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Risk score constructed with
neutrophil extracellular traps-
related genes predicts prognosis
and immune microenvironment
in multiple myeloma
Gongzhizi Gao1, Rui Liu1, Dong Wu1, Dandan Gao1, Yang Lv1,
Xuezhu Xu1, Bingjie Fu1, Zujie Lin1, Ting Wang1,
Aili He1,2,3* and Ju Bai1,3*

1Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,
2National-Local Joint Engineering Research Center of Biodiagnostics & Biotherapy, The Second
Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China, 3Xi’an Key Laboratory of hematological
diseases, Xi’an, China
Background: Multiple myeloma (MM) exhibits considerable heterogeneity in

treatment responses and survival rates, even when standardized care is

administered. Ongoing efforts are focused on developing prognostic models

to predict these outcomes more accurately. Recently, neutrophil extracellular

traps (NETs) have emerged as a potential factor in MM progression, sparking

investigation into their role in prognostication.

Methods: In this study, a multi-gene risk scoring model was constructed using

the intersection of NTEs and differentially expressed genes (DEGs), applying the

least absolute shrinkage and selection operator (LASSO) Cox regression model. A

nomogram was established, and the prognostic model’s effectiveness was

determined via Kaplan-Meier survival analysis, receiver operating characteristic

(ROC) curve, and decision curve analysis (DCA). The ESTIMATE algorithm and

immune-related single-sample gene set enrichment analysis (ssGSEA) were

employed to evaluate the level of immune infiltration. The sensitivity of

chemotherapy drugs was assessed using the Genomics of Drug Sensitivity in

Cancer (GDSC) database. Ultimately, the presence of the detected genes was

confirmed through quantitative real-time polymerase chain reaction (qRT-PCR)

analysis in MM cell specimens.

Results: 64 NETs-DEGs were yielded, and through univariate Cox regression and

LASSO regression analysis, we constructed a risk score composed of six genes:

CTSG, HSPE1, LDHA, MPO, PINK1, and VCAM1. MM patients in three independent

datasets were classified into high- and low-risk groups according to the risk

score. The overall survival (OS) of patients in the high-risk group was significantly

reduced compared to the low-risk group. Furthermore, the risk score was an

independent predictive factor for OS. In addition, interactions between the risk

score, immune score, and immune cell infiltration were investigated. Further

analysis indicated that patients in the high-risk group were more sensitive to a

variety of chemotherapy and targeted drugs, including bortezomib. Moreover,

the six genes provided insights into the progression of plasma cell disorders.
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Conclusion: This study offers novel insights into the roles of NETs in prognostic

prediction, immune status, and drug sensitivity in MM, serving as a valuable

supplement and enhancement to existing grading systems.
KEYWORDS

multiple myeloma, neutrophil extracellular traps, risk score, nomogram, immune
microenvironment, drug sensitivity
1 Introduction

Multiple myeloma is a plasma cell malignancy characterized by

abnormal proliferation of monoclonal plasma cells in the bone

marrow, which secrete large amounts of monoclonal

immunoglobulin. It is the second most common hematologic

malignancy (1). Despite of advancement in treatment options in

recent years, MM remains biologically complex with heterogeneous

prognosis. Therefore, it is crucial to identify reliable prognostic

indicators and establish corresponding predictive models for

patients with MM.

Tumor microenvironment (TME) is a complex ecosystem

composed of various cells and molecules that play a crucial role in

the initiation, progression, and metastasis of tumors. This

microenvironment not only includes tumor cells, but also immune

cells, stromal cells, as well as an interactive network constructed by

extracellular matrix and peripheral blood vessel (2). These molecules

and cells interact with each other to shape a multifaceted biological

scene, providing support for tumor growth andmetabolism, as well as

creating conditions for immune evasion and facilitating distant

metastasis (3, 4). Among TME, immune cells play a particularly

critical role, influencing tumor growth and metabolism, and

participating in the formation of tumor immune escape

mechanisms. The bone marrow, as the main site of onset for MM,

provides a favorable environment for the growth and spread of MM

cells (5). As the most abundant immune cells in the tumor
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microenvironment, neutrophils participate in the process of tumors

by releasing NETs (6). NETs are web-like structures composed of

DNA, histones, and granule enzymes, responsible for trapping and

killing extracellular pathogens (7). The process of NETs being

released by neutrophils is called NETosis, a cell death pathway

reported to be distinct from apoptosis, phagocytosis-induced cell

death, and necrosis (8). Based on the fate of neutrophils, NETosis can

be divided into two types: suicidal NETosis and vital NETosis (9).

Increasing research has indicated that NETs play a significant role in

many diseases (10). Interestingly, NETs are involved in the initiation

and progression of tumors, with dual roles (pro-tumor and anti-

tumor) varying according to the type of cancer, different stages of

cancer development, statuses of the immune system, and tumor

microenvironment conditions (11, 12). In the realm of hematologic

disorders, studies have indicated that neutrophils from chronic

lymphocytic leukemia patients exhibit an increased capacity to

release NETs (13, 14). NETs could increase the burden of bleeding

by damaging endothelial cells in acute promyelocytic leukemia (15).

In addition, higher levels of NETs in plasma and tumor tissues were

associated with a dismal outcome in patients with diffuse large B-cell

lymphoma (16). However, the role of NETs in MM remains unclear.

