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Machine learning models based
on quantitative dynamic
contrast-enhanced MRI
parameters assess the expression
levels of CD3+, CD4+, and CD8+

tumor-infiltrating lymphocytes in
advanced gastric carcinoma
Huizhen Huang1, Zhiheng Li1, Dandan Wang1, Ye Yang2,
Hongyan Jin2 and Zengxin Lu1*

1Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School
of Medicine, Shaoxing, China, 2Department of Pathology, Shaoxing People’s Hospital, Shaoxing
Hospital, Zhejiang University School of Medicine, Shaoxing, China
Objective: To explore the effectiveness of machine learning classifiers based on

dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in

predicting the expression levels of CD3+, CD4+, and CD8+ tumor-infiltrating

lymphocytes (TILs) in patients with advanced gastric cancer (AGC).

Methods: This study investigated 103 patients with confirmed AGC through

DCE-MRI and immunohistochemical staining. Immunohistochemical staining

was used to evaluate CD3+, CD4+, and CD8+ T-cell expression. Utilizing Omni

Kinetics software, radiomics features (Ktrans, Kep, and Ve) were extracted and

underwent selection via variance threshold, SelectKBest, and LASSO methods.

Logistic regression (LR), support vector machine (SVM), random forest (RF), and

eXtreme Gradient Boosting (XGBoost) are the four classifiers used to build four

machine learning (ML) models, and their performance was evaluated using 10-

fold cross-validation. The model’s performance was evaluated and compared

using the area under the receiver operating characteristic curve (AUC),

accuracy, sensitivity, specificity, positive predictive value, and negative

predictive value.

Results: In terms of CD3+, CD4+, and CD8+ T lymphocyte prediction models, the

random forest model outperformed the other classifier models in terms of CD4+

and CD8+ T cell prediction, with AUCs of 0.913 and 0.970 on the training set and

0.904 and 0.908 on the validation set, respectively. In terms of CD3+ T cell

prediction, the logistic regressionmodel fared the best, with AUCs on the training

and validation sets of 0.872 and 0.817, respectively.
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Conclusion:Machine learning classifiers based on DCE-MRI have the potential to

accurately predict CD3+, CD4+, and CD8+ tumor-infiltrating lymphocyte

expression levels in patients with AGC.
KEYWORDS

dynamic contrast-enhanced magnetic resonance imaging, advanced gastric carcinoma,
machine learning, CD3+, CD4+, CD8+
1 Introduction

Although incidence and mortality have decreased in recent

years, gastric cancer remains the fifth most common disease and the

fourth leading cause of cancer death worldwide (1). The most

common form of treatment for stomach cancer is still traditional

surgical resection (2). Although only approximately 30% of

stomach cancer patients are thought to be suitable candidates for

radical resection, the alarming truth is that the great majority of

patients receive a diagnosis when the disease has already

progressed (3).

A major resurgence of hope has emerged on the horizon of

advanced gastric cancer (AGC) treatment in recent years, ushered

in by new immunotherapy research (4, 5). The use of

immunosuppressants targeting programmed cell death ligand 1

(PD-L1) and/or programmed cell death 1 (PD-1) in particular

heralds an entirely new age of immunotherapy in cancer

treatment (6). Immunotherapy, when paired with other

treatments, has significantly boosted the survival rate of patients

with gastric cancer (7). The level of T lymphocyte infiltration in the

tumor microenvironment is crucial for tumor immunotherapy

success (8, 9). T lymphocytes are classified into several functional

subsets, including other subtypes, such as helper (CD3+CD4+) T

cells and killer (CD3+CD8+) T cells. The majority of T lymphocytes

exhibit CD3, which is known as a biomarker for T lymphocytes with

antitumor activity and is a significant prognostic indicator for

overall survival and recurrence (10). The majority of antitumor

effector cells are CD8+ T cells, and it has been established that CD8+

tumor-infiltrating lymphocytes (TILs) are crucial in anti-PD-1/PD-

L1 therapy. A key component and predictor of the prognosis for

gastric cancer is thought to be CD8+ TILs (11). The bulk of CD4+ T

cells are helper T lymphocytes, which are crucial for tumor

surveillance because they support CD8+ T-cell activation and
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proliferation as well as collaborate on antitumor actions (12). It is

possible to more correctly forecast the trajectory of tumor

development and the prognosis of patients by determining the

presence of CD3+, CD4+, and CD8+ T cells in the tumor lesion area

(13). Tissue samples are now needed to assess CD3+, CD4+, and

CD8+ T-cell infiltration in malignant tumors, but acquiring these

samples requires intrusive procedures such as surgical or puncture

biopsies, which limits the capacity to provide a dynamic and

comprehensive assessment of infiltration. Additionally, due to the

heterogeneity of the malignancy, local samples are frequently not

entirely typical of the whole tumor. Therefore, a noninvasive,

repeatable approach to evaluate the infiltration of CD3+, CD4+,

and CD8+ T cells in malignancies is urgently needed in

clinical settings.

