notably, 12 patients had both procedures.

The patients’ ages for endoscopic procedures ranged from 18 to

90 years old with a mean age of 58.51( ± 12.31) years and were male

57.11%. 42 patients were diagnosed with colorectal carcinoma

(including carcinoma in situ) in at least one slide, while 816

patients were diagnosed as not having CRC (Table 1).
AI standalone performance

For the grid-level evaluation, among a total number of

3,589,476 grid images, 3,513,562 grids with benign-only features
Frontiers in Oncology 05
were confirmed, and there were 75,914 grid images with cancer

presence. Overall, AI demonstrated robust and outstanding

detection power for the grid-level evaluation, with a per-grid

sensitivity of 90.25%; (95%CI, 90.04%, 90.46%), and a per-grid

specificity of 96.60%; (95%CI, 96.58%, 96.62%), with an overall

positive likelihood ratio (LR) of 26.54, and a negative LR of

0.101 (Table 2A).

For the ground truth diagnosis at the slide level, 164 WSIs were

positive (malignant tissue confirmed), and 1254 slides were negative

(benign). AI exhibited an impressive stand-alone per-slide

sensitivity of 99.39% (95% CI, 98.20%-100.00%) and a per-slide

specificity of 68.26% (95%CI, 65.69%-70.84%) in the current cohort,

with an AUC of 0.966, in which for the endoscopic negative LR of

0.009 (Table 2B).

On surgical resection slides, AI achieved sensitivity 99.22%

(127/128) and specificity 72.73% (80/110), while on endoscopic

resection slides with sensitivity 100% (36/36) and specificity 67.83%

(776/1144). Besides, the AI’s diagnostic results of 12 patients who

underwent both endoscopic and surgical resection are consistent

across both diagnoses.
AI impact on pathologists’ diagnosis

The performance differences between the 4 pathologists

between the two groups, assisted or unassisted with AI, are shown

in Figure 3. Pathologists with AI demonstrated higher sensitivity

and specificity compared with corresponding initial diagnoses, at

the grid level, with the sensitivity rising from 81.80% (95% CI;

81.52%, 82.07%) to 82.86% (95% CI; 82.59%, 83.13%). The average

per-grid specificity of 4 pathologists also increased significantly

while assisted by AI, from 99.93% (95% CI; 99.92%,99.93%) to

99.94% (95%CI; 99.93%, 99.94%). All Pathologists also presented a

positive trend in slide-level diagnosis accuracy.

Next, we investigated the performance of pathologists aided by

AI at size ≤ 50mm2 cancerous regions, as well as overall

performance. AI demonstrated an AUC of 0.966 at the slide level

of cancer detection. The size of the cancerous area contained in all

WSIs ranging from 0.5mm2(minimum) to 349.25mm2 (maximum).

For these positive slides that contained cancerous regions size ≤

50mm2, AI achieved a high AUC of 0.971 at the grid level and 0.962

for all WSIs. We also integrated the performance of the 4

pathologists with and without AI aid, into the corresponding

receiver operating characteristic (ROC) curves (Figure 4), AI

demonstrated higher detection performance than any pathologist

at the operation threshold, and all pathologists made improvements

while aided by AI, especially examine the small-sized (≤ 50mm2)

cancerous areas that are easily overlooked.

Pathologists’ decision change was quantified by analyzing the

pathologists’ revision of their initial diagnosis at the grid level.

Table 3 shows that the four pathologists have collectively revised

3,169 grids from FN to TP,1,596 grids from FP to TN, 574 grids

from TN to FP, and 158 grids from TP to FN. We discovered that

mostly the positive influence AI had on readers significantly

outnumbered the negative influence. Figure 5 displays grids
frontiersin.org
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TABLE 1 Patient demography.