To further understand the relationship betweenMMandNETs, we

retrieved DEGs betweenMMpatients and normal individuals from the

Gene Expression Omnibus Database (GEO). Gene Ontology (GO)

enrichment analysis indicated these DEGs were involved in neutrophil

and leukocyte-associated pathways. Based on this, we constructed a

DEGs-NETs network and selected six core genes to compose a risk

score. Then, we examined the association between the risk score and

clinical indicators and developed a nomogram using multivariate Cox

regression analysis. Finally, we verified roles of the risk score in

immune response and drug resistance. In summary, our study

established a six-gene risk score and a prognostic model, providing

novel insight into the survival assessment, immune microenvironment

and drug resistance in MM.
2 Materials and methods

2.1 Databases and data preprocessing

We downloaded multiple GEO microarray datasets, including

the microarray data and clinical information of samples from
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GSE6477, GSE136337, GSE57317 and GSE2658 from the GEO

database (https://www.ncbi.nlm.nih.gov/geo/). Among them, the

GSE6477 dataset (GPL96) which sample type is bone marrow,

involves 22 cases of Monoclonal Gammopathy of Undetermined

Significance (MGUS), 24 cases of Smoldering Multiple Myeloma

(SMM), 73 cases of Newly Diagnosed Multiple Myeloma (NDMM),

28 cases of Relapsed and/or Refractory Multiple Myeloma (RRMM)

samples and 15 cases of control group samples. NDMM and the

control group were used for differential expression analysis. The

GSE136337 dataset (GPL27143) contains 426 bone marrow samples

of NDMM, which were used to construct risk score and nomogram.

The GSE57317 dataset (GPL570) and the GSE2658 dataset

(GPL570) contain 55- and 559-MM bone marrow samples

respectively to verify the risk score. The maximum expression

level of gene symbols identified by multiple probes was used for

calculation. Supplementary Table 1 shows the baseline information

of the training and validation cohorts.
2.2 Identification and enrichment analysis
of candidate genes

DEGs between NDMM samples and normal samples were

identified by using the “limma” R package (version 3.52.2) (17).

The heatmap was performed by the “ComplexHeatmap” R package

(version 2.13.1) (18). We set genes with padj < 0.05 and |logFC| >

0.4 as DEGs to control the number of DEGs and reduce the

possibility of false-positive results. The NETs-related genes

originate from previously published literature (19–22)

(Supplementary Table 2). Candidate genes were obtained by

taking the intersection of DEG and NETs genes. The results were

then visualized using the ggvenn R package (version 0.1.9). We

conducted GO and KEGG enrichment analyses to evaluate the

potential functions of DEGs-NETs. After ID conversion of the input

molecular list, the “clusterProfiler” R package (version 4.4.1) was

used for enrichment analysis to obtain the gene set enrichment

results. p-value < 0.05 was considered significantly enriched. GO

and KEGG pathway enrichment results were visualized using the

enrichplot R package (version 1.8.1).
2.3 Screening of prognostic genes,
construction and validation of risk score

Using the R “survival” package (version 3.4.0), we performed

univariate Cox regression on the GSE136337 dataset to evaluate the

OS-related gene (HR ≠ 1, p < 0.05). Subsequently, we continued to

use the “glmnet” R package (version 4.1.1) in the GEO136337

dataset to generate prognostic features through the LASSO Cox

regression method. The risk score was calculated as follows: Risk

Score = (-0.175709931 × expr(CTSG)) + (0.045561562 × expr

(HSPE1)) + (0.346091322 × expr(LDHA)) + (-0.008019573 ×

expr(MPO)) + (-0.257014272 × expr(PINK1)) + (-0.062861009 ×

expr(VCAM1)). After obtaining the prognostic genes and risk

scores, the expression of MM samples was calculated. Using the
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“Survminer” R package (version 0.4.9), patients with MM were

classified into low-risk and high-risk groups based on risk score,

and survival differences between the two groups were compared.

Additionally, the sensitivity and specificity of the risk score were

evaluated using the “timeROC” R package. In addition, the

performance of the risk model was also validated in the

GSE557317 and GSE2658 datasets. To explore the relationship

between risk scores and clinical features, six clinical features (age,

gender, b2-microglobulin (b2M) level, lactate dehydrogenase

(LDH) level, presence of high-risk cytogenetics, and Revised

International Staging System (R-ISS) stage) were used to conduct

a group comparison between high and low-risk groups on the

GEO136337 dataset.
2.4 Development and validation
of nomogram

We developed a predictive nomogram that combines the risk

score from the prediction model with clinical features to identify

independent prognostic factors among risk score, age, gender, b2M,

LDH, high-risk cytogenetics, and R-ISS stage. A p-value < 0.05 was

used to select survival-related clinical variables through univariate

Cox analysis. Subsequently, a multivariate survival analysis was

performed to create the nomogram. The nomogram predictions

were plotted using calibration curves based on the measured rates.

We used R packages “rms” (version 6.3–0), “stdca,” and “timeROC”

to plot the nomogram, calibration curve, DCA plot, and ROC curve.
2.5 Gene set enrichment analysis

To explore the functions and pathways associated with the risk

groups, a differential expression analysis was performed on the

genes expressed in the high and low-risk groups on the dataset

GSE136337.Gene Set Enrichment Analysis (GSEA) is a

computational strategy used to analyze whether a prior-defined

set of genes is enriched in a typical signaling pathway (https://

www.gsea-msigdb.org/gsea/index.jsp). padj < 0.05 and false

discovery rate (FDR) q-value < 0.05 were considered

significantly enriched.
2.6 Assessment of
immune microenvironment

Based on the transformed gene expression data, the “estimate”

R package (23) was used to calculate the ESTIMATE score, immune

score, and stromal score. Additionally, the “GSVA” R package was

used to estimate the infiltration abundance of various immune cells.