Radiomics is a rapidly expanding field that has shown

significant promise in recent years. It shows enormous potential

in a number of areas, such as disease diagnosis, tumor staging,

protein expression detection, and prognosis prediction (14, 15).

Radiomics has been shown to have considerable benefits in the

treatment of stomach cancer (16). Recent research has shown that

combining dynamic contrast-enhanced MRI (DCE-MRI) with

radiomics analysis can produce promising findings in analyzing

protein expression (17). On the one hand, radiomics can rapidly

extract quantitative features from medical images, providing useful

information for auxiliary diagnosis. DCE-MRI, on the other hand,

not only provides deeper insight into blood vessel development and

perfusion than other imaging techniques but also has superior

spatial resolution and interobserver agreement of results (18).

The goal of this study was to determine whether the DCE-MRI-

based noninvasive prediction model could predict the infiltration of

CD3, CD4, and CD8 T-cell expression levels in advanced gastric

cancer. Our findings could help in identifying patients who respond

well to immunotherapy.
2 Materials and methods

2.1 Patients

The ethics review boards of our hospitals granted their approval

for this retrospective research, and the patient’s informed consent

was not needed.
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Between April 2018 and July 2022, data were collected from

patients pathologically confirmed with AGC via biopsy or surgery

in our hospital. The specific inclusion criteria were as follows:

(1) AGC established histologically; (2) visible lesion on DCE-

MRI; (3) no anticancer therapy before DCE-MRI; and (4) DCE-

MRI within two weeks of biopsy or surgery. These exclusion criteria

were as follows: (1) significant imaging abnormalities that

hampered lesion characterization; (2) maximum tumor diameter

of 1 cm; and (3) absence of preoperative clinical data. Ultimately,

103 people were enrolled in the research study (Figure 1).
2.2 MRI scanning

Before the MRI, all patients received the following preparation:

(1) fasted for 8 hours to allow the gastrointestinal tract to empty.

(2) To suppress gastrointestinal motility, 10 mg anisodamine

(Hangzhou Minsheng Pharmaceutical Co., LTD., China) was

administered intramuscularly 10 minutes before the examination

if there were no contraindications (e.g., glaucoma, asthma, or

serious heart disease). (3) Patients were given 800-1000 mL of

warm water orally 5 minutes before the exam to expand the

stomach cavity.

For the MRI studies, a typical 12-channel phased-array body coil

was employed in conjunction with a 3.0T MRI scanner (Verio,

Siemens, Germany). The patient was lying supine during the

examination, and the entire stomach was covered by the scanning

field. Following a standard plain scan (T1-weighted image, T2-

weighted image), a DCE-MRI scan was needed for all patients.

Free-breathing is employed during DCE-MRI scans, which are

performed utilizing a three-dimensional, radial volumetric
Frontiers in Oncology 03
interpolated, breath-hold assessment approach. Initially, the

following parameters were utilized for multiangle cross-sectional

T1WI in the axial plane scan: repeat time: 3.25 ms; echo time: 1.17

ms; FOV: 350 × 284 mm; matrix: 288 × 164; layer thickness: 5 mm;

scan at various flip angles (5°, 10°, and 15°) for 6.5 s each, for a total of

19.5 s. The next step employed multiphase dynamic enhanced

scanning with the following parameters: the Flip angle was set to

10°, 35 phases were scanned, and the total scanning time was 227.5 s.

All other parameters were left at their previous values. In phase 3, a

gadolinium contrast material (Omniscan, GE Healthcare, China) was

injected through the median elbow vein using a high-pressure

injector. The injection dose and rate were set at 0.1 mmol/kg and

3.5 ml/s, respectively. To flush the region, 20 ml of saline was

administered at the same flow rate.
2.3 Immunohistochemical staining
and analysis

The expression of CD3+, CD4+, and CD8+ T cells in gastric

cancer tissues was examined using immunohistochemistry (IHC).