Patient demography

Characteristics Patients for Endoscopic
Procedures (n=847)

Patients for Surgical
Procedures (n=23)

Sex Female, n (%) 362 (42.74) 11 (47.82)

Male, n (%) 485 (57.26) 12 (52.17)

Patient age (yrs) Mean (±SD) 58.37 (±12.29) 69.48 (±9.00)

Median 60 68

Min–max 18-90 53-86

Age category 10-39, n (%) 75 (8.85) 0 (0)

40-69, n (%) 637 (75.21) 14 (60.87)

70-99, n (%) 135 (15.93) 9 (39.13)

Location Left colon n (%) 445 (52.54) 17 (73.91)

Right colon, n (%) 160 (18.89) 6 (26.08)

Left & right colon, n (%) 242 (28.57) 0 (0)

Tumor Size (cm) < 5 cm, n (%) NA 9 (39.13)

≥ 5 cm, n (%) NA 14 (60.87)

Adenoma conventional colorectal adenoma,
n (%)

451 (53.25) NA

serrated adenoma, n (%) 12 (1.41) NA

hyperplastic polyp, n (%) 324 (38.26) NA

inflammatory polyp, n (%) 41 (4.84) NA

rare types (e.g. hamartoma), n (%) 5 (0.59) NA

Adenocarcinoma adenocarcinoma NOS, n (%) 6 (0.71) 14 (60.87)

adenoma-like adenocarcinoma, n (%) 3 (0.35) 7 (30.43)

micropapillary adenocarcinoma, n (%) 0 1 (4.35)

mucinous adenocarcinoma, n (%) 0 1 (4.35)

unknown, n (%) 5 (0.59) 0 (0)

Low-grade dysplasia conventional colorectal adenoma,
n (%)

434 (51.24) NA

serrated adenoma, n (%) 12 (1.42) NA

High-grade dysplasia conventional colorectal adenoma,
n (%)

17 (2.01) NA

Cancerous cancerous, n (%) 14 (1.65) NA

No-dysplasia no-dysplasia, n (%) 370 (43.68) NA

Differentiation well, n (%) NA 1 (4.35)

moderate, n (%) NA 16 (69.56)

poor, n (%) NA 6 (26.09)

Lymph node metastasis N0, n (%) NA 15 (65.22)

N1, n (%) NA 6 (26.09)

N2, n (%) NA 2 (8.70)

Invasion depth T1, n (%) NA 3 (13.04)

(Continued)
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showcasing pathologist diagnostic changes at the slide level assisted

by AI (from FN to TP).

We utilized a Venn diagram to further analyze instances of

misdiagnoses by physicians, with and without the aid of AI, as well

as cases where both AI and physicians were incorrectly (33)

(Figure 6). A “missed slide” was defined as a slide where all

positive grids were overlooked by the observer. Among the 1,418

Whole Slide Images (WSIs) examined, we identified 26 slides that

were missed either by pathologists or AI. Of these cases, 25 were

overlooked by pathologists, while AI missed one. Notably, none of

the slides were missed by both pathologists and AI based on their

initial independent diagnoses. Additionally, when utilizing the AI

tool, the four pathologists revised their diagnosis for a total of 12

WSIs. For each individual pathologist, the corrections involved 3

WSIs, including 2 from surgical resections, 2 exclusively from

endoscopic procedures, 2 with 1 from each procedure, and 5 with

4 originating from endoscopy. This underscores the collaborative

potential of combining human expertise with AI assistance to

enhance diagnostic accuracy.
Discussion

The novelty of our study encompasses three key aspects:

successful transfer learning from a proven local feature-oriented

model, the groundbreaking decision to forego aggregation, allowing

for location-level validation, and an emulated prospective study

design with large consecutive patient data.

Firstly, transfer learning has been proven effective in medical

imaging (34, 35), and our study pioneers the application of a

segmentation model from endoscopy to histopathology. The

SegNet model was initially trained for local features, such as pit

patterns and microvessels on polyps for colonoscopy video frames

(20). Through engineering efforts and 2,338,000 epochs, the focus

was shifted towards identifying distinctive characteristics such as

substantial loss of cell polarity, markedly enlarged nuclei with
Frontiers in Oncology 07
prominent nucleoli, a dispersed chromatin pattern, and atypical

mitotic figures. This engineering principle aligns with the WHO

histopathological criteria for CRC, ensuring adherence to

established standards (36).