The effect of immune checkpoints was explored by analyzing the

differential expression of immune checkpoints in two risk groups of

MM samples. The differences in immune checkpoints and immune

cells between the high and low-risk groups were visualized through

grouped comparison charts.
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2.7 Drug sensitivity prediction

To achieve precision therapy based on NETs-related

characteristics and to identify potential drugs for MM, we utilized

the genomic data from the GDSC (https://www.cancerrxgene.org/)

to predict chemotherapeutic responses. The R package

“pRRophetic” calculates (24) half-maximal inhibitory

concentration (IC50) values to reflect drug response of 138

antitumor agents.
2.8 TISCH analysis

We utilized the TISCH resource, a single-cell RNA sequencing

online repository (Tumor Immune Single-cell Hub, accessible at

http://tisch.comp-genomics.org/), to assess the presence of potential

tumor antigens within immune cells that have penetrated the bone

marrow. Data set GSE16180 within the TISCH platform was

categorized into 9 principal cell categories, which enabled the

visualization of specific gene expression patterns across different

types of immune cells.
2.9 Cell culture

Human multiple myeloma cell lines MM.1S, PMI-8226, NCI-

H929, OPM-2, U266, ARD, and KMS-11 were purchased from the

ATCC U.S. Typical Biological Resources Repository (ATCC Cell

Bank). The above cells were cultured by RPMI1640 mixed medium

containing 10% fetal bovine serum (FBS), penicillin 100U/ml and

streptomycin 100mg/m1 in a special cell incubator at 37°c and CO2

concentration of 5%.
2.10 RNA extraction and quantitative real-
time PCR

To quantify gene expression profiles, we performed qRT-PCR

on MM cell lines. Total RNA was extracted from the samples

utilizing TRIzol reagent (Thermo Fisher Scientific, USA) following

the manufacturer’s protocol. The purity and concentration of RNA

were measured spectrophotometrically. Complementary DNA

(cDNA) synthesis was accomplished using the PrimeScript™ RT

Master Mix (Takara Bio, USA) according to the provided

instructions. Subsequent amplification reactions were set up using

TB Green® Premix Ex Taq (Takara Bio, USA) in a real-time PCR

system. Each sample was assessed in triplicate to ensure accurate

quantification. We selected GAPDH as a housekeeping gene for

normalization. The Cycle Threshold (CT) values for the 6 genes and

the reference were recorded for each sample. The relative expression

levels of the target genes were calculated using the 2^-DDCt method.

Seven MM cell lines and control groups were tested using holistic

tests (one-way ANOVA) and multiple hypothesis tests (Tukey HSD

postmortem tests). Details of the primer sequences employed for

qRT-PCR were provided in Supplementary Table 3.
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2.11 Statistical analysis

Statistical analysis was performed using R Studio (version 4.2.1).

Fisher’s exact test and chi-squared test were used to investigate

whether there are significant differences in clinical characteristics

between the high-risk and low-risk groups. For comparing

continuous variables with non-normal distributions, we employed

the Wilcoxon rank-sum and Kruskal-Wallis tests. Data

visualization was conducted using the R “ggplot2” package

(version 3.3.6). All statistical tests were two-sided, and statistical

significance was defined as p < 0.05.
3 Results

3.1 Identification of NETs-DEGs

Our research process is outlined in Figure 1 (By Figdraw.).

Initially, we identified DEGs between patients with NDMM and

healthy individuals from the GSE6477 dataset, as shown in

Figure 2A. We found that among the DEGs, 1690 genes were up-

regulated and 1353 genes were down-regulated. GO analysis of

these DEGs revealed significant enrichment (p < 0.001) in pathways

related to leukocyte-mediated immunity, myeloid leukocyte

migration, neutrophil chemotaxis, neutrophil migration, and

granulocyte chemotaxis (Figure 2B). Neutrophils, as the most

abundant leukocytes in the human body, clear pathogens through

phagocytosis and degranulation. Since these DEGs were associated

with neutrophils, and the role of NETs has been found in various

tumors in recent years (11), we further observed the relationship

between DEGs and NETs. We performed an intersection analysis

between the DEGs and genes known to be associated with NETs

using a Venn diagram, which resulted in the identification of 64

DEGs-NETs, as shown in Figure 2C. Figure 2D presents a heatmap

comparing the expression levels of these DEGs-NETs in healthy

individuals and NDMM patients. Our analysis indicated lower

expression levels of NETs-related genes in NDMM patients

compared to healthy individuals. Subsequently, we conducted a

combined GO-KEGG analysis of the DEGs-NETs, incorporating

LogFC values (Figures 2E). This analysis unveiled significant

enrichment in pathways related to leukocyte migration, myeloid

leukocyte activation, myeloid leukocyte migration, vesicle lumen,

cytoplasmic vesicle lumen, secretory granule lumen, RAGE receptor

binding, Toll-like receptor binding, lipopolysaccharide binding,

neutrophil extracellular trap formation, Legionnaires’ disease, and

the IL-17 signaling pathway. These results showed that 64 DEGs-

NETs had correlation with leukocyte migration and activation, as

well as the formation of neutrophil extracellular traps.
3.2 Selection of hub genes and
construction of the NETs-related risk score

In our study, we initially identified 64 genes from the training set

GSE136437. Subsequently, through univariate Cox regression
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analysis, we narrowed down this set to six prognostic genes: CTSG,

HSPE1, LDHA, MPO, PINK1 and VCAM1 (as shown in Figure 3A).