Pathological samples for gastric cancer were obtained through

gastroscopic biopsy or surgery. All GC tissues that had been

formalin-fixed and paraffin-coated were sliced into 4-mm-thick

slices. Immunohistochemical staining was carried out using

mouse anti-CD8 monoclonal antibody (1:200, GT211202, Gene

Tech, Shanghai, China), rabbit anti-CD4 monoclonal antibody

(1:200, GT219102, Gene Tech, Shanghai, China), or rabbit anti-

CD3 monoclonal antibody (1:200, GT219001, Gene Tech,

Shanghai, China). Overnight, the portions were kept in a 4°C

refrigerator. The samples were then stained with a secondary
FIGURE 1

Workflow of this study. Detailed information on inclusion and exclusion of study subjects. Imaging histologic analysis and histologic assessment
were performed separately. Feature screening was performed to construct the imaging histology assessment model.
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antibody (K5009, Dako, Beijing, China) and incubated at 37°C

for 10 min. Hematoxylin was employed as a counterstain, and

diaminobenzidine (DAB) was utilized to designate the antibody.

Before being examined under a microscope, sections were

made transparent, dried, and mounted. Two knowledgeable

pathologists conducted a double-blind examination of the

immunohistochemical results. A low-power microscope was used

to examine the complete tissue field before five randomly chosen

fields were examined using a high-power (X40) microscope

(Figure 2). The tumor tissue and stroma surrounding it, as well as

cancer cell nests, were all included in the counting field. Patients

were divided into two groups based on the median after CD3+,

CD4+, and CD8+ T-cell expression was evaluated based on the

average number of positively stained cells, according to an earlier

study (19).
2.4 Image data analysis and processing

We used Omni Kinetics (GE Healthcare, China) software to

postprocess the DCE-MRI image data of all qualified AGC patients.

Regions of interest (ROI) labeling: T1-mapping multi-flip Angle

(5°, 10°, and 15°) sequence and dynamic enhancement sequence

scan images were imported into the OK software workstation for

post-processing. A variable flip Angle method was used to convert

the signal intensity to the omnipowerful scanning concentration,

and the cross-section was used as the main measurement plane. The

abdominal aorta was manually selected to obtain the artery input

function type (AIF Type) for image post-processing. A nonlinear

registration framework (free deformation algorithm) was used to

correct artifacts due to body motion (e.g., breathing) between

consecutive DCE-MRI scans. The hemodynamic model Tofts

model was selected to calculate the pharmacokinetic perfusion

parameters. The lesion was delineated in 3-5 layers, avoiding
Frontiers in Oncology 04
necrotic and healthy gastric tissue, and the lesion was integrated

into a 3D-ROI for quantitative analysis and calculation (Figure 3).

Two experienced radiologists (radiologist 1 with 5 years experience

and radiologist 2 with 8 years experience), who were unaware of the

clinical and pathological data of the patients, segmented the

measurements and averaged three times.

Feature extraction: the pharmacokinetic parameters of the

whole tumor were generated, and the Tofts model was used to

calculate the pharmacokinetic parameters, including the transfer

rate constant from plasma to extravascular extracellular space

(Ktrans), the transfer rate constant from extravascular

extracellular space back to plasma (Kep) and the volume fraction

of extravascular extracellular space (Ve). The software then

automatically extracted the pharmacokinetic parameter features of

the whole tumor from the three perfusion maps, a total of 201

features. These features included five categories: first order,

histogram, gray level co-occurrence matrix, Haralick, and run-

length matrix. The specific operation interface of the Omni

Kinetics software is shown in Supplementary Material.
2.5 Interobserver variability evaluation

30 patients were recruited at random to assess the consistency of

radiomics feature extraction by various observers. Intraclass

correlation coefficients (ICCs) were calculated for tumor

segmentation performed separately by readers 1 and 2, one week

apart. Intra-group consistency analysis was then done on the features

outlined by reader 1, followed by inter-group consistency analysis on

the same 30 patients’ features delineated by readers 1 and 2. The

reproducibility of radiomics characteristics retrieved from DCE-MRI

was rated satisfactory, with both intraobserver and interobserver ICC

values more than 0.75. These features, which showed good

repeatability, were collected for further radiomics study.
FIGURE 2

Representative immunohistochemical staining images of CD3, CD4, and CD8 cells in patients with advanced gastric cancer.
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2.6 Feature selection