Secondly, without adopting any slide-level aggregation model,

our AI’s outputs remain explainable. This allows for concentrated

validation of the algorithm’s image recognition capabilities, forming

the foundation of trustworthiness for clinical adoption. The grid-

level prediction of malignancy, represents a groundbreaking

technological advancement in the field of AI-powered

histopathology, providing a thorough view of the full breadth

localization of cancer precisely at the granularity of 0.5 x 0.5 mm²

grid segments, and collectively depicting the extent of cancer across

the entire slide. The system exhibits high prediction stability with an

area under the curve (AUC) of 0.962 at the grid level. Inherent to

this, at the slide level, only one slide of adenoma-like

adenocarcinoma is missed by the AI, and 68.26% of benign slides

show no false alarms on any grid. The algorithm’s high

discriminating power, consistency, and generalizability have been

validated across patient age, sex, tissue resources, and

cancer subtypes.

The evaluation of our AI system’s performance is predicated on

consecutive patients’ data rather than a curated dataset, rendering

the assessment of positive and negative likelihood ratios (LRs) of

paramount importance for its clinical utility (37). The negative LR

was determined to be less than 0.01 at the grid level, and

approximately 0.1 at the slide level, signifying that AI can furnish

highly reliable results for identifying benign regions and slides. This

discovery paves the way for the potential application of AI to

exclude CRC diagnosis in the clinical workflow. In terms of

positive LRs, an LR greater than 3 at the slide level implies the

possibility of some false positives when employing AI for slide

screening for malignancies. Notably, at the grid level, a positive LR

exceeding 10 strongly suggests that any highlighted grids warrant a

meticulous examination. Consequently, this AI system can be

effectively utilized both as a diagnosis exclusion tool before the
TABLE 1 Continued

Patient demography

Characteristics Patients for Endoscopic
Procedures (n=847)

Patients for Surgical
Procedures (n=23)

T2, n (%) NA 2 (8.70)

T3, n (%) NA 11 (47.83)

T4, n (%) NA 7 (30.43)

Distant metastasis M0, n (%) NA 21 (91.30)

M1, n (%) NA 2 (8.70)

TNM I, n (%) NA 5 (21.74)

II, n (%) NA 8 (34.78)

III, n (%) NA 8 (34.78)

IV, n (%) NA 2 (8.70)
NA, not applicable.
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TABLE 2 AI standalone performance at the slide and grid levels.

FP Sensitivity Specificity
Positive
likelihood
ratio

Negative
likelihood
ratio

9,666
90.25%; 95%CI
(90.04%,
90.46%)

96.60%; 95%CI
(96.58%,
96.62%)

26.54 0.101

109,791 NA

6,165
90.07%; 95%CI
(89.67%,
90.46%)

96.49%; 95%CI
(96.47%,
96.51%)

25.66 0.103

108,713 NA

3,501
90.32%; 95%CI
(90.07%,
90.57%)

98.12%; 95%CI
(98.06%,
98.18%)

48.04 0.099

1,078 NA

FP Sensitivity Specificity
Positive
likelihood
ratio

Negative
likelihood
ratio

398
99.39%; 95%CI
(98.20%,
100.58%)

68.26%; 95%CI
(65.69%,
70.84%)

3.13 0.009

368

100.00%; 95%
CI
(100.00%,
100.00%)

67.83%; 95%CI
(65.13%,
70.54%)

3.11 0

30
99.22%; 95%CI
(97.69%,
100.74%)

72.73%; 95%CI
(64.40%,
81.05%)

3.64 0.011
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A: Grid-level performance of AI

Whole slide images
No.
of grids

TP FN TN

All sample

Cancer
or HGD

297,403 68,510 7,404 211,823

Benign 3,292,073 NA NA 3,182,282

Endoscopic Removals

Cancer
or HGD

103,355 19,961 2,201 75,028

Benign 3,188,512 NA NA 3,079,799

Surgical Resections

Cancer
or HGD

194,048 48,549 5,203 136,795

Benign 103,561 NA NA 102,483

B: Slide-level performance of AI

Method of sampling
Total
No. WSI

TP FN TN

Overall 1,418 163 1 856

Endoscopic Removals 1,180 36 0 776

Surgical Resections 238 127 1 80

HGD, high-grade dysplasia; NA, not applicable.
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diagnostic review and as a CADe tool during the review, enhancing

CRC diagnostic accuracy and decision-making capabilities

of pathologists.