Among these genes, CTSG, MPO, PINK1 and VCAM1 exhibited

protective effects (HR < 1), while HSPE1 and LDHA were classified

as risk genes (HR > 1). To validate the expression of the six genes

included in the risk score, we utilized the TISCH database to

examine their expression in MM cells within the single-cell dataset

GSE16180, as shown in Supplementary Figure 1. We discovered that

HSPE1 and LDHAwere expressed at higher levels in malignant cells,

consistent with our preliminary findings that HSPE1 and LDHA are

overexpressed inMM patients. As shown in Supplementary Figure 2,

in the GSE6477 dataset representing different stages of MM

development (MGUS, SMM, NDMM, RRMM), HSPE1 and

LDHA exhibited gradually increasing expression, while CTSG,

MPO, PINK1 and VCAM1 showed gradually decreasing

expression. Therefore, these six genes not only predicts the

prognosis of MM patients but may also provide insights into the

diagnosis and disease progression stages in MM patients.
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Utilizing LASSO regression, we developed a NETs-related risk

score based on the expression levels of these six genes (Figures 3B, C).

To further understand the interactions among these genes, we

constructed a correlation heatmap for the six genes. Notably,

strong positive correlations were observed between MPO and

CTSG, as well as between HSPE1 and LDHA, while a strong

negative correlation was observed between MPO and HSPE1

(Figure 3D). After excluding two patients due to missing survival

data, the remaining patients were stratified into high-risk (N=212)

and low-risk (N=212) groups based on their risk scores. Principal

Component Analysis (PCA) effectively captured the variations

between samples, as evidenced by the distances between the points

in Figure 3E. The PCA clearly separated the high-risk and low-risk

groups based on the expression profiles of the six prognostic genes.

The distribution of risk scores in the training cohort indicated that

patients with higher risk scores had poorer prognoses (Figure 3F).

Kaplan-Meier survival analysis revealed a statistically significant

difference in OS between the high-risk and low-risk groups, with
FIGURE 1

The flowchart of this study.
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the OS being significantly shorter in the high-risk group (p < 0.001)

(Figure 3G). We evaluated the predictive performance of our model

using time-dependent ROC curves. The Area Under the Curve

(AUC) values for 1-year, 3-year, and 5-year OS were 0.600, 0.643,

and 0.655, respectively, demonstrating the reliability of our

model (Figure 3H).
3.3 Validation of risk score in two
independent datasets

In the validation cohorts derived from GSE57317 and GSE2658,

patients were stratified into high-risk (N=28 and 280, respectively)

and low-risk (N=27 and 279, respectively) groups, based on the
Frontiers in Oncology 06
median value of the calculated risk score. This stratification is

clearly illustrated in Figures 4A and B. Within the validation

cohort of GSE57317, PCA effectively discriminated between the

high-risk and low-risk groups, with distinct clustering observed

based on the expression profiles of the six prognostic genes

(Figure 4C). Kaplan-Meier survival analysis revealed a statistically

significant difference in OS between these two risk groups (p < 0.05)

(Figure 4D). The predictive performance of our model was further

evaluated using time-dependent ROC curves. The AUC values for

1-year, 2-year, and 3-year OS were 0.868, 0.786, and 0.932,

respectively, demonstrating reasonable discriminatory ability

(Figure 4E). Similarly, in the validation cohort of GSE2658, PCA

analysis exhibited clear separation between the high-risk and low-

risk groups based on the expression levels of the six genes
B

C

D
E

A

FIGURE 2

Identification of NETs-DEGs. (A) The volcano plot showed differentially expressed genes. Upregulated and downregulated genes were represented in
red and blue, respectively. (B) The bubble plot illustrated the GO analysis of differentially expressed genes. (C) The Venn diagram displayed the
overlap between differentially expressed genes and NETs-related genes. (D) The heatmap presented the DEGs-NETs genes. (E) The GO-KEGG
analysis of DEGs-NETs genes (BP, biological process; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and
Genomes), the color of the bar chart represents the significance level. The larger the absolute value of z-score and the deeper the color indicate the
higher significance.
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(Figure 4F). Kaplan-Meier analysis showed a more pronounced

difference in OS between the two groups, with a significantly shorter

survival observed in the high-risk group (p < 0.001) (Figure 4G).

The prognostic accuracy of our model was again confirmed using

time-dependent ROC curves, yielding AUC values of 0.606, 0.631,

and 0.638 for 1-year, 2-year, and 3-year OS, respectively

(Figure 4H). These results collectively underscore the robustness

and generalizability of the risk score across different patient cohorts.
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3.4 Correlation between risk score and
clinical characteristics

The prognosis of MM patients is currently assessed using the

International Staging System (ISS), the Revised International Staging

System (R-ISS), and the mSMART risk stratification system. However,

there remains heterogeneity in patient outcomes despite these

assessments. In the dataset GSE136337, we found that it contains
B C

D E

F G

H

A

FIGURE 3

Selection of Hub Genes and Construction of the NETs-related Risk Score. (A) The forest plot displayed 6 genes with significant p-values (<0.05) after
single-factor COX regression. (B) LASSO regression selected the best predictive variables through 10-fold cross-validation. (C) The LASSO coefficient
trajectories of the 6 genes were plotted. (D) Pairwise correlation analysis was performed on the six genes. (E) The PCA plot of the high-risk and low-
risk groups was created. (F) The risk factor plot between the high-risk group and the low-risk group was constructed. (G) KM curves for the high-risk
and low-risk groups were generated. (H) The ROC curve of the overall survival time over time in the training set was drawn. *p<0.05;
**p<0.01; ***p<0.001.
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rich clinical data of MM patients. Utilizing the criteria established in