The average value of each extracted radiomics feature was

subtracted, its standard deviation was divided by it (a process

known as Z score normalization), and all of the original feature

values were then transformed into feature values with a 0-1 normal

distribution. All features that are extracted may not apply to a

particular activity. Therefore, a critical step for achieving the most

effective result is to screen out particular features that are most

pertinent to this study. In this work, three strategies for dimension

reduction were used to eliminate redundant features: the variance

threshold, the single variable selection method, and the least absolute

shrinkage and selection operator (LASSO) method. Features with less

than 0.8 variance are first eliminated by the variance cutoff. A p-value

is used to assess the link between features and classification outcomes

in the SelectKBest method. The screening of all characteristics with a

p-value less than 0.05 is possible using this univariate feature selection

technique. L1 regularization is used in LASSO regression as the cost

function, with a maximum of 1000 iterations, to eliminate weakly

correlated features and ultimately produce the best feature selection.
2.7 Construction and validation of
radiomics models

Because only 103 patients were enrolled, it was impossible to

evaluate the robustness of our model using the conventional
Frontiers in Oncology 05
method of splitting the sample into training and validation

groups. Using 10-fold cross-validation, our study evaluated the

resilience of the prediction model. The training data were subjected

to a 10-fold internal cross-validation. The training data were

divided into ten subsets; one subset was used for validation, while

the other nine subsets were used for training. The next 10 iterations

followed. These data were used to train different classifier models,

mainly including Logistic Regression(LR); Support Vector Machine

(SVM); RandomForest (RF); and eXtreme Gradient Boosting

(XGBoost). The accuracy, sensitivity, specificity, positive

predictive value, negative predictive value, and AUC of each

classifier model in the training and test populations were

calculated to assess prediction performance.
2.8 Statistical analyses

For statistical analysis and the creation of visualizations,

GraphPad Prism 8.0, SPSS version 24.0, and R software version

4.0.2 (primarily packages for glmnet, pROC, RMS, and rmda) were

utilized. The use of “glmnet” was made of the LASSO approach. The

R software’s “calibrate” function from the “rms” package was used

for calibration. Count data were compared using the chi-square test

or Fisher’s exact probability test. Using the Mann−Whitney U test,

continuous variables were compared between groups. Interclass

correlation coefficients (ICC) were used to analyze the consistency
FIGURE 3

Histograms of different imaging modalities and quantitative perfusion parameters in patients with advanced gastric cancer. (A) Axial T1-weighted
images showed a mass with an irregular and thickened gastric wall. (B) ROIs were placed manually in axial T1-weighted images. (C) Outlining the
target area for eventual fusion into a three-dimensional structure. (D) Volume transfer constant (Ktrans) plot of the ROI. (E) The plot of the reverse
reflux rate constant (Kep) for the ROI. (F) The plot of extracellular extravascular volume fraction (Ve) of ROI. (G) Histogram of Ktrans values.
(H) Histogram of Kep values. (I) Histogram of Ve values. ROI, Region of interest.
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of texture features extracted from ROI between the two observers;

ICC >0.75 indicated satisfactory agreement. A bilateral statistical

analysis was conducted, and a p-value of 0.05 or lower was deemed

statistically significant.
3 Result

3.1 Characteristics of patients

An average age of 67.7 years (range, 33-88 years) was found

among 103 people with advanced stomach cancer in this

retrospective analysis, 77 men and 26 women. The training

cohort and test cohorts were divided into two groups, one with

high infiltration and the other with low infiltration, based on the

levels of CD3, CD4, and CD8 infiltration. Figure 3 illustrates

instances of the IHC analysis of CD3, CD4, and CD8 expression.

122, 87, and 138, respectively, were the median CD3+, CD4+, and

CD8+ TIL levels in the training group. Tables 1–3 contain

information about the clinical traits of AGC patients in the three

cohorts who had high or low levels of infiltration (CD3, CD4,

and CD8).
Frontiers in Oncology 06
3.2 Radiomics analysis

From the DCE-MRI data, 231 features in total were retrieved

(67 features each from Ktrans, Kep, and Ve). Details of all texture

parameters extracted are provided in the Supplementary Material.

Then, using the variance thresholding approach (threshold = 0.8),

SelectKBest, and LASSO regression algorithms, we screened 8, 8,

and 7 variables to build predictive models for CD3, CD4, and

CD8, respectively. These attributes were given weights based on

the appropriate coefficients. The Rad-score of the high-expression

group was greater than that of the low-expression group in both

the training and testing datasets of CD3, CD4, and CD8 (P < 0.05)

(Figure 4). Rad scores for each patient in the training and test sets

are presented as bars (Figure 5). The Rad-score equation for

predicting CD3, CD4, and CD8 was as follows:

" Rad�scoreCD3 =  0:3027*differenceEntropyKep +  

0:2016*GrayLevelNonuniformityKep+

0:5961*SurfaceVolumeRatioKep �  0:4203*
FrequencySizeVe +  1:1942*Quantile5Ve �
0:3383*VoxelValueSumKep �  0:6013*RelativeDeviationKep

� 0:1957*GlcmTotalFrequencyKep "
TABLE 1 Relationship between CD3 and clinicopathologic features in patients with advanced gastric cancer.