Most importantly, the paramount contribution of the current

study lies in the exploration, within an emulated prospective setting,

of the impact of AI assistance on pathologists. Our results

unequivocally show that, with AI assistance, pathologists

significantly improved their performance of histopathological

diagnosis at the grid level (P<0.001), specifically resulting in

increased true positives and more true negatives. Moreover, the

combined clinician-AI diagnosis lowered the rate of incorrectly

diagnosed slides. Notably, the great credibility of the study results

attributed to rigorous design, for example, to minimize the potential

bias, consecutive patients that relatively represent the desired target

population were included, and the performance metrics were pre-

defined before the initial of the research. Our deep learning

evaluation methodology aligned with the Level IV study

principles that were advised by Kleppe et al. in their recent

review (38).

We compared the performance change of the four pathologists

when utilizing AI versus their unassisted reads at the grid and slide

level. With the assistance, significant maximized sensitivity was

consistently achieved at the grid level with associated modest

improvement of specificity, in contrast to the pathologists’ initial

annotations. Also, there was a positive trend observed in per-slide
Frontiers in Oncology 09
accuracy, highlighting the substantial performance gains of all the

pathologists. Specifically, we have interpreted pathologists’ revision

of their initial reads while being exposed to AI outcomes, and the

accuracy improvement driven by AI was statistically confirmed on

both cancerous (positive) and benign (negative) grid-wise andWSI-

wise. The four pathologists have corrected their annotations on a

total of 3,169 grids (4.21% of all positive grids) from FN to TP, and

on 1,596 grids from FP to TN, although there are also incorrect

revisions of girds driven by AI. For example, several 158 grids were

revised from TP to FN, and they presented an insignificant impact

on slide-level diagnosis results, as pathologists have made zero

revisions from TP to FN for slide-level diagnosis. However,

pathologists have become correct after changing their diagnosis

on 9 WSIs, from FN to TP, driven by AI. These findings indicate

that AI-driven annotations that resulted in accuracy gains

significantly outnumbered those that resulted in accuracy loss

(P<0.001), and AI could aid pathologists in accurately identifying

cancerous regions at a more precise scale, which potentially leads to

improved patient-level diagnosis.

Furthermore, we analyzed the 26 false-negative slides, missed by

pathologists (25) and AI (1). There was no overlap between the

slides missed by AI and the pathologists, which indicates an AI and

human complementary mechanism. In detail, the 4 pathologists

collectively missed two slides, with a maximum of four slides missed

simultaneously by three pathologists and a maximum of seven
FIGURE 3

Pathologists’ overall performance without AI Versus with AI at the gird and slide levels. Blue bars represent pathologists' performance without AI
assistance, while orange bars indicate performance with AI assistance. At the grid level, pathologists demonstrate significantly enhanced sensitivity
and specificity when aided by AI. JP, Junior Pathologist; SP, Senior Pathologist.
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slides missed simultaneously by two pathologists. Commonly, these

slides contained small or isolated cancerous areas, and moderate to

poorly differentiated lesions. The AI system missed one slide, which

was identified as adenoma-like adenocarcinoma, an uncommon
Frontiers in Oncology 10
variant of CRC (39). This case shared very similar characteristics

with villous adenoma, posing a challenge for differentiation

primarily based on cytological features. However, AI is

significantly helpful for pathologists in reducing the risk of
A1 A2

B

FIGURE 4

ROC of AI system and the performance change of 4 pathologists with and without the aid of the AI. (A1) Analysis of the positive WSIs with cancerous
area ≤50 mm2 at the grid level. AI achieved AUC=0.971, and on average pathologists’ sensitivity gained from 64.43% (95% CI: 63.62%, 65.24%) to
66.99% (95% CI: 66.19%, 67.79%), whereas there was no significant difference in specificity. (A2) Analysis of all positive WSIs at the grid level. The
AUC of AI was 0.962. All pathologists improved significantly with the AI aid, on average, increasing from 81.80% (95% CI: 81.52%, 82.07%) to 82.86%
(95% CI: 82.59%, 83.13%) for sensitivity, and 99.93% (95% CI; 99.92%, 99.93%) to 99.94% (95% CI; 99.93%, 99.94%) for specificity. (B) Analysis of all
positive WSIs at the slide level. Pathocruz achieved AUC=0.966 among all-slide detection, and the accuracy of each pathologist was gained with
Pathocruz assistance, without statistically significant change, 92.99 % (95% CI; 89.08%, 96.90%) to 94.82 % (95% CI; 91.42%, 98.21%) on average, and
99.30 % (98.84%, 99.76%) to 99.34 % (95% CI; 98.89%, 99.79%) respectively.
TABLE 3 Pathologists’ revision at the grid level while being exposed to AI results.