mSMART 3.0 (2018), we defined high-risk cytogenetics in multiple

myeloma as follows: deletion of the short arm of chromosome 17 [del

(17p)], translocation between chromosomes 4 and 14 [t (4;14)],

translocation between chromosomes 14 and 16 [t (14;16)],

translocation between chromosomes 14 and 20 [t (14;20)], and gain

of the long arm of chromosome 1 [1q+]. The heatmap presented in

Figure 5A illustrates the correlation between the risk score and various

patient-specific factors, including gender, age, b2M level, LDH level, R-

ISS stage, and the presence of high-risk cytogenetics within the
Frontiers in Oncology 08
GSE136337 dataset. Notably, the heatmap reveals that patients in the

high-risk group tended to have higher R-ISS stages, elevated b2M
levels, and increased LDH levels. Furthermore, the Sankey diagram

depicted in Figure 5B describes the relationships between patient

gender, age, b2M level (≥5.5mg/L), LDH level (≥300m/L), high-risk
cytogenetics, R-ISS stage, high-risk/low-risk classification, and

prognosis. Our analysis showed that most patients with high-risk

cytogenetics were categorized in the high-risk group, while the

majority of patients in the low-risk group were in the earlier ISS-I

and ISS-II stages, often associated with a favorable prognosis. However,
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FIGURE 4

Validation of Risk Score in Two Independent Datasets. (A) Risk factor plot for the high-risk and low-risk groups in the validation cohort GSE57317.
(B) Risk factor plot for the high-risk and low-risk groups in the validation cohort GSE2658. (C) PCA plot for the high-risk and low-risk groups in
GSE57317. (D) Kaplan-Meier curves for the high-risk and low-risk groups in GSE57317. (E) Time-dependent ROC curves for overall survival in
GSE57317. (F) PCA plot for the high-risk and low-risk groups in GSE2658. (G) Kaplan-Meier curves for the high-risk and low-risk groups in GSE2658.
(H) Time-dependent ROC curves for overall survival in GSE2658.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1365460
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gao et al. 10.3389/fonc.2024.1365460
most patients in the high-risk group were found in the ISS-II and ISS-

III stages, typically correlating with a poor prognosis. Additionally, we

found that the NETs-related risk score was not associated with gender

or age, as shown in Figures 5C, D. Importantly, the risk score was

significantly correlated with tumor burden (elevated LDH and b2M
levels), high-risk cytogenetic abnormalities, and advanced R-ISS stages

(p < 0.01), as demonstrated in Figures 5E–H.These findings highlight

the significant disparities presented by a NETs-based risk score system

within the prognostic factors for patients with multiple myeloma,
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underlining the importance of risk score in stratifying the prognosis of

multiple myeloma patients.
3.5 Construction of a nomogram based on
risk score

To rigorously assess the potential of the risk score as an

independent prognostic factor, univariate and multivariate Cox
B
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FIGURE 5

Correlation between Risk Score and Clinical Characteristics. (A) Heatmap showing the complexity of high-risk/low-risk groups, clinical
characteristics, and expression levels of six genes. (B) Sankey diagram illustrating the relationship between clinical information and high-risk/low-risk
groups. (C-H) Associations between risk score and different clinical features: (C) Gender. (D) Age. (E) b2-Microglobulin levels (b2M ≥ 5.5mg/L).
(F) Lactate dehydrogenase levels (LDH ≥ 300m/L). (G) High-Risk Cytogenetics. (H) R-ISS stage. Asterisks indicate statistical significance: *p < 0.05;
**p < 0.01; ***p < 0.001; ns, no statistical signifcance.
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regression analyses were conducted, encompassing a range of clinical

parameters alongside the risk score (Figures 6A, B). Our findings

unequivocally established that age, b2M level ≥ 5.5mg/L, LDH level ≥

300 m/L, and the risk score itself emerged as independent prognostic

indicators for MM patients. Utilizing a nomogram approach, we

assigned specific scores to each of these factors and aggregated them

to derive a comprehensive prognostic score (Figure 6C). The
Frontiers in Oncology 10
coefficients assigned to each factor, as showcased in Figure 6D,

revealed that the risk score carried the highest weightage, thereby

making a substantial contribution to the overall prognostic score. The

Kaplan-Meier survival analysis further corroborated the nomogram’s

efficacy in stratifying patients based on their OS, exhibiting statistical

significance (p < 0.001). This underscores the nomogram’s potential

as a valuable tool in predicting survival outcomes for MM patients.
B
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FIGURE 6

Construction of Prognostic Model Based on Risk Score. (A) Univariate Cox regression analysis of clinical parameters and the risk score.
(B) Multivariate Cox regression analysis of clinical parameters and the risk score. (C) Nomogram displaying the scores for each factor, as well as the
total score as a prognostic indicator. (D) Coefficients of each factor contributing to the total score. (E) Kaplan-Meier survival curves.
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3.6 Assessment of the nomogram