Characteristic Training cohorts (n = 72) Test cohorts (n = 31)

High (n=36) Low (n=36) P High (n=16) Low (n=15) P

Age (mean ± SD) 66.694 ± 11.095 69.528 ± 10.308 0.272 70.500 ± 9.779 70.000 ± 7.941 0.881

BMI (mean ± SD) 22.510 ± 2.870 22.290 ± 3.291 0.767 23.250 ± 2.492 23.392 ± 3.626 0.903

Gender 0.800 0.583

Male 24 (66.667) 25 (69.444) 14 (87.500) 14 (93.333)

Female 12 (33.333) 11 (30.556) 2 (12.500) 1 (6.667)

Location 0.763 0.508

Cardia 6 (16.667) 5 (13.889) 2 (12.500) 4 (26.667)

Body 12 (33.333) 15 (41.667) 4 (25.000) 2 (13.333)

Antrum 18 (50.000) 16 (44.444) 10 (62.500) 9 (60.000)

Differentiation level 0.343 0.366

High/Moderate 22 (61.111) 18 (50.000) 7 (43.750) 9 (60.000)

Poor 14 (38.889) 18 (50.000) 9 (56.250) 6 (40.000)

CEA level 0.422 0.594

Normal 25 (69.444) 28 (77.778) 9 (56.250) 7 (46.667)

Elevated 11 (30.556) 8 (22.222) 7 (43.750) 8 (53.333)

CA199 level 0.195 0.411

Normal 28 (77.778) 23 (63.889) 12 (75.000) 13 (86.667)

Elevated 8 (22.222) 13 (36.111) 4 (25.000) 2 (13.333)

CA125 level 0.276 0.682

Normal 25 (69.444) 29 (80.556) 13 (81.250) 13 (86.667)

Elevated 11 (30.556) 7 (19.444) 3 (18.750) 2 (13.333)
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" Rad�scoreCD4 =  0:0005*differenceVarianceKep

�  1:2295*uniformityKtrans �
0:9835*stdDeviationKep �  1:5579*CorrelationKep

�  0:4702*InertiaKep +  0:1958*HaraVarianceKep

+ 1:1830*sumVarianceKep +  0:3908*skewnessK
trans "

" Rad�scoreCD8 = 0:2341*HighGrayLevelRunEmphasisKep

+ 0:2341*ShortRunHighGrayLevelEmphasisKep

+  0:2341*LongRunHighGrayLevelEmphasisKep

� 0:6521*GlcmEnergyVe �  0:7020*InverseDifferenceMomentVe

�  4:0937*ClusterShadeKep + 0:6728*HaralickCorrelationKe
3.3 Radiomics model development
and evaluation

For the prediction models of CD3+, CD4+, and CD8+ T

lymphocytes, we constructed and evaluated models using LR, RF,

SVM, and XGBoost classifiers. The performance of the classifiers is
Frontiers in Oncology 07
presented in Table 4 and Figure 6. In the training set, the LR model

performed best in predicting CD3 T cells, with high accuracy,

sensitivity, specificity, and AUC. In the test set, the LR model for

CD3 T cells showed an accuracy of 0.807, sensitivity of 0.813,

specificity of 0.800, and AUC of 0.817 (Figures 6A, D; Table 4). For

CD4+ and CD8 T+ cells, the XGBoost model performed best in the

training set, but the RF model showed superior performance in the

test set, with higher accuracy and specificity. Specifically, the RF

model for CD4+ T cells achieved an accuracy of 0.903, sensitivity of

0.875, specificity of 0.933, and AUC of 0.904 in the test set

(Figures 6B, E; Table 4); while for CD8+ T cells, the RF model

achieved an accuracy of 0.903, sensitivity of 0.813, specificity of

1.000, and AUC of 0.908 in the test set (Figures 6C, F; Table 4).

Therefore, we selected the RF model as the best predictive model for

CD4+ and CD8+. These results indicate that the RF model performs

well in predicting CD4+ and CD8+ T cells, while the LR model

exhibits better performance in predicting CD3+ T cells. It is worth

noting that the XGBoost model may suffer from overfitting, thus we

chose random forest as the final predictive model. These findings

demonstrate the potential of the developed models for the

preoperative prediction of CD3, CD4, and CD8 expression levels

in AGC patients.
TABLE 2 Relationship between CD4 and clinicopathologic features in patients with advanced gastric cancer.