Pathologists

Revision on positive grids

p-value*

Revision on negative grids

p-value*
(3,327 of 75,914) (2,170 of 3,513,562)

FN to TP TP to FN FP to TN TN to FP

(n=3,169) (n=158) (n=1,596) (n=574)

JP 1 122 (98.39%) 2 (1.61%) <0.0001 15 (22.73%) 51 (77.27%) <0.0001

JP 2 540 (99.08%) 5 (0.92%) <0.0001 536 (82.08%) 117 (17.92%) <0.0001

JP 3 1,321 (90.23%) 143 (9.77%) <0.0001 823 (67.46%) 397 (32.54%) <0.0001

SP 1,403 (99.29%) 10 (0.71%) <0.0001 594 (91.10%) 58 (8.90%) <0.0001
fr
*p-value from two proportions McNemar's-test.
TP, True positive; FN, false negative; TN, True negative; FP, false positive.
JP, Junior Pathologist.
SP, Senior pathologist.
There are overlapped grids revised by pathologists.
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A B

C D

FIGURE 5

Examples of Slide-Level Diagnostic Corrections Aided by AI Output on Grids. Image illustrates cases where there are diagnostic changes at the slide
level, specifically due to grid-level assistance by AI (FN to TP). The areas circled by yellow marks are typical cancerous tissues. (A) Tubular structures.
(B) Cancer tissue breaking through the mucosal muscular layer. (C) Small areas of epithelial tissue migrating into lymphatics. (D) Epithelial tissue
migrating into lymphatics. FN, false negative; TP, true positive.
FIGURE 6

The Venn diagram comprises five circles representing the number of missed cases by the four pathologists and the AI system. Overlapping areas
indicate cases missed by more than one pathologist. The Venn graph illustrates the relationships between misdiagnosed cases by each pathologist
alone (left) versus with AI assistance (right); The Column charts show the number of cases each pathologist or AI missed. There were 2 slides
misdiagnosed by 4 pathologists, 4 slides misdiagnosed by 3 pathologists, 7 by 2, and 13 by 1 initially, and this number of misdiagnosed slides was
reduced with the aid of AI. JP, Junior Pathologist; SP, Senior Pathologist.
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overlooking cancer, particularly in situations involving small

tumors, lymph node metastasis, and omental metastasis.

Collectively, the 4 pathologists revised 22 times for slide diagnosis

to become correct, and the senior pathologist made the most valid

revision while aided by AI, this may also reveal the interobserver

variability between pathologists (40). The AI system appears to play

a pivotal role in mitigating inaccurate diagnoses by offering

objective and consistent results, which carries significant

clinical importance.

Our study has several limitations. Firstly, it is a single-center

external study, which may limit the generalizability of our findings.

To enhance the robustness of testing the AI system, future research

should consider incorporating data from multiple sources, scanning

devices, and patient populations. Secondly, our reader study

procedure deviates from the routine of histological diagnostics, as

its primary goal is to measure the standalone performance of the AI

and its impact on human readers at the sub-slide level. Thirdly, it is

also important to note that our study was not explicitly designed to

measure efficiency metrics when assisted by AI, an aspect more

appropriately examined in prospective studies. Lastly, consecutive

patient inclusion in our study reflects natural distribution, but may

not have yielded a satisfactory volume of positive cases. Future

studies should consider enriched datasets focusing on positive cases

for a more comprehensive assessment.

In conclusion, this research directly evaluates AI performance

in CRC recognition at a highly granular level without relying on

slide-level aggregation, demonstrating its potential for diagnosis

exclusion and CADe applications. Involving pathologists in this

study yields promising results, highlighting AI as a valuable

complement to human expertise, enhancing diagnostic accuracy.

To further explore this synergy, we advocate for a prospective

randomized controlled trial. This study, by advancing our

understanding of AI and human expertise integration, is poised

to significantly improve diagnostic precision, ultimately elevating

patient care quality in pathology.
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