To rigorously evaluate the prognostic model’s performance, we

undertook a comprehensive and detailed assessment. Initially, we

generated ROC curves for 1-, 3-, and 5-year survival predictions

(Figures 7A–C). These results revealed that the nomogram

surpassed the predictive abilities of R-ISS, b2M level ≥ 5.5 mg/L,

LDH level ≥ 300 m/L, high-risk cytogenetics, and age, achieving

AUC values of 0.761, 0.715, and 0.725 for 1-, 3-, and 5-year OS,

respectively. Subsequently, we employed decision curve analysis to

assess the clinical utility of our predictive model across varying

threshold probabilities. This analysis demonstrated that our

prognostic model conferred the highest net benefit within

specified threshold probability ranges for 1-, 3-, and 5-year

predictions when compared to R-ISS, b2M, and age (Figures 7D–

F). Furthermore, to validate the agreement between observed

outcomes and the model’s predictions, we constructed calibration

curves for 1-, 3-, and 5-year predictions (Figures 7G–I). These

curves exhibited a close alignment of the predicted lines with the

diagonal, indicating excellent calibration and reinforcing our

model’s ability to make accurate predictions. The results validated

the effectiveness of the nomogram in predicting survival may better

than the R-ISS, b2M, LDH, high-risk genetic abnormalities and age,

among other factors.
3.7 Evaluation of immune
microenvironment in high- and low-
risk groups

To further elucidate the underlying mechanisms associated with

the NETs-related risk score, we conducted a GSEA focusing on

DEGs in both high-risk and low-risk groups. The results, presented

in Figures 8A, B, reveal a significant enrichment of these genes in

pathways related to “secreted factors,” “neutrophil degranulation,”

and the “innate immune system” (p < 0.01). These pathways are

intimately associated with the formation of NETs and the

modulation of immune function, suggesting that the disparity in

gene expression between the high-risk and low-risk groups may

reflect divergent immunological profiles. Given the observed

enrichment of DEGs in immune-related pathways in both risk

groups, we proceeded to explore the relationship between the risk

score and immune status. Utilizing the ESTIMATE algorithm for a

more in-depth analysis, we found that patients in the low-risk group

exhibited significantly higher stromal scores (assessing the presence

of non-malignant stromal cells in tumors), immune scores

(quantifying the infiltration of immune cells in tumors), and

ESTIMATE scores (comprehensively evaluating the tumor

microenvironment, including the influence of stromal and

immune cells) compared to those in the high-risk group

(Figures 8C–E).To further validate this observation, we employed

the ssGSEA algorithm to analyze the expression of tumor-

infiltrating immune cells. The results, presented in Figure 8F,

demonstrate a significant reduction in the presence of cytotoxic
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cells, eosinophils, immature dendritic cells (iDC), macrophages,

mast cells, neutrophils, Tgd (Tgd) cells, and Th17 cells in the high-

risk group (p < 0.001) (Figure 8G). These immune cells play crucial

roles in anti-tumor immune responses, and their reduced presence

in the high-risk group may contribute to a weakened immune

response to tumors, thereby affecting patient prognosis.

Delving deeper into the disparities in the expression of pivotal

immune molecules between the high- and low-risk groups, we

obtained notable findings as depicted in Figure 9A. Through

meticulous analytical comparisons, a conspicuous downregulation

trend emerged in the expression of conventional immune

checkpoint molecules in the high-risk group relative to the low-

risk counterparts. Specifically, a range of crucial molecules, namely

CCL2, CD244, CD27, CD4, IDO1, IL1A, NRP1, PDCD1LG2,

TNFRSF4, and TNFSF4, exhibited significantly reduced

expression levels in the high-risk group. Conversely, a marked

upregulation was observed in the expression of CD48 and TGFb1
in the high-risk group (p < 0.001), presenting potential targets for

future immunotherapeutic strategies. To shed further light on the

relationship between risk scores and immune cell types, we

conducted extensive correlation analyses. The results revealed a

significant negative correlation between risk scores and the

infiltration levels of the majority of immune cell types. Notably, a

statistically significant negative correlation was observed between

risk scores and the infiltration of B cells, cytotoxic cells, DC,

eosinophils, immature dendritic cells (iDCs), macrophages,

mast cells, neutrophils, helper T cells, Tgd cells, and Th17 cells

(p < 0.001). This finding is vividly illustrated in Figures 9B–K.

Moreover, we explored the interrelationships among immune cells.

Intriguingly, a significant positive correlation was uncovered

between iDCs and mast cells (p < 0.001), whereas a marked

negative correlation was observed between helper T cells and

dendritic cells (p < 0.001). Figure 9L clearly presents these

correlation analysis results among immune cells, unveiling the

intricate network of interactions within the immune system.
3.8 Prediction of potential drugs for
multiple myeloma based on nets-related
risk score

Utilizing the pRRophetic package, we conducted a

comprehensive investigation into the differences in estimated

IC50 values of chemotherapeutic agents between high-risk and

low-risk patient groups (detailed data presented in Supplementary

Table 4). This algorithm, grounded in genomic data, provided us

with valuable predictions of drug responses. Through statistical

analysis, we uncovered a notable finding: the widely used drug for

multiple myeloma treatment, bortezomib, exhibited a significant

difference in estimated IC50 values between the high-risk and low-

risk patient groups (p<0.001). Remarkably, this trend was not

isolated to bortezomib alone. A range of other chemotherapeutic

agents, including A.443654, BAY.61–3606, BI.2536, BI.D1870,
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camptothecin, CEP.701, doxorubicin, etoposide, GDC.0449,

GW843682X, IPA.3, obatoclax mesylate, RO.3306, S-trityl-L-

cysteine, TW.37, vinblastine, vinorelbine, vorinostat, and VX.680,

also demonstrated a similar pattern (Figure 10). Specifically, for

these drugs, the estimated IC50 values were significantly lower in

the high-risk group compared to the low-risk group (p<0.0001).