Characteristic Training cohorts (n = 72) Test cohorts (n = 31)

High (n=36) Low (n=36) P High (n=16) Low (n=15) P

Age (mean ± SD) 68.361 ± 10.729 67.861 ± 10.693 0.846 67.938 ± 9.731 72.733 ± 7.836 0.156

BMI (mean ± SD) 22.334 ± 2.639 23.359 ± 3.359 0.160 21.651 ± 2.414 22.955 ± 3.771 0.282

Gender 0.795 0.122

Male 25 (69.444) 26 (72.222) 15 (93.750) 11 (73.333)

Female 11 (30.556) 10 (27.778) 1 (6.250) 4 (26.667)

Location 0.159 0.089

Cardia 4 (11.111) 7 (19.444) 4 (25.000) 2 (13.333)

Body 12 (33.333) 17 (47.222) 0 (0.000) 4 (26.667)

Antrum 20 (55.556) 12 (33.333) 12 (75.000) 9 (60.000)

Differentiation level 0.345 0.605

High/Moderate 21 (58.333) 17 (47.222) 10 (62.500) 8 (53.333)

Poor 15 (41.667) 19 (52.778) 6 (37.500) 7 (46.667)

CEA level 0.195 0.833

Normal 23 (63.889) 28 (77.778) 9 (56.250) 9 (60.000)

Elevated 13 (36.111) 8 (22.222) 7 (43.750) 6 (40.000)

CA199 level 0.781 0.372

Normal 27 (75.000) 28 (77.778) 12 (75.000) 9 (60.000)

Elevated 9 (25.000) 8 (22.222) 4 (25.000) 6 (40.000)

CA125 level 1.000 0.682

Normal 27 (75.000) 27 (75.000) 13 (81.250) 13 (86.667)

Elevated 9 (25.000) 9 (25.000) 3 (18.750) 2 (13.333)
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4 Discussion

In this study, a noninvasive DCE-MRI-based radiomics model

was established and validated to predict preoperative CD3+, CD4+,

and CD8+ T-cell infiltration status in AGC patients. Our research

findings underscore the potential of the DCE-MRI radiomics model

in assessing CD3+, CD4+, and CD8+ T lymphocyte infiltration

levels. This noninvasive assessment method holds significant

implications, as it has the potential to assist clinical practitioners

in identifying AGC patients who may benefit from immunotherapy,

thus providing support for the development of personalized

treatment strategies.

Specific biomarkers connected to prognosis and responses to

chemotherapy and immunotherapy have been discovered using

TME quantitative analysis of diverse cellular subpopulations (11,

20). Previous research in GC has indicated that larger numbers of

CD3+, CD4+, and CD8+ T cells within tumors are related to

increased overall survival (21, 22). These proteins are normally

detected using samples obtained through biopsy or surgical

resection, followed by immunohistochemistry examination.

However, these analyses can only reflect a part of the tumor

tissue and cannot account for the tumor’s overall heterogeneity
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(23). Imaging, on the other hand, can offer a comprehensive

assessment of the overall anatomical structure and functional

properties of tumor tissue (24). Much earlier research has

shown that radiomics may accurately predict the immune

microenvironment in a variety of malignancies using various

imaging modalities (25, 26). DCE-MRI technology was used in

our study to build a predictive model. This approach varies from

traditional MRI imaging in that it offers precise information about

the tumor’s structure and function, such as blood volume, vascular

permeability, and the vascular network within the tumor (27).

This detailed structural and functional investigation aids us in

better understanding tumor biology. Previous research has

demonstrated that DCE-MRI is capable of predicting the

presence of tumor-infiltrating lymphocytes in malignant tumors

(28, 29). However, no study has focused on determining the extent

of CD3+, CD4+, and CD8+ T-cell infiltration in advanced gastric

cancer. In this investigation, we created four ML models utilizing

DCE-MRI data and assessed and compared their efficacy in

quantifying the numbers of tumor-infiltrating T cells, including

CD3, CD4, and CD8 subsets, in advanced gastric cancer patients.

This research covers a previously unknown knowledge gap in

this field.
TABLE 3 Relationship between CD8 and clinicopathologic features in patients with advanced gastric cancer.