This discovery carries profound clinical implications. It suggests

that patients with higher risk scores may derive greater therapeutic

benefits from these chemotherapeutic agents.
Frontiers in Oncology 12
3.9 qRT-PCR

Subsequently, the expression of the identified genes was

experimentally verified in MM cell lines MM.1S, RPMI-8266,

NCI-H929, OPM-2, U266, ARD, KMS-11, and the healthy

donors using qRT-PCR. As anticipated, the levels of CTSG, MPO,

PINK1, and VCAM1 were lower in the MM cell lines compared to

the control group, while HSPE1 and LDHA showed significantly

higher expression in the MM cells (Figure 11).
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FIGURE 7

Assessment of the Prognostic Model. (A–C) ROC curves for overall survival over time for the prognostic model, ISS, b2M, and age: (A) 1 year, (B) 3
years. (C) 5 years. (D–F) Decision curve analysis (DCA) for the prognostic model, ISS, b2M, and age: (D) 1 year, (E) 3 years, (F) 5 years. (G–I)
Calibration curves for the prognostic model: (G) 1 year, (H) 3 years, (I) 5 years.
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4 Discussion

Multiple Myeloma is an incurable plasma cell neoplasm.

Extensive literature has demonstrated that the resistance to

treatment and disease progression in MM largely depends on the

interactions between MM cells and the components of the bone

marrow microenvironment (25). Neutrophils are generated in great

number in the bone marrow, as a crucial part of the bone marrow
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microenvironment, release NETs which may influence the bone

marrow tumor immune microenvironment and, in turn, affect the

prognosis of patients with myeloma. NETs have been implicated in

a variety of cancerous disease (26–31). However, the relationship

between NETs and MM has not been reported.

In this study, we first combined NETs associated with MM

survival to construct a risk score comprising six genes. Patients were

divided into high-risk and low-risk groups based on the risk score,
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FIGURE 8

Evaluation of immune microenvironment in high- and low-risk groups. (A) GSEA enrichment analysis of differentially expressed genes in the high-
and low-risk groups. (B) Landscape of GSEA enrichment for differentially expressed genes in the high- and low-risk groups. (C–E) Comparison of
Stromal Score, Immune Score, and ESTIMATE Score between the high- and low-risk groups. (F) Expression heatmap for 23 types of immune cells in
the high- and low-risk groups. (G) Differences in the expression levels of 23 immune cell types between the high- and low-risk groups. *p < 0.05;
**p < 0.01; ***p < 0.001.
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with the high-risk group displaying shorter OS. Subsequently, we

developed a nomogram incorporating clinical indicators. The six

genes we selected include CTSG, HSPE1, LDHA, MPO, PINK1, and

VCAM1. Among these, CTSG is a gene of serine protease, which

can control the effector function of adhesion-dependent neutrophils

by modulating integrin clustering (32) and is involved in destroying

intracellular and extracellular pathogens through nonoxidative

pathways (33). Studies have confirmed that NETs promote

endothelial cell activation and increase thrombosis through the

synergistic action of IL-1a and CTSG (21). There have been
Frontiers in Oncology 14
reported that high expression of CTSG can inhibit the

progression of colorectal cancer (34) and oral squamous cell

carcinoma (35). Our results indicated that CTSG expression was

lower in MM patients compared to normal individuals, and that

high-risk MM patients expressed much lower CTSG than low-risk

ones. HSPE1 is a heat shock protein. HSPE1 was associated with

obesity, inflammation and NETs release (36). HSPE1 is a kind of

heat shock protein. Studies have confirmed that HSPE1 is highly

expressed in the leukemia stem cells of childhood AML (37), and

other research indicated that upregulation of HSPE1 promoted
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FIGURE 9

Evaluation of immune microenvironment in high- and low-risk groups. (A) Differences in the expression levels of immune checkpoints between the
high- and low-risk groups. (B–K) Correlation analysis of risk scores with the expression levels of immune cells. (L) Correlation analysis among
immune cell types. *p < 0.05; **p < 0.01; ***p < 0.001.
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prostate cancer progression (38). Our results showed that high

expression of HSPE1 was detrimental to the prognosis of MM

patients and was increased in MM patients compared to normal

individuals. LDHA is an enzyme involved in glycolytic metabolism,

primarily catalyzing the conversion of pyruvate to lactate in the

cytoplasm. Neutrophil acidity through increasing LDHA activity

enhances neutrophil migration in vivo and in vitro (19), and

notably, in our risk scoring, LDHA was the molecule with the

most unfavorable prognosis. Previous studies have found LDHA

could promote the progression of lung cancer (39), lung
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adenocarcinoma (40), pancreatic cancer (41), and renal clear cell

carcinoma (42). MPO is a myeloperoxidase, which plays an

important role in the formation of NETs, promoting the

autonomic formation of NETs and is considered a representative

marker of NETosis (43). One of the main functions of MPO is to kill

microorganisms in phagocytes, and MPO can also be released

outside the cell to destroy various target substances (44). MPO

plays a dual role in tumor progression (45). Our results suggested

that the expression of MPO gradually was decreased with the

different stages of plasma cell disease, and high-risk patients
FIGURE 10

Prediction of Potential Drugs for Multiple Myeloma Based on NETs-related Risk Score. Estimated IC50 of Different Drugs in High and Low Risk
Groups. **p<0.01; ***p<0.001.
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expressed much lower levels of MPO than low-risk ones. Infections

are a common complication in patients with multiple myeloma, and

high expression of MPO might prevent severe infections in

individuals with multiple myeloma. MPO has been proven to

have therapeutic potential for pathological bone loss mediated by

osteoclasts (46), potentially improving the adverse prognosis of MM

patients due to bone disease. In addition, MPO could induce the

activation of caspase-3 and apoptosis in HL-60 human leukemia

cells (47). PINK1 is a key protein involved in mitochondrial

autophagy. NETs increase the expression of the mitochondrial

autophagy-related protein PINK1 (48), and PINK1-dependent

mitochondrial autophagy reduction was related to shortened OS

and event-free survival in MM patients (49). Jia et al., through

bioinformatics analysis, also confirmed PINK1 as a protective gene

in MM (50). VCAM1 is a cell adhesion molecule. NETs could

induce the expression of adhesion molecules in human endothelial

cells and increase the adherence of white blood cells to the

monolayer (21). Circulating levels of VCAM1 were also elevated

in patients with venous thromboembolism, indicating not only

exacerbated endothelial activation and dysfunction but also the

favorable interaction of neutrophil adhesion molecules with their

endothelial ligands for neutrophil migration. Previous studies have
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shown that increased myeloma cells can promote their

extravasation and retention in the bone marrow through

interactions with endothelial interaction molecules such as

VCAM1 (51), suggesting that VCAM1 plays a role in promoting

cancer survival and growth in MM, consistent with our results.

Studies also indicated a reduction in VCAM1 expression in AML

could reduce leukemic stem cell infiltration (52). In summary, the

expression levels of these six NETs-related genes vary across

different cancers, reflecting the extreme complexity of their

potential regulatory mechanisms. Therefore, it becomes

particularly important and urgent to further explore the biological

characteristics of these genes in multiple myeloma.

Previous in vitro studies have identified the antitumor effects of

NETs in melanoma (53), NETs can also reduce the proliferation of

AML cells (54). However, some studies suggested that neutrophil

extracellular traps enhanced the metastatic potential of

hepatocellular carcinoma (55), non-small cell lung cancer (56),

and others. Therefore, the overall activity of NETs, that either

improves anti-tumor response or pro-tumor, probably depends on

the complex interaction among the tumor cells, the NETs and the

TME (57). GSEA based on the DEGs between high- and low-risk

groups reveals significant enrichment in pathways immune system.
B

C D

E F

A

FIGURE 11

Quantitative Real-Time Polymerase Chain Reaction Analysis. (A–F) In MM cell lines and healthy donors: (A) CTSG; (B) HSPE1; (C) LDHA; (D) MPO;
(E) VCAM1; (F) PINK1. *p<0.05; **p<0.01; ***p<0.001; ns, no statistical signifcance.
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Our study validated that anti-tumor immune activity is significantly

reduced in high-risk MM patients with a high-risk score. The

analysis of risk scores and immunity may partially explain the

poor prognosis in the high-risk group: fewer immune cells are

present in this group, resulting in worse outcomes compared to the

low-risk group.

Routine immune checkpoint and drug sensitivity analysis

provide potential therapeutic strategies for high-risk MM patients.

Our analysis showed that CD48 and TGFb1 were significantly

upregulated in the high-risk group (p < 0.001), serving as

potential therapeutic targets for this group. CD48 is expressed

only on certain hematopoietic stem/progenitor cells and is not

present on red blood cells or platelets, which has already been

confirmed as a novel molecular target for antibody therapy in

multiple myeloma (58, 59). TGFb1 is a multifunctional cytokine

that plays a pivotal role in hematopoiesis, tumor development, and

immune regulation. Previous studies have indicated that targeting

immunosuppression by TGFb1 is a viable strategy for cancer

immunotherapy (60). Interestingly, in MM, inhibition of TGFb1
could counteract the growth advantages conferred by the adherence

of MM cells to bone marrow stromal cells, as well as cytokine

production in the bone marrow microenvironment, and enhance

the host’s anti-MM immunity (61). Additionally, our analysis

predicted that high-risk MM patients may be more sensitive to

bortezomib, which is a frontline maintenance therapy drug for

high-risk MM patients. Among the six genes we have screened,

studies have indicated that knockdown of LDHA can restore

sensitivity of bortezomib resistance cell lines while gain-of-

function studies using LDHA induced resistance in bortezomib-

sensitive cell lines (62). Our study results provided new insights into

novel treatment methods for MM. Lastly, we discovered that the six

genes we identified can not only predict the prognosis of MM

patients but may also play a role in the different stages of plasma

cell disorders.

Our study also has some limitations. Firstly, this research relied

on RNA expression profiles and related clinical information

downloaded from databases, the conclusions of which have not

yet been validated in an actual clinical setting. Secondly, due to the

lack of comprehensive clinical information from two independent

datasets, our prognostic model has not been confirmed through a

validation cohort. Lastly, the prognostic model was developed based

on retrospectively collected data from public databases; its accuracy

and reliability require further confirmation through real-world data

and prospective studies. We intend to collect more clinical datasets

to reaffirm the significance of these NETs-related genes.
5 Conclusion

In conclusion, our study demonstrated the correlation between

NETs and MM, suggesting a potential role of NETs in the

pathogenesis of MM. Furthermore, using expression levels of six

genes from newly diagnosed patients’ bone marrow, we calculated

risk scores predictive of prognosis. High-risk patients had shorter

OS, fewer immune cells, and worse clinical markers. We also

predicted drug responses in this group to aid clinical decision-
Frontiers in Oncology 17
making. While further research is needed to validate and expand

upon our observations, our report on the correlation between NETs

and MM may provide new insights for future research and the

development of improved clinical management of MM.
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