Characteristic Training cohorts (n = 72) Test cohorts (n = 31)

High (n=37) Low (n=35) P High (n=16) Low (n=15) P

Age (mean ± SD) 67.378 ± 10.786 68.286 ± 9.747 0.714 68.750 ± 11.840 73.267 ± 6.942 0.224

BMI (mean ± SD) 22.863 ± 2.764 22.572 ± 3.089 0.679 22.828 ± 3.406 22.299 ± 3.615 0.688

Gender 0.892 0.916

Male 28 (75.676) 26 (74.286) 12 (75.000) 11 (73.333)

Female 9 (24.324) 9 (25.714) 4 (25.000) 4 (26.667)

Location 0.296 0.860

Cardia 9 (24.324) 5 (14.286) 2 (12.500) 1 (6.667)

Body 9 (24.324) 14 (40.000) 5 (31.250) 5 (33.333)

Antrum 19 (51.351) 16 (45.714) 9 (56.250) 9 (60.000)

Differentiation level 0.101 0.379

High/Moderate 26 (70.270) 18 (51.429) 5 (31.250) 7 (46.667)

Poor 11 (29.730) 17 (48.571) 11 (68.750) 8 (53.333)

CEA level 0.804 0.106

Normal 23 (62.162) 27 (77.143) 12 (75.000) 7 (46.667)

Elevated 14 (37.838) 8 (22.857) 4 (25.000) 8 (53.333)

CA199 level 0.345 0.916

Normal 29 (78.378) 24 (68.571) 12 (75.000) 11 (73.333)

Elevated 8 (21.622) 11 (31.429) 4 (25.000) 4 (26.667)

CA125 level 0.191 0.779

Normal 32 (86.486) 26 (74.286) 11 (68.750) 11 (73.333)

Elevated 5 (13.514) 9 (25.714) 5 (31.250) 4 (26.667)
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FIGURE 4

Radiomics scores in different cohorts of patients. In both the training (A–C) and test groups (D–F), patients with strong CD3, CD4, and CD8 cell
infiltration had significantly higher radiomics scores than patients with low infiltration.
B C
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FIGURE 5

Radiomics score (Rad-score) waterfall plots for CD3 (A, D), CD4 (B, E) and CD8 (C, F) cohorts. The Y-axis displays Rad-score values. Positive numbers
represent high expression forecasts, whereas negative values represent low expression expectations. Correct predictions have red bars with negative
values and blue bars with positive values, whereas incorrect predictions have blue bars with negative values and red bars with positive values.
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This study employed a 10-fold cross-validation approach and

trained four machine learning models using pharmacokinetic

radiomic features extracted from DCE-MRI data. These models

performed admirably in differentiating between different levels of

CD3, CD4, and CD8 invasion. The performance evaluation of

various machine learning classifiers in predicting tumor-

infiltrating T cell levels, including CD3, CD4, and CD8

subpopulations, reveals insights into the effectiveness of these

models for clinical applications. For CD3 prediction, LR and SVM

classifiers demonstrated robust performance in the training cohort,

achieving AUC values of 0.872 and 0.870, respectively. However, in

the test cohort, LR exhibited superior performance with an AUC of

0.817, indicating its efficacy in predicting CD3+ T cell infiltration.

Regarding CD4 prediction, the RF classifier emerged as the top

performer with AUC values of 0.913 and 0.904 in the training and

test cohorts, respectively. This highlights the capability of RF in

accurately predicting CD4+ T cell infiltration levels in AGC patients.

Similarly, for CD8 prediction, the RF classifier demonstrated
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excellent predictive ability with AUC values of 0.970 and 0.908 in

the training and test cohorts, respectively. The RF model’s high

accuracy and specificity suggest its suitability for identifying CD8+ T

cell infiltration in AGC patients. However, it is worth noting that the

XGBoost classifier, while achieving competitive AUC values in the

training cohorts for CD3, CD4, and CD8 predictions, exhibited

lower performance in the test cohorts, indicating potential

overfitting issues. Overall, our findings underscore the potential of

the RF classifier as the preferred model for predicting T-cell

infiltration levels in AGC based on DCE-MRI data. RF is a robust

ensemble learning algorithm that leverages multiple decision trees to

achieve high accuracy and incorporates feature selection during

classification prediction (30). The robust performance of RF

highlights its clinical relevance and utility in guiding treatment

decisions and patient management strategies. Nevertheless, further

validation in larger and more diverse patient cohorts is warranted to

confirm the generalizability and reliability of the predictive models

in real-world clinical settings.
TABLE 4 The performance of the radiomics model using LR, RF, XGBoost, and SVM classifiers for predicting the extent of CD3, CD4, and CD8
infiltration in each cohort.

Classifier Cohort AUC ACC SEN SPE PPV NPV

CD3 LR Training 0.872 0.819 0.833 0.806 0.811 0.829

Test 0.817 0.807 0.813 0.800 0.813 0.800

RF Training 0.887 0.847 0.889 0.806 0.821 0.879

Test 0.729 0.742 0.875 0.600 0.700 0.818

SVM Training 0.870 0.819 0.833 0.806 0.811 0.829

Test 0.796 0.774 0.750 0.800 0.800 0.750

XGBoost Training 0.833 0.764 0.778 0.75 0.757 0.771

Test 0.758 0.742 0.875 0.600 0.700 0.818

CD4 LR Training 0.863 0.847 0.861 0.833 0.838 0.857

Test 0.846 0.807 0.688 0.933 0.917 0.737

RF Training 0.913 0.875 0.833 0.917 0.909 0.846

Test 0.904 0.903 0.875 0.933 0.933 0.875

SVM Training 0.855 0.833 0.778 0.889 0.875 0.800

Test 0.842 0.807 0.688 0.933 0.917 0.737

XGBoost Training 0.995 0.986 1.000 0.972 0.973 1.000

Test 0.867 0.807 0.813 0.800 0.813 0.800

CD8 LR Training 0.849 0.764 0.676 0.857 0.833 0.714

Test 0.863 0.839 0.750 0.933 0.923 0.778

RF Training 0.970 0.917 0.892 0.943 0.943 0.892

Test 0.908 0.903 0.813 1.000 1.000 0.833

SVM Training 0.782 0.736 0.757 0.714 0.737 0.735

Test 0.808 0.774 0.750 0.800 0.800 0.750

XGBoost Training 0.988 0.944 0.919 0.971 0.971 0.919

Test 0.900 0.871 0.750 1.000 1.000 0.790
LR, Logistic Regression; SVM, Support Vector Machine; RF, RandomForest; XGBoost, eXtreme Gradient Boosting; AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPE, specificity;
PPV, positive predictive value; NPV, negative predictive value.
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In our study, Kep features played a pivotal role in constructing our

radiomicmodel. Kep reflects the rate at which the contrast agent returns

from the extravascular-extracellular space (EES) to the vasculature,

providing crucial insights into tumor vascular characteristics and the

distribution of the contrast agent within tissues (31). Typically, Kep

values in tumor tissues are higher because the vasculature network in

malignant tumors tends to be more tortuous, irregular, and permeable,

resulting in rapid ingress and egress of contrast agents within the tissue

(32). Previous research has underscored the significance of Kep in

predicting the biological characteristics of tumors, including the extent

of immune cell infiltration (33). This is because tumor vascular

permeability and blood flow are closely associated with immune cell

infiltration within tumor tissues. Thus, the prominence of Kep features

in our radiomic model is justified, as they furnish a profound

understanding of the tumor vascular microenvironment, which is

critical for comprehending the distribution and infiltration of

immune cells within tumors.
5 Limitations

First, we should note that the data for this retrospective analysis

come from only one institution, which could contribute to selection

bias. Furthermore, because the predictive model has not been

externally validated, there is an urgent need to undertake

additional prospective research, particularly multicenter trials

involving various medical centers. Second, due to the relatively
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limited sample size, additional patients will need to be recruited in

future research to further evaluate the model’s dependability.

Finally, we did not directly validate the correlation between

immune cell levels and actual immunotherapy outcomes. To

comprehensively assess our model’s predictive capability, future

research could consider validating these predictions in clinical

practice, particularly by incorporating patient groups undergoing

immunotherapy. This would help determine whether our model has

the potential to serve as a clinical tool to assist in immunotherapy

decisions. In particular, we did not include a thorough comparison

between existing approaches to T-cell infiltration prediction and

our suggested DCE-MRI radiomics model. To properly evaluate our

model’s potential in clinical practice, future research might look

into examining how our model varies from other approaches in

terms of accuracy, dependability, and clinical application. Despite

these limitations, radiomics models hold promise for precision and

personalized medicine in AGC patients.
6 Conclusion

In conclusion, this work demonstrates the utility of DCE-MRI

radiomics analysis in distinguishing levels of CD3+, CD4+, and

CD8+ T lymphocyte infiltration in pretreatment AGC patients. This

discovery highlights magnetic resonance imaging’s potential as a

noninvasive diagnostic for predicting the expression of

immunotherapy-related proteins.
B C

D E F

A

FIGURE 6

Evaluate the efficacy of different T cell expressions using the LR, RF, XGBoost, and SVM models. Receiver operating characteristic curves for
biomarkers used to classify CD3 (A, D), CD4 (B, E), and CD8 (C, F) expression levels in the training and testing cohorts. LR, Logistic Regression; SVM,
Support Vector Machine; RF, RandomForest; XGBoost, eXtreme Gradient Boosting.
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